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The method of one-dimensional maps was recently introduced as a means of generating exceptional dis-
cretizations of the �4 theory, i.e., discrete �4 models which support kinks centered at a continuous range of
positions relative to the lattice. In this paper, we employ this method to obtain exceptional discretizations of the
sine-Gordon equation �i.e., exceptional Frenkel-Kontorova chains�. We also use one-dimensional maps to
construct a discrete sine-Gordon equation supporting kinks which move with arbitrary velocities without
emitting radiation.

DOI: 10.1103/PhysRevE.77.036601 PACS number�s�: 05.45.Yv

I. INTRODUCTION

Discrete analogs of nonlinear evolution equations have
been the subject of intense investigation over the last 15
years. A great deal of insight has been gained into the prop-
erties of the discretized nonlinear Schrödinger, Landau-
Lifschitz, Korteweg-de Vries, �4, and other equations which
were originally introduced in the context of continuous non-
linear media. As for the discrete sine-Gordon equation that
we study in this paper, it preceded the appearance of its
continuum counterpart in the physics literature. The equation
dates back to 1938 when it was proposed by Yakov Frenkel
and Tatyana Kontorova to model stationary and moving crys-
tal dislocations �1�.

The original Frenkel-Kontorova model consisted of a
chain of harmonically coupled atoms in a spatially periodic
potential:

�̈n =
1

h2 ��n+1 − 2�n + �n−1� − sin �n. �1�

Here �n is the position of the nth atom in the chain, 1 /h2 is a
coupling constant, and the overdots indicate differentiation

with respect to time: �̈=d2� /dt2. An alternative interpretation
of Eq. �1� is that of a chain of torsionally coupled pendula,
with �n being the angle the nth pendulum makes with the
vertical. Finally, Eq. �1� can be seen simply as a discretiza-
tion of the sine-Gordon equation

�̈ = �xx − sin � , �2�

which was conceived for the numerical simulation of this
partial differential equation.

Since its original inception as the Frenkel-Kontorova
model, the discrete sine-Gordon equation �1� has reappeared
in a great number of physical contexts, including domain
walls in ferro- and antiferromagnetic crystals, charge-density
waves in solids, crowdions in metals, vortices in arrays of
Josephson junctions, incommensurate structures in metals
and insulators, and nonlinear excitations in hydrogen-bonded
molecules. �See �2,3,33� for review and references.� The

equation has also been generalized in a variety of ways. In
the present paper we study, systematically, two classes of
such generalizations. In the models of the first class the main
part of the intersite coupling is still harmonic, as in the origi-
nal Frenkel-Kontorova model, but in addition there is an an-
harmonic part of the interaction arising from the modified
periodic potential. These types of models are of interest pri-
marily in the stationary case where they define nontrivial
systems of statistical mechanics �systems with convex inter-
actions� �3,4,33�. The stationary discretizations in this class
have the form

1

h2 ��n+1 − 2�n + �n−1� = f��n−1,�n,�n+1� , �3�

where the function f �not necessarily a periodic function�
reduces to sin � in the continuum limit:

f��n−1,�n,�n+1� → sin �n as �n−1,�n+1 → �n.

The other class consists of all-periodic discretizations:

1

h2sin��n+1 − 2�n + �n−1� = f��n−1,�n,�n+1� . �4�

Here f is a periodic function of each of its three arguments,
such that f��n ,�n ,�n�=sin �n. Equations of this type govern
arrays of electric dipoles or magnetic spins in which the in-
teractions between the neighboring elements are character-
ized by the trigonometric functions of the corresponding
angles. These models are commonly referred to as the “sine
lattices” �5�. In the stationary case, examples of the sine lat-
tices include the usual and the chiral one-dimensional XY
model in the magnetic field �3,6�. In the time-dependent set-
ting, the sine lattices were used to model the rotational dy-
namics of methyl groups in 4-methyl-pyridine �7�, CH2 units
in crystalline polyethylene �8�, and bases in a DNA macro-
molecule �8,9�; to study conformational defects in polymer
crystals �10� and nonlinear waves in chains of electric di-
poles �11�.

In addition to Eqs. �3� and �4�, we also consider some
other discretizations which have the special property of ex-
hibiting exact solutions.

