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A bifurcation analysis is performed of a dc glow discharge between parallel electrodes and of a dc near-
cathode space-charge sheath bordering a uniform plasma column. A model of plasma is considered with a
single ion species and motion of the charged particles dominated by drift. Bifurcation points are found at which
steady-state modes with spots on the cathode branch off from the abnormal mode or from the mode corre-
sponding to the falling section of the current-density–voltage characteristic. In both discharge configurations,
bifurcations in the abnormal mode have been detected; an unexpected result given that loss of stability and
pattern appearance in dc gas discharges are usually associated with a negative differential resistance of the
discharge. The conclusion is drawn that the two most important mechanisms governing appearance of patterns
on glow cathodes, which are electrostatic mechanism and diffusion, produce competing effects: the former
favors appearance of modes with multiple spots, while the latter favors appearance of a mode with one spot.
This may explain the appearance in experiments of a normal spot or, alternatively, of patterns with multiple
spots.
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I. INTRODUCTION

The existence of multiple modes of current transfer to
electrodes of gas discharges is rather the rule than the excep-
tion. As far as cathodes of glow discharges are concerned, it
has been known for many decades that steady-state current
transfer can occur in an abnormal mode or in a mode with a
normal spot �e.g., Ref. �1�; some further references can be
found in Refs. �2,3��. Recently, also steady-state modes with
patterns of more than one spot have been observed �4–9�.
Patterns of a number of spots have been observed also on
anodes of dc glow discharges �e.g., Ref. �10� and references
therein; some further references can be found in Ref. �11��. A
diffuse mode and a mode with one spot can occur on cath-
odes of high-pressure arc discharges; e.g., Ref. �12� and ref-
erences therein. Patterns of several spots have been observed
on cathodes of vacuum arcs; e.g., Refs. �13–15�. Diffuse,
constricted, and multiple-spot modes can occur on anodes of
high-pressure arc discharges; e.g., Refs. �16–18�. A wealth of
different patterns has been observed in dc-driven planar dis-
charge systems in which one metal electrode is separated
from the gas by a high Ohmic barrier or is made of a high-
Ohmic or semiconductor material, and in dielectric-barrier
discharges; e.g., Ref. �19� and references therein and Refs.
�20–22� and references therein, respectively. Patterns of cath-
ode spots have been observed in non-self-maintained dis-
charges; e.g., Refs. �23,24� and references therein. Structures
have been observed also on cathodes of a pulsed glow dis-
charge; e.g., Ref. �25�.

Multiple modes of current transfer to electrodes of gas
discharges are of considerable scientific interest, both intrin-
sically and as an important example of a self-organization
phenomenon. The understanding of these modes is of critical
importance for design of a number of technical devices.

Basically, there are two approaches to theoretical descrip-
tion of these modes. The first approach, which may be called
phenomenological, is based on similarities between the pat-

terns observed on electrodes of gas discharges and patterns
appearing in nonlinear dissipative systems in other fields,
such as biology, chemistry, optics, and semiconductor sci-
ence. In the framework of this approach, the distribution of
parameters along the electrode surface is assumed to be gov-
erned by a reaction-diffusion equation �which is a diffusion
equation with a nonlinear source term� or by a system of
coupled reaction-diffusion equations; e.g., Refs. �10,26–29�
and references therein. For special situations, attempts have
been made to derive reaction-diffusion-type equations by
means of a two-scale asymptotic technique from basic equa-
tions that govern a particular discharge, such as equations of
conservation of the ions and the electrons and the Poisson
equation; Refs. �30–32�. However, in most situations,
reaction-diffusion equations for the distribution of param-
eters along the electrode surface are just postulated on the
basis of the above-mentioned similarities.

The other approach to theoretical description of multiple
modes of current transfer to electrodes of gas discharges is
based on a direct numerical solution of the basic equations
describing a particular discharge. There are works concerned
with a two-dimensional numerical simulation of a normal
spot on glow cathodes and of the simplest axially symmetric
patterns �a solitary spot; a central spot surrounded by a ring
spot� on glow anodes; e.g., Refs. �3,33� and references
therein and Ref. �11� and references therein, respectively.
The transition from a Townsend discharge to a normal glow
discharge was investigated in Ref. �34�. Temporal and spa-
tiotemporal patterns in a thin glow-discharge layer sand-
wiched with a semiconductor layer between planar elec-
trodes have been studied in Refs. �35,36� by means of
nonstationary one- and two-dimensional numerical simula-
tions, respectively. A three-dimensional self-organized pat-
tern in a dielectric-barrier discharge was calculated by means
of a direct numerical simulation of the discharge in Ref. �37�.
Steady-state modes with different spot patterns on cathodes
of high-pressure arc discharges have been computed and
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their stability studied; e.g., Refs. �38,39� and references
therein.

Let us restrict further discussion to the case where all
existing modes of current transfer to electrodes are station-
ary, setting aside non-dc discharges and dc discharges with
nonstationary patterns or patterns that appear stationary but
are accompanied by oscillations of electrical parameters of
the discharge �e.g., spots in an obstructed planar glow dis-
charge; see Refs. �40,41��. The ultimate goal of a theory in
this case is the capability of predicting what modes are pos-
sible under particular discharge conditions and which of
these modes are stable. In mathematical terms, the task is to
find multiple steady-state solutions to a strongly nonlinear
multidimensional boundary-value problem which describes a
particular discharge, and to investigate the stability of each
of these solutions. Obviously, this task cannot be solved
without advanced numerical modeling. On the other hand, it
can hardly be solved by means of numerical modeling alone:
qualitative information on the character and the range of ex-
istence of each of the solutions is needed in order to ensure
the convergence of iterations to a desired solution. �In par-
ticular, one should know in advance whether the desired so-
lution does exist at the specified value of discharge current; a
question rather difficult to answer by purely numerical
means. Indeed, if iterations have diverged or converged to
another solution, one would hardly know whether this is a
numerical problem or whether the solution being sought sim-
ply does not exist under the specified conditions.� Such in-
formation can be obtained by resorting to ideas and methods
of the theory of self-organization in nonlinear dissipative
systems, as is done in the framework of the first approach
described above to theoretical description of multiple modes
of current transfer to electrodes of gas discharges.