In most physical applications of the sine-Gordon theory,
both continuum and discrete, the central role is played by its
solitary-wave solution, called a kink. The kink represents a
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dislocation in the crystal, a 2�-twist wave in the chain of
pendula, and a quantum of magnetic flux in a long Josephson
junction. In the continuum model �2�, the kink solution is
available explicitly; in particular, the stationary kink has the
expression

��x� = 4 arctan�exp�x − x�0��� . �5�

The stationary kink �5� depends on a single parameter, the
position of its center x�0�, which can be varied continuously:
−��x�0���. In generic discretizations of the sine-Gordon
theory, however, the kink can only be centered on a lattice
site or strictly midway between two neighboring sites
�12–15�. Mathematically, this is a consequence of the break-
ing of the translation symmetry of the continuum model. The
physical interpretation is that the discrete kink can only re-
main stationary when placed at a minimum or a maximum of
the so-called Peierls-Nabarro barrier, a periodic potential in-
duced by the discretization of Eq. �2� �12–16�.

Speight and Ward �17� were the first to realize that the
breaking of the translation symmetry does not necessarily
preclude the existence of a one-parameter family of station-
ary discrete kinks with an arbitrary centering relative to the
lattice. In other words, despite not being translation invari-
ant, the lattice equation may support a kink solution which
depends on a continuous translation parameter. This “spon-
taneous symmetry restoration” is a nongeneric phenomenon
which may only occur in isolated, or exceptional, discretiza-
tions of the sine-Gordon model. Physically, it implies that the
discretization does not induce the Peierls-Nabarro barrier, or
that the barrier is transparent to kinks. Flach, Zolotaryuk, and
Kladko have discovered a similar phenomenon in a class of
discrete Klein-Gordon systems with nonlinearities of a spe-
cial form �18�.

The classification of the exceptional discrete sine-Gordon
equations, i.e., equations supporting families of stationary
kinks with a continuously variable position relative to the
lattice, is of fundamental interest. First, the discrete kinks
tend to be more mobile in exceptional discrete models. There
are some isolated velocities at which kinks in the exceptional
models may slide, i.e., travel without losing energy to radia-
tion �19�. For other velocities, the moving kinks do radiate
but the amplitude of radiation is much smaller than in ge-
neric systems �17,19–21�. In addition, the collisions of kinks
were reported to be more elastic in the exceptional models
�22�. We also show in this paper that some exceptional sys-
tems admit time-dependent versions which support sliding
kinks with arbitrary velocities. Furthermore, there are indi-
cations �23� that all exceptional discretizations possess a
conservation law: they conserve either energy or momentum.
Therefore exceptional discrete models appear to be “better”
approximations of the partial-differential Eq. �2�—at least as
far as the kink solutions are concerned—as they preserve
important properties of the continuum model.

The objective of the present paper is to identify excep-
tional Frenkel-Kontorova models within the families �3� and
�4�. We are not going to attempt a complete classification
here; instead, we focus on identifying simple particular cases
which may be of practical use in the future. We also con-

struct two discrete models with exact �stationary and mov-
ing� kink solutions.

An outline of the rest of the paper is as follows. In the
next section �Sec. II�, we present the method of one-
dimensional maps as applied to discrete sine-Gordon equa-
tions. In Sec. III, the method is used to identify simple ex-
ceptional discretizations of the form �3� involving ratios of
trigonometric and linear functions. The symmetric maps
found in this section have one further use; in Sec. IV we
utilize them to construct purely trigonometric discretizations
�of the form �4��. In the subsequent sections we present dis-
crete sine-Gordon equations with exact stationary �Sec. V�
and moving �Sec. VI� kink solutions. Finally, several con-
cluding remarks are made in Sec. VII which summarizes the
results of this study.

II. METHOD OF ONE-DIMENSIONAL MAPS

To derive an exceptional discrete sine-Gordon model,
Speight and Ward used the Bogomolny energy-minimality
argument �17�. The energy minimality requirement has natu-
rally led them to consider a one-dimensional map rather than
the original, second-order, difference equation. In the
follow-up work �24�, Speight utilized the energy-minimizing
map �the Bogomolny map� to prove the existence of a one-
parameter family of kinks for their discretization of the �4

theory, i.e., the exceptionality of their �4 model.
A further insight was due to Kevrekidis �25�. Inspired by

Herbst and Ablowitz’ results on the discrete nonlinear
Schrödinger equation �26�, Kevrekidis reformulated the ex-
ceptionality of a stationary discrete Klein-Gordon equation
as the existence of a two-point invariant. He also provided
two phenomenological recipes of construction of stationary
discretizations with such invariants. Thus the existence of a
two-point invariant replaced the energy minimality require-
ment as the crucial property of exceptional discretizations.

The universality of one-dimensional maps as generators
of translationally invariant families of solutions has been
fully realized in Ref. �27�. Instead of trying to identify dis-
cretizations exhibiting a two-point invariant, the authors of
�27� proposed to generate exceptional discretizations depart-
ing from a postulated map. �That is, the two-point invariant
has now become a starting point rather than the final objec-
tive of the analysis.� In this way, the classification of excep-
tional discretizations has been reduced to the classification of
one-dimensional maps. This will be our approach in this pa-
per as well.

We start by considering a discrete sine-Gordon equation
of the form �3� and assume that the corresponding stationary
equation,

1

h2 ��n+1 − 2�n + �n−1� = f��n−1,�n,�n+1� , �6�

has a solution of the form �n=g�nh�, where the continuous
function g�x� is defined for −��x�� and is monotonically
growing, with g�−��=0 and g���=2�. Since n does not ap-
pear in Eq. �6� explicitly, from the existence of the above
solution it follows that Eq. �6� also has a whole family of
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solutions �n=g�nh−x�0��, with any real x�0�, and therefore
that the model �6� is exceptional. For each x�0�, the solution
�n=g�nh−x�0�� represents a discrete kink; if we interpret val-
ues xn=nh as positions of the lattice sites on the x axis, the
kink �n appears centered on the point x=x�0�. It is important
to emphasize that we do not need to know an explicit form of
g; all we need to know is that a function with these proper-
ties exists �for example, as an implicit function�.

As g�x� is a monotonically growing function, we can in-
vert it to obtain �n+1=g(g−1��n�+h)�F��n�. Since g�x� is
defined for all real x, the function F��n� is defined for any �n.
Thus the fact that the discretization is exceptional implies
that the kink solution �n satisfies a one-dimensional map
�27�. The opposite is also true. Namely, assume Eq. �6� re-
sults from the iteration of a one-dimensional map �n+1
=F��n� �in a similar way as a second-order differential equa-
tion can be derived by differentiating a first-order one�. In
addition, let the function F be such that F����� for any �
between 0 and 2�, whereas F�0�=0 and F�2��=2�. A
simple cobwebbing argument shows then that for any �0
within the range 0��0�2�, the map generates a discrete
kink solution . . . ,�−1 ,�0 ,�1 , . . . . Therefore, we have a one-
parameter family of kinks and so Eq. �6� represents an ex-
ceptional discretization.

This observation implies that we can find exceptional dis-
cretizations of the sine-Gordon equation by considering a
one-dimensional map

�n+1 − �n = hH��n+1,�n� , �7�

where the function H satisfies several requirements. First of
all, it should satisfy the condition

H��,�� = 2 sin
�

2
, �8�

which ensures that the map �7� reduces to equation

�x = 2 sin
�

2
�9�

in the continuum limit �where �n+1−�n→h�x�. Equation �9�
is the Bogomolny equation for the stationary continuum
sine-Gordon theory: the sine-Gordon equation �xx=sin � fol-
lows from Eq. �9� by differentiation, while its kink solution
�5� is simultaneously a solution of Eq. �9�. Therefore the
condition �8� selects maps which generate discretizations of
the sine-Gordon rather than some other equation. Our second
requirement is that H��n ,�n+1� should be bounded and posi-
tive for all pairs of �n and �n+1 with a sufficiently small value
of the difference ��n+1−�n� �where 0��n ,�n+1�2��. Using
this property of H, assuming that h is sufficiently small, and
invoking the implicit function theorem, we can show that Eq.
�7� defines, for any 0��n�2�, a function �n+1=F��n�, with
�n+1��n. Thus Eq. �7� will give rise to an exceptional dis-
cretization of the sine-Gordon equation.

This discretization results from squaring both sides of Eq.
�7� and subtracting the square of its back-iterated copy,

�n − �n−1 = hH��n,�n−1� .

This yields �27�

�n+1 − 2�n + �n−1

h2 =
H2��n+1,�n� − H2��n,�n−1�

�n+1 − �n−1
. �10�

If H is symmetric �i.e., invariant under the permutation of its
arguments: H�x ,y�=H�y ,x��, the numerator in Eq. �10� van-
ishes whenever the denominator equals zero and hence the
right-hand side of Eq. �10� is nonsingular. Thus the classifi-
cation of exceptional discretizations reduces to the classifi-
cation of all symmetric functions H�x ,y� with the above
properties. The next section summarizes the results of this
analysis.