At present, the above goal has been achieved only in the
theory of cathodes of high-pressure dc arc discharges. The
general pattern of different steady-state modes of current
transfer to high-pressure arc cathodes turned out to be rather
complex: a large number of modes with different spot pat-
terns may exist at the same discharge current and more than
one of these modes may be stable; Refs. �38,39�. The theory
is much less advanced for multiple steady-state modes on
cathodes of dc glow discharges. The only aspect that is de-
veloped relatively well is numerical simulation of a normal
spot on glow cathodes; e.g., Refs. �3,33� and references
therein. As far as modes with multiple steady-state spots are
concerned, opinions diverge even on such basic question as
to what mechanisms are responsible for formation of mul-
tiple spots. The authors of Refs. �4,6,9� believe that basic
mechanisms of glow discharge are insufficient to describe
modes with multiple spots and additional mechanisms are
needed, such as an increasing dependence of the effective
secondary emission coefficient on the reduced electric field,
or heating of the gas. This point of view was disputed in Ref.
�42� with a reference to two-decade-old works �43–48�. On
the other hand, no time-independent modes structured along
the electrode surface have been obtained in the recent mod-
eling of a glow discharge sandwiched with a semiconductor
layer, which was reported in Ref. �36� and was performed
with account of only basic glow-discharge mechanisms: ei-
ther a stationary state homogeneous along the electrode sur-

face was found, or an oscillating state, homogeneous or
structured.

Bifurcation theory is a powerful tool of analysis of self-
organization in nonlinear dissipative systems. It provides im-
portant qualitative information on patterns that are possible
in the system considered, and this information, in addition to
being useful by itself, facilitates finding the patterns numeri-
cally. Application of the bifurcation theory has triggered the
development of a theory of multiple modes of current trans-
fer to cathodes of high-pressure dc arc discharges; results of
bifurcation analysis have guided numerical modeling
�38,49,50� and have been of critical importance for under-
standing stability of different steady-state modes �39,51�.

In the present work, a bifurcation analysis is performed of
a fluid system of equations describing steady-state current
transfer to cathodes of high-pressure glow discharges, in the
spirit of the approach proposed in Ref. �47�. Bifurcation
points are sought at which stationary multidimensional solu-
tions branch off from the one-dimensional �1D� stationary
solution describing states homogeneous along the cathode
surface. The results show that time-independent solutions
structured along the cathode surface do exist, and allow one
to explain, at least in principle, the appearance of different
steady-state spot modes on dc glow cathodes, namely, of
modes with multiple spots as reported in Refs. �4–9�, or of
the normal mode which is observed in most cases. Questions
left beyond the scope of the work include the nonlinear be-
havior of bifurcating stationary solutions �which can be
found by running a 3D code in the vicinity of each bifurca-
tion point with an initial approximation constructed using the
corresponding eigenfunction found in the course of bifurca-
tion analysis, similarly to how multidimensional solutions
describing stationary spots on high-pressure arc cathodes
have been found in Ref. �38��; stability of stationary solu-
tions; bifurcations of nonstationary solutions �Hopf bifurca-
tions�, similar to those found in Refs. �35,36� for a glow
discharge sandwiched with a semiconductor layer.

The outline of the paper is as follows. The model is de-
scribed in Sec. II. In Sec. III, a procedure is developed for
finding bifurcation points at which steady-state modes with
spots branch off from the abnormal mode or the �unstable�
mode corresponding to the falling section of the current-
density–voltage characteristic �CDVC�. Results of numerical
calculations for high-pressure xenon plasma are reported in
Sec. IV and placed into a more general context in Sec. V.
Conclusions of the work are summarized in Sec. VI.

II. THE MODEL

The bifurcation approach used in this work is applicable
to virtually any self-consistent model of a glow discharge,
including models taking into account multiple ion and neu-
tral species with a complex chemistry and a nonlocal elec-
tron energy distribution. However, as a first step it is advis-
able to consider the simplest self-consistent model, which is
the one with a single ion species and motion of the ions and
the electrons dominated by drift. Note that this model has
already been employed for investigation of patterns in Refs.
�35,36,47�.
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A. The system of equations

Let us consider a high-pressure dc glow discharge in a
discharge vessel in the form of a right cylinder, not necessar-
ily circular; see Fig. 1. The origin of Cartesian coordinates
x ,y ,z is on the cathode surface and the z axis is perpendicu-
lar to the cathode surface, i.e., parallel to the lateral surface
of the discharge vessel.

At current densities of interest for this work, the bulk
plasma is quasineutral; the space charge is localized in thin
layers �sheaths� adjacent to the electrodes and to the lateral
surface of the discharge vessel. Two geometries will be
treated. In the first geometry, the calculation domain includes
the whole of the discharge between parallel electrodes. In the
other geometry, the calculation domain includes only the
near-cathode space-charge sheath bordering a uniform
plasma column.

The system of equations governing distributions in the
plasma of the number densities of the ions and the electrons,
ni and ne, and of the electrostatic potential � includes equa-
tions of conservation of the ions and the electrons and the
Poisson equation:

� · �− �ini � �� = S , �1�

� · ��ene � �� = S , �2�

�0�
2� = e�ne − ni� , �3�

where �i and �e are the mobilities of the ions and the elec-
trons �known functions of the modulus of the local electric
field: �i=�i�E�, �e=�e�E�, E= ����� and S is the net rate of
production of the charged particles.

The equations of conservation of the ions and the elec-
trons, Eqs. �1� and �2�, are written in the fluid approximation;
the left-hand sides of these equations account for drift of the
ions and the electrons but not for diffusion. In part, this is
justified by the high values of the electric field: the voltage
between the electrodes or the voltage drop across the sheath,
being of the order of several hundred volts, is much higher
than the ion and electron temperatures, which means that
diffusion of the ions and the electrons in the axial direction is
a minor effect. On the other hand, diffusion of the ions and
the electrons in the lateral direction will be taken into ac-
count approximately, by means of a �nondifferential� term
that will be included in the production rate S; cf. Eq. �8.20�
of Ref. �1�.