III. RATIONAL-TRIGONOMETRIC DISCRETIZATIONS

A. H2
„x ,y…=F„x…+F„y…

The simplest possibility is to let H2�x ,y�=F�x�+F�y�.
From H�x ,x�=2 sin�x /2� it follows that F�x�=2 sin2�x /2�
and so

H2�x,y� = 2 sin2 x

2
+ 2 sin2 y

2
. �11�

This function gives rise to one of Kevrekidis’ discretizations
�25�:

�n+1 − 2�n + �n−1

h2 = −
cos �n+1 − cos �n−1

�n+1 − �n−1
, �12a�

or, equivalently,

�n+1 − 2�n + �n−1

h2 = 2
sin���n+1 − �n−1�/2�

�n+1 − �n−1
sin��n+1 + �n−1

2
� .

�12b�

B. H2
„x ,y…=F„x+y…

Letting H2�x ,y�=F�x+y� and substituting into the con-
tinuum limit condition, yields

H2�x,y� = 4 sin2x + y

4
. �13�

This symmetric function generates the discretization of the
form

�n+1 − 2�n + �n−1

h2 = 4
sin���n+1 − �n−1�/4�

�n+1 − �n−1

�sin��n+1 + 2�n + �n−1

4
� . �14�

C. H2
„x ,y…=F„x…F„y…

Another simple possibility is to assume that H2�x ,y�
=F�x�F�y�. From the continuum limit we obtain F�x�
=2 sin�x /2� and so

H2�x,y� = 4 sin
x

2
sin

y

2
. �15�

By substituting into Eq. �10� we find the following discreti-
zation:
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�n+1 − 2�n + �n−1

h2 = 8
sin���n+1 − �n−1�/4�

�n+1 − �n−1

�sin��n

2
�cos��n+1 + �n−1

4
� . �16�

D. H2
„x ,y…= †F„x…+F„y…‡2

Considering the symmetric function of the form H2�x ,y�
= �F�x�+F�y��2, we obtain from the continuum limit

H2�x,y� = �sin
x

2
+ sin

y

2
�2

. �17�

This gives rise to the following discretization:

�n+1 − 2�n + �n−1

h2 = 2
sin���n+1 − �n−1�/4�

�n+1 − �n−1
cos��n+1 + �n−1

4
�

��sin
�n+1

2
+ 2 sin

�n

2
+ sin

�n−1

2
� . �18�

E. H2
„x ,y…=F„x…F„y…+G„x…G„y…

A simple symmetric generalization involving two func-
tions of a single argument, say F�x� and G�x�, is H2�x ,y�
=F�x�F�y�+G�x�G�y�. Setting x=y yields

F2�x� + G2�x� = 4 sin2 x

2
.

One possibility here is to assume that the functions F and G
have the form

F�x� = 2� �x�sin
x

2
, G�x� = 2	�x�sin

x

2
,

where � and 	 satisfy �2�x�+	2�x�=1. The simplest trigono-
metric choice for � and 	 is

� �x� = sin�ax�, 	�x� = cos�ax� ,

where a is a parameter. Taking, for instance, a= 1
2 , gives us

the following expression for H2�x ,y�:

H2��n+1,�n� = 4 sin
�n+1

2
sin

�n

2
cos

�n+1 − �n

2
. �19�

The function �19� is obviously positive for ��n+1−�n��� and
therefore the resulting discretization

�n+1 − 2�n + �n−1

h2 = 4
sin���n+1 − �n−1�/2�

�n+1 − �n−1

�sin��n

2
�cos��n+1 − �n + �n−1

2
�

�20�

is exceptional for sufficiently small h.
Another simple symmetric combination of two functions

of a single argument is H2�x ,y�=F�x�G�y�+F�y�G�x�; how-

ever, this H2 gives rise to the discretization that we have
already identified, Eqs. �12a� and �12b�.

F. More complex symmetric functions

It is not difficult to construct more examples of symmetric
functions H�x ,y� with increasing complexity. One possibility
is to take

H2�x,y� = 	
n=1

N

Fn�x�Fn�y� ,

where Fn�x� �n=1,2 , . . . ,N� are appropriate trigonometric
functions. Another symmetric combination is

H2�x1,x2� = 

n=1

N

Fn�x�n�� + 

n=1

N

Fn�x�n+1�� ,

where �n��n mod 2.

IV. PURELY TRIGONOMETRIC DISCRETIZATIONS

Our original one-dimensional map �7� can be modified to
produce periodic discretizations. Instead of Eq. �7�, we con-
sider the map

� sin
�n+1 − �n

�
= hH��n+1,�n� , �21�

where H��n+1 ,�n� is a trigonometric function of its argu-
ments and � is a positive integer. Subtracting from the square
of Eq. �21� the square of its back-iterated copy yields the
discrete model

�2

h2sin
�n+1 − 2�n + �n−1

�
=

H2��n+1,�n� − H2��n,�n−1�
sin���n+1 − �n−1�/��

.

�22�

As in Eq. �7�, we assume that H��n+1 ,�n� is positive, sym-
metric, and has the continuum limit H�� ,��=2 sin�� /2�. For
sufficiently small h and ��n+1−�n�, Eq. �21� defines an im-
plicit function �n+1=F��n�, with �n+1��n. Consequently, the
discretization �22� is exceptional.

The discretizations �22� are different from those in Eq.
�10� in that every term in Eq. �22� is periodic in each of its
three arguments, �n−1, �n, and �n+1. The models of the form
�22� find their applications in the description of coupled
chains of elements where each element is characterized by a
periodic variable �an angle� and the coupling of elements
does not violate this periodicity. One example is given by the
Speight-Ward discretization �17�

4

h2sin��n+1 − 2�n + �n−1

4
� = sin��n+1 + 2�n + �n−1

4
� ,

�23�

which has recently been shown to describe chains of electric
dipoles constrained to rotate in the plane containing the chain
�11�. Another example is the one-dimensional chiral XY
model
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sin�
n+1 − 
n − �� − sin�
n − 
n−1 − ��

= K sin�p
n� �p = 1,2, . . .� , �24a�

or, equivalently,

�

h2sin��n+1 − 2�n + �n−1

�
�cos��n+1 − �n−1

�
− �� = sin �n,

�24b�

where �n= p
n, �=2p, and h2= pK. The chiral XY model
�24a� and �24b� describes arrays of spins with the nearest-
neighbor interactions in an external magnetic field �3,6�. It is
used to model helimagnetic materials, discotic and ferroelec-
tric smectic liquid crystals, crystalline polymers, thin mag-
netic films, and Josephson junction arrays.

The classification of discretizations of the form �22� re-
duces to the classification of all possible symmetric functions
H�x ,y�—the task completed in Sec. III above. Each function
H2�x ,y� identified in Sec. III gives rise to a number of purely
periodic discretizations of the form �22�, with various �; that
is, each rational-trigonometric exceptional model �10� has a
set of purely trigonometric counterparts �22�. We will restrict
ourselves to the simplest representative�s� of these sets by
choosing appropriate value�s� of �. The resulting models can
be summarized as follows.

Picking the symmetric function �11� of Sec. III A and let-
ting �=2 gives rise to a very simple exceptional discretiza-
tion

2

h2sin��n+1 − 2�n + �n−1

2
� = sin��n+1 + �n−1

2
� . �25�

If, instead, we took �=4, we would obtain a slightly more
complicated model:

4

h2sin��n+1 − 2�n + �n−1

4
�

= sin��n+1 + �n−1

2
�cos��n+1 − �n−1

4
� . �26�

Finally, if we “extend” the symmetric function �11� by add-
ing a term that vanishes in the continuum limit,

H2�x,y� = 2 sin2 x

2
+ 2 sin2 y

2
+ 2 sin2x − y

2
,

then, keeping �=4, we will arrive at a �still reasonably
simple� exceptional model

2

h2sin��n+1 − 2�n + �n−1

4
�

= sin��n+1 − �n + �n−1

2
�cos��n+1 − �n−1

4
�cos

�n

2
.

�27�

Next, choosing the symmetric function �13� of Sec. III B and
letting �=4 yields Speight and Ward’s model, Eq. �23�. On
the other hand, taking the symmetric function �15� of Sec.
III C and letting �=4, gives the discretization

4

h2sin��n+1 − 2�n + �n−1

4
� = 2 sin��n

2
�cos��n+1 + �n−1

4
� .

�28�

Equation �28� reduces to Eq. �23� with the lattice spacing

constant h̃=h�1+h2 /4�−1/2, if we use an identity

2 sin��n

2
�cos��n+1 + �n−1

4
�

= sin��n+1 + 2�n + �n−1

4
� − sin��n+1 − 2�n + �n−1

4
� .