The net production rate represents the difference between
the ionization rate and the rate of losses of charged particles
due to diffusion to the lateral surface of the discharge vessel
and dissociative recombination:

S = �ine − �difne − �disnine. �4�

Here �i is the ionization frequency, �dif is the effective fre-
quency of diffusion losses �Ref. �1�, pp. 194–195� and �dis is
the coefficient of dissociative recombination. The ionization
frequency is related to Townsend’s ionization coefficient �,
�i=��eE, and will be considered as a known function of E.

In discharges in narrow tubes at low pressures and mod-
erate currents, the charged particle density may be low
enough for diffusion to be the dominating loss mechanism,
�dif��disni. The third term on the right-hand side �RHS� of
Eq. �4� can be omitted in such cases; this is the model of
diffusion-controlled discharge.

B. Boundary conditions

Let us proceed to the formulation of boundary conditions
for Eqs. �1�–�3�. Fluxes of the ions and electrons to the cath-
ode surface are related through �, the effective secondary
emission coefficient. This results in the boundary condition

ne = ��ni, �5�

where �=�i /�e. The potential of the cathode surface is
known and may be set equal to zero,

� = 0. �6�

There is no electric current to the �insulating� lateral sur-
face of the discharge vessel, which results in the boundary
condition

��

�n
= 0. �7�

Here n is a direction locally orthogonal to the lateral surface.
If the calculation domain includes the whole of the dis-

charge between parallel electrodes, then boundary conditions
must also be specified at the surface of the anode. Taking
into account that there is no ion flux from the anode into the
plasma and assuming that the potential of the anode surface
is known, one obtains

ni = 0, � = U . �8�

Here U is the discharge voltage, which will be considered as
a given �control� parameter.

Note that Eqs. �1� and �2� may be rewritten as

�� · ���ini� = − S −
e

�0
�ini�ne − ni� , �9�

�� · ���ene� = S −
e

�0
�ene�ne − ni� , �10�

and may be viewed as differential equations of the first order
for ni and ne, while Eq. �3� may be viewed as a second-order

cathode

z

y
x

anode

FIG. 1. Schematic of the discharge.
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differential equation of the elliptic type for �. Each first-
order equation requires one boundary condition, and this
condition cannot be specified on a lateral surface of the dis-
charge vessel, which is parallel to ��. An elliptic equation
requires one boundary condition at every boundary of the
calculation domain. Thus, the above-specified set of bound-
ary conditions �one condition at the lateral surface and two
conditions at each of the electrodes� conforms to the type of
system of differential equations being considered.

If the calculation domain includes only the near-cathode
space-charge sheath, the two lacking boundary conditions
must be specified on the plasma side of the sheath. Boundary
conditions that allow one to describe a smooth �asymptotic�
transition from the sheath to the plasma column are derived
in Appendix A. These conditions apply at large distances
from the cathode surface �much larger than the scale of
thickness of the sheath� and read

E → E�, � − E�z → U . �11�

Here E� is the electric field in the plasma column and U is
the sheath voltage. U will be considered as a given parameter
and E� should be found as a part of the solution.

C. Transforming the equations

It is possible to eliminate the unknowns ni and ne from the
system of governing equations �1�–�3�, thus transforming the
system to a single differential equation for �. To this end, let
us first subtract Eq. �1� from Eq. �2�, arriving thus at the
equation of continuity of electric current:

� · ���ini + �ene� � �� = 0. �12�

Eliminating from this equation ni with the use of Eq. �3�, one
can rewrite it in the form

� · ����i + �e�ne − �i
�0

e
�2�� � �	 = 0. �13�

Equation �2� may be rewritten as

ne � · ��e � �� + �e � ne · �� = S . �14�

Eliminating ni from the LHS of Eq. �1�, one can rewrite this
equation as

− ne � · ��i � �� − �i � ne · �� +
�0

e
� · ��i�

2� � �� = S .

�15�

Multiplying Eq. �14� by � and adding Eq. �15�, one obtains
after transformations

S + ne�e	 � E · �� =
�0

e�1 + ��
� · ��i�

2� � �� , �16�

where 	=	�E�=d ln�1+�� /dE. �We recall that E is the
modulus of the local electric field: E= ����.� Eliminating ni
on the RHS of Eq. �4� by means of Eq. �3� and substituting
the resulting expression into Eq. �16�, one arrives at

�eKne − �disne�ne −
�0

e
�2�� + ne�e	 � E · ��

=
�0

e�1 + ��
� · ��i�

2� � �� , �17�

where K=�E−�dif /�e. This equation does not involve �ne
and may be considered as an algebraic �quadratic� equation
for ne. Solving this equation, one will obtain an explicit ex-
pression for ne in terms of �. Substituting this expression
into Eq. �13�, one will arrive at the desired equation contain-
ing only �. However, an explicit form of this equation is
unnecessary for the purposes of the present work, and Eqs.
�13� and �17� suffice.

III. BIFURCATION ANALYSIS

A. General

If the current in a dc glow discharge is high enough, then
it is distributed over the cathode surface more or less uni-
formly; the abnormal mode. As the current decreases, only
part of the cathode surface remains active; a spot mode. �A
spot mode here and below means a normal mode or any of
the modes with more than one spot observed in Refs. �4–9�.�
Both the abnormal mode and spot mode are stationary.

The nonlinear boundary-value problem formulated in the
preceding section admits a 1D solution, F=F�z�. This solu-
tion is well known and describes steady-state modes that are
homogeneous along the cathode surface: the abnormal mode;
the mode corresponding to the falling section of the CDVC
U�j�, which is unstable and is not realized; and the Townsend
discharge, which represents the limiting case of very low
current densities. �In the following, these three modes will be
jointly referred to as the distributed mode.� The question is
whether the boundary-value problem admits also solutions
describing steady-state modes with spots. If such solutions
exist, they are necessarily multidimensional, F=F�x ,y ,z�.
While the 1D solution exists at all current values, although at
low currents it is unstable and is not realized, multidimen-
sional solutions should exist at low currents but may cease to
exist at currents high enough.

It happens frequently in problems with multiple solutions
of different symmetries that different solutions coincide at
certain values of control parameters. In the problem consid-
ered, this means that the stationary multidimensional solu-
tions may exactly coincide with the stationary 1D solution at
certain values of the discharge current �or the voltage U�.
One can say that multidimensional solutions branch off from
�or join� the 1D solution, and values of the discharge current
�or of the voltage U� at which this occurs may be called
bifurcation points. In terms of stability theory, these bifurca-
tion points represent states at which the 1D solution becomes
neutrally stable against nonoscillatory multidimensional per-
turbations.

The present section is concerned with finding these bifur-
cation points or, in other words, with finding values of the
discharge current or of the voltage U at which modes with
stationary spots branch off from the distributed mode. The
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analysis is performed in the framework of the boundary-
value problem formulated in Sec. II.

The simplest bifurcations of stationary solutions governed
by a single control parameter are of the following types �e.g.,
Refs. �52–54��: saddle-node �fold� bifurcations, transcritical
bifurcations, and pitchfork bifurcations. A saddle-node bifur-
cation occurs when a solution reaches a limit of its existence
region and turns back. Thus saddle-node bifurcations are un-
related to branching of essentially different solutions, and the
latter can occur only through transcritical or pitchfork bifur-
cations. If a bifurcation is transcritical, one could think of a
quasistationary transition from one stationary solution to an-
other. The same applies to a pitchfork bifurcation if it is
supercritical. There can be no quasistationary transition be-
tween stationary solutions if a pitchfork bifurcation is sub-
critical.

A discussion of these bifurcations given in Refs. �49,51�
in the context of steady-state current transfer to cathodes of
dc arc discharges is expected to largely apply to the glow
cathodes being treated in the present work. The saddle-node
bifurcations occur at extreme points of the CDVC of the
distributed mode, at which the 1D �distributed� mode reaches
a limit of its existence region and turns back. Branching of
multidimensional �spot� modes occurs at bifurcation points
positioned outside extreme points of the CDVC of the 1D
mode, and the corresponding bifurcations are transcritical or
pitchfork. The analysis to be developed in the present work
will allow one to find all bifurcation points at which steady-
state multidimensional modes branch off from the steady-
state 1D mode, whether the bifurcation is transcritical, or
supercritical pitchfork, or subcritical pitchfork. Also, one
will know what kind of bifurcation occurs at each point,
transcritical or pitchfork. On the other hand, the present
analysis does not include investigation of nonlinear behavior
of bifurcating multidimensional solutions; therefore in the
case of a pitchfork bifurcation it does not provide means for
distinguishing between supercritical and subcritical bifurca-
tions.

B. Formulating the eigenvalue problem

Let us designate by U0 the value of the voltage which
corresponds to one of the bifurcation points and by ni0�z�,
ne0�z�, and �0�z� the corresponding stationary solution
�which is 1D�. Stationary solutions in the vicinity of this
point, i.e., at U=U0+U1, �U1�
U0, are sought in the form

ni�x,y,z� = ni0�z� + ni1�x,y,z� ,

ne�x,y,z� = ne0�z� + ne1�x,y,z� ,

��x,y,z� = �0�z� + �1�x,y,z� , �18�

where ni1, ne1, and �1 are small perturbations of the solution
at the bifurcation point, �ni1�
ni0, �ne1�
ne0, ��1�
�0.

Substituting �18� into the governing equations, expanding
in ni1, ne1, and �1, and retaining terms of the zeroth order,
one arrives at a problem governing the 1D solution. This
problem can be easily solved, for example, as described in
Appendix B. In the following, the functions ni0�z�, ne0�z�,
and �0�z� will be considered known.

Equations for perturbations are obtained by retaining
terms of the first order. It is convenient to derive these equa-
tions by expanding Eqs. �13� and �17�:

�

�z
�E0ne1 − q1E0�

2�1 + q2
��1

�z
� + q2��

2 �1 = 0, �19�

q3ne1 + ne0K1
��1

�z
+ q4ne0�

2�1

= q1�E0�
��1

�z
+ 2E0��

2�1 + E0
�

�z
��2�1�� , �20�

where the prime denotes d /dz, E0=�0�, j0 is the value of
current density corresponding to U=U0, and

q1 =
�0�i

e��i + �e�
, q2 =

j0

eE0��i + �e�
,

q3 = K0 −
�dis

�e
�ni0 + ne0� , �21�

q4 =
�0�dis

e�e
, K0 = K�E0�, K1 =

dK

dE
�E0�,

��
2 =

�2

�x2 +
�2

�y2 . �22�

The ion and electron mobilities are not as strong functions of
the electric field as is the ionization frequency; in this section
�i and �e for brevity are treated as constant. In the derivation
of Eq. �20�, a two-term expansion of E in �1 was used, which
reads as follows:

E = E0 +
��1

�z
. �23�

Applying a similar procedure to the boundary conditions �5�
�with ni eliminated in terms of ne and ��, �6�, and �7�, one
arrives at the following boundary conditions for the pertur-
bations at the cathode surface:

�1 = 0, ne1 = −
�0��

e�1 − ���
�2�1

�z2 , �24�

and at the lateral surface:

��1

�n
= 0. �25�

If the calculation domain includes the whole of the discharge
between parallel electrodes, then boundary conditions for the
perturbations apply at the surface of the anode and are ob-
tained from Eq. �8� with ni eliminated in terms of ne and �:

ne1 =
�0

e

�2�1

�z2 , �1 = U1. �26�

If the calculation domain includes only the near-cathode
space-charge sheath, then boundary conditions for the pertur-
bations apply at large distances from the cathode surface and
are obtained from Eq. �11�:
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��1

�z
→ E�1, �1 − E�1z → U1. �27�

Here E�1 is a perturbation of the electric field in the plasma
column, which should be found as a part of the solution.
Since the electric field in the plasma column is spatially uni-
form, E�1 is constant.

Now a problem governing perturbations has been formu-
lated. Note that it involves only �1 and ne1, i.e., it does not
involve ni1. We recall that the functions with the index 0,
being governed by the 1D problem, may be considered
known while the problem for perturbations is dealt with. As
should have been expected, the problem for perturbations is
linear and inhomogeneous, the inhomogeneity being repre-
sented by the term with U1.