�29�

Picking the symmetric function of the form �17� from Sec.
III D, and letting �=4, gives an exceptional discretization

4

h2sin��n+1 − 2�n + �n−1

4
�

=
1

2
cos��n+1 + �n−1

4
��sin

�n+1

2
+ 2 sin

�n

2
+ sin

�n−1

2
� .

�30�

Finally, choosing the symmetric function in the form �19�
from Sec. III E and letting �=2 produces an exceptional
model

2

h2sin��n+1 − 2�n + �n−1

2
� = 2 sin��n

2
�cos��n+1 − �n + �n−1

2
� .

�31�

Writing the right-hand side as a sum of sines, we reproduce

Eq. �25� with h replaced with h̃=h�1+h2 /2�−1/2.
The models �25�–�27� and �30� constitute our list of ex-

ceptional periodic discretizations of the sine-Gordon equa-
tion. This list can be generalized and extended in a variety
of ways. For example, we can replace the sine function in
Eq. �21� with tan���n+1−�n� /�� or, more generally, with
sin���n+1−�n� /��cosp�m��n+1−�n�� with arbitrary m and p.
Also, we can add a sum 	An sin2�Bn�x−y�� with arbitrary An

and Bn to any of the symmetric functions H2�x ,y�. Since we
are mainly interested in simple discretizations, we are not
pursuing these possibilities in our present work.

V. DISCRETE SINE-GORDON EQUATION
WITH EXACT KINK SOLUTIONS

In this section we consider one more exceptional discreti-
zation of the sine-Gordon equation. In addition to admitting
an arbitrary centering relative to the lattice, the kinks in this
model are available in exact explicit form.

We start with what may seem to be an unrelated map,

�n+1 − �n = h�1 − �n�n+1� .

Writing the square of this map as

��n+1 − �n�2

1 − �n+1�n
= h2�1 − �n�n+1�

and subtracting its back-iterated copy gives
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�n+1 − 2�n + �n−1 + �n��n
2 − �n+1�n−1�

= − h2�n�1 − �n+1�n��1 − �n�n−1� . �32a�

Equation �32a� with

�n = cos
�n

2
, �32b�

that is, equation

cos
�n+1

2
− 2 cos

�n

2
+ cos

�n−1

2

+ cos
�n

2
�cos2�n

2
− cos

�n+1

2
cos

�n−1

2
�

= − h2 cos
�n

2
�1 − cos

�n

2
cos

�n+1

2
�

��1 − cos
�n

2
cos

�n−1

2
� , �33�

provides an exceptional discretization of the sine-Gordon
equation. Indeed, the continuum limit of Eq. �32a� is

�xx�1 − �2� + ��x
2 = − ��1 − �2�2, �34�

which is nothing but the stationary sine-Gordon equation
�xx=sin � written in terms of �=cos�� /2�.

Equation �32a� has an exact kink solution

�n = tanh�kn − x�0��, tanh k = h ,

where x�0� is a translation parameter which can be chosen
arbitrarily. Applying the transformation �32b� to �n produces
an explicit kink solution of the discrete sine-Gordon equation
�33�:

�n = 4 arctan�exp�kn − x�0���, tanh k = h . �35�

We are not aware of any physical systems represented by
Eq. �33�. This discrete model may find its uses, however, in
numerical simulations of the continuum sine-Gordon equa-
tion. Like other exceptional discretizations of the sine-
Gordon equation, this model preserves an “effective transla-
tion invariance” of the continuum equation. The fact that the
stationary discrete kinks of the model �33� are available in
exact explicit form is an additional computational advantage.

VI. TRAVELING KINKS

In this section we show how the method of one-
dimensional maps can be used to construct moving kinks.

The discretization breaks the Lorentz invariance of the
continuum model �2� in the same way as it breaks its trans-
lation symmetry; hence the mobility of the kink becomes a
nontrivial property in the discrete case. As the kink moves in
the Peierls-Nabarro potential, it excites resonant radiation
and decelerates as a result of that �12,14,20,28,29�. Surpris-
ingly, some discrete models exhibit isolated values of the
kink velocity for which the kink can slide, i.e., travel without
experiencing radiative friction �18,19,30,31�.

A pertinent question here is whether there are exceptional
discretizations where the kink can slide with an arbitrary
velocity. A discrete nonlinear Schrödinger equation with this
property is well-known; it is the Ablowitz-Ladik model
whose solitons are radiationless irrespective of their veloci-
ties. On the other hand, no discrete Klein-Gordon equations
whose kink velocities would all be sliding velocities have
been found so far—neither in the Frenkel-Kontorova class of
models nor among the discrete �4 theories.