Since the point U=U0 under consideration is a bifurcation
point, more than one steady-state solution exists in the vicin-
ity of this point, i.e., at U1�0. Hence, the problem govern-
ing perturbations has a nonunique solution for U1�0. The
latter means that the corresponding homogeneous problem,
i.e., the one with U1=0, has a nontrivial solution. The form
of the homogeneous problem allows one to apply the method
of separation of variables, similarly to how it is done in, e.g.,
many eigenvalue problems for the Schrödinger equation
�e.g., �55��, and to seek this nontrivial solution as

ne1�x,y,z� = g�z���x,y�, �1�x,y,z� = f�z���x,y� . �28�

Substituting these expressions into Eqs. �19� and �20� and
dividing by �, one arrives at

�E0g −
q1

E0
� + q2f���

+ q2f
��

2 �

�
= 0, �29�

q3g + ne0K1f� +
q4ne0

E0
2 � = q1E0�f� +

q1

E0
��, �30�

where

� = E0
2� f� + f

��
2 �

�
� . �31�

The independent variables in Eqs. �29� and �30� are separated
and the variables x and y may be involved only through the
ratio ��

2 � /�. Hence, this ratio is constant. Designating this
constant by −k2, one can write an equation for the function
��x ,y� in the form

��
2 � + k2� = 0. �32�

This equation must be solved in the cross section of the
discharge vessel. Note that k has the meaning of a wave
number characterizing variation of the bifurcating multidi-
mensional solution in the plane �x ,y�. A boundary condition
at the lateral surface of the vessel follows from Eq. �25�:

��

�n
= 0. �33�

Equations �32� and �33� represent the Neumann eigenvalue
problem for the Helmholtz equation. It is known �56� that all
eigenvalues of this problem are real and of finite degree of

degeneracy; a set of eigenvalues is countable and may be
numbered in order of their increase with the eigenvalues
growing without limit with the increase of the number. For
example, in the case of a discharge vessel with a circular
cross section, this problem can be solved in terms of the
Bessel functions and its spectrum is k�s= j�,s� /R, where �
=0,1 ,2 , . . ., s=1,2 ,3 , . . ., R is the radius of the tube, and j�,s�
is the sth zero of the derivative of the Bessel function of the
first kind of order � �the initial four nontrivial zeros are
j1,1� 
1.84, j2,1� 
3.05, j0,2� 
3.83, and j3,1� 
4.20�. A graphic
interpretation of the function ��x ,y� for this case can be
found, e.g., in �42�.

Solving Eq. �30� for g and substituting the result into Eq.
�29�, one arrives at a fourth-order ordinary differential equa-
tion for the function f:

�q1

q3
�� +

q5

q3
f� −

q6

q3
���

= k2q2f , �34�

where �=E0
2�f�−k2f� and

q5 = E0�q1E0� − ne0K1� + q2q3, q6 = �q1q3 + q4ne0�/E0.

�35�

Boundary conditions for Eq. �34� at the cathode surface
are

f = 0, q1�� + �q5 − q2q3�f� + � �0��q3

e�1 − ���
− q4ne0� �

E0
= 0.

�36�

If the calculation domain includes the whole of the discharge
between parallel electrodes, then further boundary conditions
for the function f apply at the surface of the anode and are
obtained from Eq. �26� with U1=0:

f = 0, q1�� + �q5 − q2q3�f� − ��0q3

e
+ q4ne0� �

E0
= 0.

�37�

If the calculation domain includes only the near-cathode
space-charge sheath, then the boundary conditions �27� must
be employed. The LHS of the first boundary condition �27� is
proportional to ��x ,y�; the quantity E�1 is constant. This
condition may be satisfied only with E�1=0, in which case
this condition assumes the form f�→0. Given that U1=0, the
second boundary condition �27� assumes the form f →0.
Thus, a boundary condition for Eq. �34� at large distances
from the cathode reads

f → 0. �38�

The asymptotic behavior of a general solution to Eq. �34� at
large z includes two exponentially decaying terms, an expo-
nentially growing term, and a term that is either exponen-
tially growing or constant; see Appendix C. In order that this
asymptotic behavior be compatible with the boundary condi-
tion �38�, exponentially growing and constant terms must be
excluded. Hence, the boundary condition �38� allows one to
determine two integration constants and the problem �34�,
�36�, and �38� is complete.
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C. Procedure for finding bifurcation points

In order to find bifurcation points, one should first deter-
mine the spectrum of the eigenvalue problem �32� and �33�.
The trivial eigenvalue that corresponds to a constant eigen-
function is discarded. The first nontrivial eigenvalue k=k1 is
substituted into the problem constituted by Eqs. �34�, �36�,
and �37� or �38�. The problem obtained is solved for different
j0 until values of j0 are found for which a nontrivial solution
exists. �In other words, the problem constituted by Eqs. �34�,
�36�, and �37� or �38� is solved for a given k=k1 as an eigen-
value problem, j0 being the eigenparameter.� Value�s� of j0
determined in this way define�s� bifurcation point�s� corre-
sponding to k=k1. Multidimensional solutions that branch off
from �or join� the 1D solution at these points are described in
the vicinity of these points by eigenfunction�s� ��x ,y� of the
problem �32� and �33� associated with the eigenvalue k=k1.
After that, the second eigenvalue k=k2 is substituted into the
problem constituted by Eqs. �34�, �36�, and �37� or �38� and
corresponding bifurcation points are found. Multidimen-
sional solutions that branch off from �join� the 1D solution at
these points are described in the vicinity of these points by
eigenfunction�s� of the problem �32� and �33� associated
with the eigenvalue k=k2. Then the third value k=k3 is sub-
stituted, etc.

This procedure includes solving three problems: �1� The
1D problem governing the functions ni0�z�, ne0�z�, and �0�z�
�in the following, the index 0 attributed to the 1D solution
will be dropped for brevity�; �2� the eigenvalue problem �32�
and �33�; and �3� the eigenvalue problem constituted by Eqs.
�34�, �36�, and �37� or �38�. The 1D problem may be conve-
niently solved as described in Appendix B. Note that while
dealing with the 1D solution it is convenient to replace U0 as
a given parameter with j0 the density of electric current from
the plasma to the cathode. Then the 1D problem can be re-
duced to a boundary-value problem for a second-order ordi-
nary differential equation, if the calculation domain includes
the whole discharge from the cathode to the anode, and to an
initial-value problem for a first-order ordinary differential
equation, if the calculation domain includes only the near-
cathode space-charge sheath.

A solution to the Neumann eigenvalue problem for the 2D
Helmholtz equation, represented by Eqs. �32� and �33�, is
known for discharge tubes of simple shapes, for example, in
the above-mentioned case of a tube with a circular cross
section.

The eigenvalue problem constituted by Eqs. �34�, �36�,
and �37� or �38� must be solved numerically. In this work, it
has been solved with the use of the Petukhov method �57�
�which is a method of numerical solution of boundary-value
problems for linear ordinary differential equations of the sec-
ond or third order, or for partial differential equations of
parabolic type, based on a finite-difference scheme of the
fourth order of accuracy� generalized for the case of a system
of equations.

IV. COMPUTATION RESULTS

In this section, results are considered of calculations of
bifurcation points at which modes with stationary spots

branch off from the distributed mode. The calculations have
been performed by means of the procedure described in Sec.
III and refer to the conditions of experiments with microdis-
charges in high-pressure xenon plasma reported in Refs.
�4–6,9�. The mobility of ions Xe2

+ in Xe was evaluated by
means of the formula �i=2.1
1021 m−1 V−1 s−1 /n �here n
is the density of the neutral gas�, which is an approximation
of the measurements of Ref. �58�. The mobility of the elec-
trons and Townsend’s ionization coefficient were calculated
using the zero-dimensional Boltzmann solver BOLSIG �59�.
The calculation results for mobility were approximated by
the formula �e=19 Torr m2 V−1 s−1 / p, where p is the pres-
sure of the plasma. The calculation results for Townsend’s
ionization coefficient are well approximated by Eq. �4.6� of
Ref. �1� in the range of reduced electric fields of interest. The
coefficient of dissociative recombination of molecular ions
Xe2

+ was set equal to 2
10−13 m3 /s, which is the value
given in Refs. �60,61� for the neutral gas temperature T0
=300 K and the electron temperature Te=1 eV. The effec-
tive frequency of diffusion losses, �dif, was estimated for a
cylindrical discharge vessel by means of Eq. �8.18� of Ref.
�1�: �dif=Da�2.4 /R�2, where Da=Te�i is the coefficient of
ambipolar diffusion �which was evaluated at Te=1 eV�. The
effective secondary emission coefficient � was set equal to
0.03.

Calculation results given in this work for a discharge be-
tween parallel electrodes refer to the interelectrode gap h
=0.5 mm. Diffusion losses have been found to produce a
very small effect on the computation results for realistic val-
ues of the discharge vessel radius �down to R=0.25 mm�;
we indicate for definiteness that the results presented in this
work for a parallel-plane discharge have been calculated
without diffusion losses.

In Fig. 2, values of the current density are shown at which
a steady-state multidimensional solution F=F�x ,y ,z� with a
given k branches off from the 1D solution F=F�z�, or, in
other words, at which a spot mode with a given k branches
off from the distributed mode. We recall that k has the mean-
ing of a wave number characterizing variation of the bifur-
cating spot mode along the cathode surface. The dashed lines
in Fig. 2 represent values jmin of the current density at which
the discharge voltage in the distributed mode attains a mini-
mum value.

Note that data shown in Fig. 2 are suitable for determina-
tion of bifurcation points for any geometry of the discharge
vessel cross section: after the eigenvalue problem Eqs. �32�
and �33� for a particular cross section has been solved and its
spectrum k1,k2,k3 , . . . found, the graphs shown in Fig. 2 allow
one to identify values of j at which the first, second, third,
etc. spot modes branch off from the distributed mode. For
example, the lowest nontrivial value of k for a circular cath-
ode of the radius R=0.375 mm is k1
1.84 /R
4.9

103 m−1; if the pressure is between 75 and 760 Torr, one
can see from Fig. 2 that the first spot mode, which is the one
with a spot at the edge of the cathode, branches off from the
distributed mode very close to the point of the minimum of
the CDVC.

There are two disconnected families of bifurcation points
at p=75 Torr �see Fig. 2�a��, one of these families being
represented by full circles and the other by open circles. As
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the plasma pressure increases, the families come closer and
become connected at p around 100 Torr; see Fig. 2�b�. As the
plasma pressure increases further, two disconnected families
appear again �see Fig. 2�c��; however, the topology of these
families is different from that seen in Fig. 2�a�: one can say
that the families have exchanged branches. Only one family
can be seen on the graph for atmospheric pressure, Fig. 2�d�.

It is useful to normalize the wave number in order to
better understand the computation results. It is convenient to
use as a normalization multiplier the ratio of the discharge
voltage to the electric field Ew at the cathode surface, �
=U /Ew, evaluated for the distributed mode. At very low cur-
rent densities �the limiting case of Townsend discharge�, the
electric field in the gap is not appreciably distorted and �
tends to the gap width, �
h. At high current densities,
where a dominating contribution to the discharge voltage is
given by a thin space-charge sheath near the cathode, � can
be viewed as the scale of thickness of the sheath. This is
illustrated by Fig. 3, in which distributions of parameters
across the discharge, obtained by numerical calculations, are
depicted for p=75 Torr and different values of the current
density. Note that the value j=1.51
103 A /m2, to which
Fig. 3�c� refers, corresponds to the point of the minimum of
the CDVC. The arrows below the abscissa axis represent
values of �. One can see that the numerical results conform
to the above-described physical meaning of the length scale
�.

Normalized values of the wave number of the spot mode
as a function of the current density at which this mode

branches off from the distributed mode are shown in Fig. 4.
Also shown in this figure are the CDVCs of the distributed
mode. Horizontal dashed lines in Fig. 4 represent the values
of the discharge voltage corresponding to the limiting case of
the Townsend discharge, which have been calculated with
the use of Eq. �B22� of Appendix B. As expected, these lines
represent asymptotes of the CDVCs at low j. For conve-
nience, values of the current density jmin at which the dis-
charge voltage in the distributed mode attains a minimum
value are depicted in Fig. 4 by the vertical dashed lines.