In this section we construct such a discrete sine-Gordon
equation. Its kink solutions are given by explicit expressions,
and, as will become obvious from these explicit formulas, all
its kinks travel without emitting radiation.

We start with a nonstationary equation

�xx − �tt − 2�
�x

2 − �t
2

1 + �2 = �
1 − �2

1 + �2 , �36�

which transforms into the sine-Gordon equation �xx−�tt
=sin � by the substitution �=tan�� /4�. Our first observation
is that if ��x , t� is a simultaneous solution of two first-order
equations

�x =
1

�1 − v2
� �37�

and

�t = −
v

�1 − v2
� , �38�

then it also satisfies Eq. �36�. In Eqs. �37� and �38�, v is a
parameter; −1�v�1. Note that Eq. �36� does not contain v
explicitly; hence finding a solution of Eqs. �37� and �38� for
all v amounts to finding a one-parameter family of solutions
to Eq. �36�.

Next, we discretize Eq. �37� according to

1

h2 ��n+1 − �n�2 =
1

1 − v2�n�n+1 �39�

and divide both sides by the same expression to get

1

h2

��n+1 − �n�2

�1 + �n+1
2 ��1 + �n

2�
=

1

1 − v2

�n�n+1

�1 + �n+1
2 ��1 + �n

2�
. �40�

We also consider a discrete version of Eq. �38�:

�̇n = −
v

�1 − v2
�n. �41�

Subtracting Eq. �40� from its back-iterated copy and replac-
ing �n with tan��n /4�, gives

1

h2sin��n+1 − 2�n + �n−1

4
�

=
1

2

1

1 − v2sin��n

2
�cos��n+1 + �n−1

4
� . �42�

On the other hand, Eq. �41� yields
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�̈n − 2�n

�̇n
2

1 + �n
2 =

v2

1 − v2�n
1 − �n−1�n+1

1 + �n−1�n+1
, �43�

where we have used the relation �n+1�n−1=�n
2 which is

straightforward from Eq. �39�. Letting �n=tan��n /4� in Eq.
�43�, we get

�̈n

4
cos��n+1 − �n−1

4
� =

1

2

v2

1 − v2sin��n

2
�cos��n+1 + �n−1

4
� .

�44�

Finally, subtracting Eq. �42� from Eq. �44� yields a discrete
sine-Gordon equation

cos��n+1 − �n−1

4
� �̈n

4
=

1

h2sin��n+1 − 2�n + �n−1

4
�

−
1

2
sin��n

2
�cos��n+1 + �n−1

4
� .

�45�

For any h, this equation has an explicit moving kink solution
which is a compatible solution of the first-order difference
Eq. �39� and the first-order differential Eq. �41�:

�n = 4 arctan�exp�kn −
vt

�1 − v2�
 , �46�

where k is defined by

2 sinh� k

2
� =

h
�1 − v2

�47�

and v can take any value between −1 and 1. As h→0, the
solution �46�, �47� tends to the traveling kink solution of the
continuum sine-Gordon equation,

�n → 4 arctan�exp� xn − vt
�1 − v2�
, xn = hn .

Using identity �29�, Eq. �45� can be cast in the form

cos��n+1 − �n−1

4
��̈n =

4

h̃ 2
sin��n+1 − 2�n + �n−1

4
�

− sin��n+1 + 2�n + �n−1

4
� , �48�

where h̃=h�1+h2 /4�−1/2. The solution to Eq. �48� is given by
the same Eq. �46� where k should now be defined by

sinh� k

2
� =

1
�1 − v2

h̃

�4 − h̃ 2
. �49�

Solution �46�, �49� exists for any �v��1 and 0� h̃�2.
We close this section by noting that the stationary limit of

Eq. �48� coincides with the stationary part of the Speight-
Ward model �17�,

cos−1��n+1 − �n−1

4
��̈n =

4

h̃ 2
sin��n+1 − 2�n + �n−1

4
�

− sin��n+1 + 2�n + �n−1

4
� . �50�

�Here cos−1 � should be understood as 1 /cos � and not as
arccos �.� The simulations of Speight and Ward �17� have
demonstrated that the motion of the kink in their Eq. �50� is
accompanied by a much weaker radiation than the kink
propagation in a typical nonexceptional model. Now that we
have another time-dependent version of the same stationary
model, in which the radiation is completely suppressed for
all velocities, the low level of radiation from the moving
Speight-Ward kink can be explained simply by the proximity
of their Eq. �50� to our model �48�.

VII. CONCLUDING REMARKS

The results of this work can be summarized as follows.
�1� Using the method of one-dimensional maps, we have

derived several exceptional discretizations of the sine-
Gordon equation involving ratios of trigonometric to linear
functions: Eqs. �14�, �16�, �18�, and �20�. We have also re-
covered the exceptional system of Kevrekidis, Eqs. �12a� and
�12b�, which was originally obtained within a different ap-
proach �25�.

�2� We have identified several purely trigonometric excep-
tional discretizations, in particular Eqs. �25�, �26�, and �30�:

�̈n =
2

h2sin��n+1 − 2�n + �n−1

2
� − sin��n+1 + �n−1

2
�;

�̈n =
4

h2sin��n+1 − 2�n + �n−1

4
�

− sin��n+1 + �n−1

2
�cos��n+1 − �n−1

4
�;

�̈n =
4

h2sin��n+1 − 2�n + �n−1

4
�

−
1

2
cos��n+1 + �n−1

4
��sin

�n+1

2
+ 2 sin

�n

2
+ sin

�n−1

2
� .

�3� We have derived a discretization with exact explicit
kink solutions, Eq. �33�.

�4� We have constructed a discrete sine-Gordon model
which supports kinks traveling with arbitrary velocities:

�̈n cos��n+1 − �n−1

4
� =

4

h2sin��n+1 − 2�n + �n−1

4
�

− sin��n+1 + 2�n + �n−1

4
� . �51�

The latter result deserves an additional comment. By anal-
ogy with the derivation of the model �51�, it is not difficult to
construct discrete �4 theories supporting sliding kinks with
arbitrary velocities. One such model has the form
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�̈n
1 − �n+1�n−1

1 − �n
2 =

�n+1 − 2�n + �n−1

h2 +
�n

2
�1 − �n+1�n−1� .

�52�

�This is a time-dependent generalization of the exceptional
stationary �4 model derived in �27�.� The moving kink solu-
tion to Eq. �52� has the form

�n = tanh�kn −
vt

2�1 − v2�,
4 tanh2 k

1 + tanh2 k
=

h2

1 − v2 .

Another time-dependent discretization of the �4 theory with
sliding kinks is

�̈n
1 − �n+1�n−1

1 − �n
2 =

�n+1 − 2�n + �n−1

h2

+
�n

2
�1 −

�n

2
��n+1 + �n−1�
 . �53�

�This is a time-dependent generalization of the exceptional
�4 model identified by Bender and Tovbis �32� and Kevreki-
dis �25�.� The sliding kink solution has the form

�n = tanh�kn −
1

2�1 + tanh2 k

vt
�1 − v2�, 4 tanh2 k =

h2

1 − v2 .

The analogy between Eq. �51� and the Ablowitz-Ladik
model is also worth commenting upon. The Ablowitz-Ladik
model is the only discrete nonlinear Schrödinger equation
whose solitons can slide with any chosen velocity. The ab-
sence of the accompanying radiation is usually explained by

the integrability of this equation. The similar behavior of the
kinks of Eq. �51� makes one wonder whether the latter equa-
tion could also be integrable. We have tested the integrability
of Eq. �51� numerically, by simulating a collision of a kink
and an antikink. The scattering was found to be inelastic: the
velocities of the kink and antikink changed as a result of the
collision, and a significant amount of radiation was detected.
Consequently, we conclude that Eq. �51� is not integrable.
This example demonstrates that, contrary to common belief,
integrability is not a prerequisite for the existence of a dis-
crete soliton sliding at an arbitrarily chosen velocity.

Finally, it is interesting to compare traveling kink solu-
tions of our model �51� with traveling kinks of another modi-
fication of the Speight-Ward model proposed by Zakrzewski
�31�. Zakrzewski’s model is different from the Speight-Ward

Eq. �50� in the presence of a factor �1+��̇n
2�−1 in front of the

left-hand side of Eq. �50�, with �=const. The model has an
exact solution in the form of a sliding kink; however, simi-
larly to radiationless moving kinks in other systems
�18,19,30�, this kink can only slide with one particular ve-
locity which is determined by the parameters h and �. Unlike
this codimension-1 solution, our sliding kinks �46�, �49� have
codimension 0 in the sense that they can move with an arbi-
trary velocity independent of h.
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