One of the conditions of applicability of the model of
drift-dominated motion of the ions and electrons is that the
characteristic time of drift of the electrons in the axial direc-
tion be much smaller than the time of diffusion of the elec-
trons in the direction along the cathode. The former time is
of the order of �2 /�eU; the latter is of the order of 1 /Dek

2,
where De=Te�e is the electron diffusion coefficient. The
above validity condition amounts to k�
�U /Te�10. �A
similar condition should be imposed on the ions; however, it
not more restrictive than that for the electrons given that the
ion temperature does not exceed Te.� This is why the range of
normalized wave numbers shown in Fig. 4 is limited from
above by 10. Only one family of bifurcation points exists in
this range; the other family is positioned beyond the region
of applicability of the model and therefore is not of particular
interest. With account of this limitation, the dependence of
k� on j does not change dramatically with the plasma pres-
sure, in contrast to what is seen in Fig. 2, and this is why data
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FIG. 2. �Color online� Rela-
tionship between the wave num-
ber of a spot mode and the value
of the current density at which this
mode branches off from the dis-
tributed mode. Discharge between
parallel electrodes. p= �a� 75,
�b� 100, �c� 150, and �d�
760 Torr. The filled and open
circles represent different families
of bifurcation points.
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for only two pressure values are shown in Fig. 4.
Any extreme point of a CDVC of the distributed mode

represents a bifurcation point associated with k=0. �This is a
saddle-node bifurcation; see the discussion in Ref. �51�.�
This explains why bifurcation points shown in Fig. 4 in the
limiting case of small wave numbers �or long wavelengths�,
k�
1, approach the line j= jmin, i.e., are positioned in the
vicinity of the point of minimum of the CDVC. As k� in-
creases, the bifurcation points are shifted along the rising
section of the CDVC in the direction of increasing j. As k�
grows further, the bifurcation points reach the current density
value j= jA and then start moving in the direction of decreas-
ing j; here A is the rightmost point of the curve k��j� as
shown in Fig. 4. On reaching the current density value j
= jB, the bifurcation points change the direction of their dis-
placement once again.

The above-described bifurcations occur in the range of
high enough current densities where the discharge possesses
a well-developed structure composed of a �uniform� plasma
column and near-electrode sheaths; see Figs. 3�c� and 3�d�. A
question arises: are the bifurcations generated by the near-
cathode sheath, as one might think intuitively? And if so, do
the bifurcations in a 0.5-mm-wide gap occur in the same way
as in a near-cathode sheath bordering an �infinitely long�
uniform plasma column?

In order to answer these questions, let us turn to the sec-
ond model described in Sec. II, namely, to the model in
which the calculation domain includes only the near-cathode
space-charge sheath bordering the uniform plasma column.
The dotted lines in Fig. 4 represent CDVCs of the distributed
mode calculated by means of this model. �Note that the
quantity U has different meanings in the two models, the
discharge voltage in the framework of the first model and the
sheath voltage in the framework of the second model. There-
fore, the product E�h accounting for the voltage drop in the
plasma column was added to the sheath voltage before plot-
ting the dotted curves in Fig. 4.� One can see that the model
of a near-cathode space-charge sheath bordering the uniform
plasma column describes the distributed mode with good ac-
curacy in the range of j of interest. The question is whether it
can provide a good accuracy also for bifurcation points.

Diffusion losses have been found to produce a small ef-
fect for the conditions of interest in the framework of the
sheath model, similarly to what has been found for the model
of a parallel-plane discharge. We indicate for definiteness
that the results given in this work for the sheath model have
been calculated with the diffusion losses evaluated for the
discharge vessel radius of 0.4 mm.

Bifurcation points in the plane �k� , j�, calculated by
means of the sheath model, are shown in Fig. 5. Also shown
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FIG. 3. �Color online� Distributions of parameters across the discharge between parallel electrodes. p=75 Torr. j= �a� 10, �b� 300,
�c� 1.51
103, and �d� 105 A /m2.
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are the CDVCs of the distributed mode, U�j� �solid lines; we
recall that in the framework of the sheath model U desig-
nates the sheath voltage�. The values jmin of the current den-
sity at which the sheath voltage in the distributed mode at-
tains a minimum value are depicted in Fig. 5 by the vertical
dashed lines. As in the case of the model of a discharge
between parallel electrodes, values of k� of the order of 10
or higher are beyond the range of applicability of the as-
sumption of motion of charged particles dominated by drift;
nevertheless, data in the range of k� up to 102 are shown in
Fig. 5 in order to give an idea of the topology of bifurcation
points.

One can see two disconnected families of bifurcation
points in each of Figs. 5�a� and 5�b�. One of these families is
localized in the range k��0.1 and represented by full
circles; the second family is localized in the range k��0.1
and represented by open circles. At small values of the nor-
malized wave number, k��10−2, the first family approaches
the dashed line j= jmin, i.e., the bifurcation points are posi-
tioned in the vicinity of the point of minimum of the CDVC
of the distributed mode. As k� increases, the bifurcation
points of the first family are shifted along the falling section
of the CDVC of the distributed mode in the direction of
decreasing j, and disappear in the region of very low current
densities. This behavior is different from that discussed

above for the model of parallel-plane discharge. Bifurcation
points belonging to the second family emerge from the re-
gion of very small j. As k increases and the product k�
increases as well �at p=75 Torr, the product k� first slightly
decreases and then starts to increase; see Fig. 5�a��, the bi-
furcation points of the second family are shifted in the direc-
tion of increasing j and eventually attain the region j� jmin,
i.e., the growing section of the CDVC. As k� grows further,
the bifurcation points change the direction of their displace-
ment and start shifting in the direction of decreasing j. Then
they leave the growing section of the CDVC and eventually
once again disappear in the region of very low j.

Let us proceed to comparison of results for bifurcation
points given by the model of parallel-plane discharge and by
the sheath model. This comparison is meaningful if the
length of attenuation of perturbations in the plasma column
�i.e., the length of decay of a solution to the eigenvalue prob-
lem at large z� in the sheath model does not exceed by order
of magnitude the gap width in the model of parallel-plane
discharge. At small k, the length of attenuation of perturba-
tions in the plasma column equals ��2�−1, where �2 is given
by the second equation in Eq. �C8� of Appendix C, and is of
the order of k−1. Hence, the above comparison is meaningful
provided that k�h−1. In addition, the current density must be
high enough so that the thickness of the near-electrode
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FIG. 4. �Color online� Points: normalized wave number of the
spot mode vs current density at which this mode branches off from
the distributed mode. Curves: CDVCs. Points and solid curve, dis-
charge in Xe between parallel plates; dotted curve, near-cathode
space-charge sheath in Xe. p= �a� 75 and �b� 760 Torr.
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space-charge sheaths is much smaller than the gap width,
which is the basic condition of applicability of the sheath
model. Taking into account the comparison between CDVCs
predicted by the two models, which is shown in Fig. 4, one
can assume that j must exceed 103–104 A /m2.

Bifurcation points in the plane �k , j� predicted by the two
models in the domain k�103 m−1, j�103 A /m2 are shown
in Fig. 6. The topology of the dependence j�k� predicted by
the model of parallel-plane discharge is more involved than
that predicted by the sheath model; however, those sections
of the dependence that are common for the two models are
rather close to each other. The latter conforms to the assump-
tion that the bifurcations are generated by the near-cathode
sheath. On the other hand, bifurcations in a 0.5-mm-wide
gap occur in not quite the same way as in a near-cathode
sheath bordering an �infinitely long� uniform plasma column.

V. DISCUSSION

Information on the relationship between the wave number
of a spot mode and the value of the current density at which
this mode branches off from the distributed mode allows one
to hypothesize about the spot patterns that can occur in a
particular discharge. Let us consider as examples the depen-

dences k�j� schematically shown in Fig. 7. In contrast to
Figs. 2 and 6, these dependences are shown in Fig. 7 by lines
rather than by points; �solid� lines I and II. jmin in Fig. 7
designates the value of the current density at which the dis-
charge �or sheath� voltage in the distributed mode attains a
minimum value; k1, k2, k3, and k4 are the four smallest non-
trivial eigenvalues of the problem �32� and �33�. Let us for
definiteness assume once again that the discharge tube has a
circular cross section; then spot modes that branch off at
bifurcation points associated with eigenvalues k1, k2, k3, and
k4 are those with, respectively, a spot at the edge of the
cathode; two spots at the edge; a spot at the center of the
cathode or a ring spot at the edge; and three spots at the edge.
The modes with one, two, or three spots at the edge are 3D
and branch off from the distributed mode through a pitchfork
bifurcation, supercritical or subcritical, while the mode with
a spot at the center of the cathode or a ring spot at the edge
is axially symmetric and branches off through a transcritical
bifurcation; see Ref. �49�. j1

�I�–j4
�I� and j1

�II�–j4
�II� in Fig. 7 des-

ignate values of the current density at which the first to
fourth bifurcations occur in the case I or, respectively, II.
Both lines I and II start at the point �j= jmin, k=0�; a con-
sequence of the above-mentioned fact that any extreme point
of the CDVC of a distributed mode represents a bifurcation
point associated with k=0.

One can expect that the transition from the distributed
mode to a mode with one or more spots occurs as follows.
The distributed mode is stable beyond all bifurcation points,
i.e., at j high enough. As j decreases, the distributed mode
loses stability as the first bifurcation point is encountered and
the discharge switches into the spot mode that branches off at
this bifurcation point. In the example depicted by line I, bi-
furcations occur on the falling section of the CDVC. The first
bifurcation point to be encountered as j decreases from high
values is j= j1

�I�. Thus, the distributed mode is stable on the
growing section of the CDVC, j� jmin, and on an initial seg-
ment of the falling section, j1

�I�� j� jmin. At j= j1
�I�, the dis-

tributed mode becomes unstable and the discharge switches
into a mode with a spot at the edge of the cathode. Whether
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FIG. 6. �Color online� Bifurcation points predicted by the model
of plane-parallel discharge �full circles� and by the sheath model
�open circles�. p= �a� 75 and �b� 760 Torr.
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FIG. 7. �Color online� Schematics of bifurcation curves corre-
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this switching can be realized in a quasistationary way or is
necessarily accompanied by a jump of electric parameters
depends on whether the bifurcation at j= j1

�I� �which is pitch-
fork, as indicated above� is super- or, respectively, subcriti-
cal.

In the example depicted by line II, the first bifurcation to
be encountered at decreasing j occurs at j= j4

�II�, i.e., on the
growing section of the CDVC. The distributed mode is stable
at j� j4

�II�; at j= j4
�II� it loses stability and the discharge

switches into a mode with three spots at the edge of the
cathode. Again, this switching can be quasistationary or is
accompanied by a jump, depending on whether the �pitch-
fork� bifurcation at j= j4

�II� is super- or, respectively, subcriti-
cal.

These examples show that the distributed mode gives way
with decreasing j to a mode with one spot, if all bifurcation
points are positioned on the falling section of the CDVC, or
to a mode with several spots, if there are bifurcation points
on the growing section. According to calculations of this
work, both the model of parallel-plane discharge and the
sheath model predict the presence of bifurcation points on
the growing section of the CDVC and, consequently, a tran-
sition from the abnormal mode to a mode with multiple
spots. The fact that this happens on the growing section of
the CDVC is somewhat unexpected, given that loss of sta-
bility of a homogenous stationary state and pattern appear-
ance in gas discharges are usually associated with a negative
differential resistance of the discharge.

One could think of an analogy with spot modes that were
recently observed on the left-hand side of the Paschen curve,
where the CDVC is monotonically growing; see Ref. �40�.
However, a subsequent investigation reported in Ref. �41�
has revealed that the discharge is essentially nonstationary in
such conditions. It is unclear therefore to what extent the
above-mentioned analogy would be meaningful. One could
mention also the work �62�, in which the role of negative
differential conductivity �or, equivalently, negative differen-
tial resistance� of the glow discharge was studied by means
of a nonstationary one-dimensional numerical simulation.
However, the results of this work are not quite clear: on one
hand, no numerical counterexamples have been found where
oscillations would occur while the CDVC of the discharge
shows a positive differential conductivity; on the other hand,
the authors reported, without giving details, the existence of
a counterexample where a state with positive differential re-
sistance is unstable and develops into a limit cycle.

The analysis of this work is based on Eqs. �1�–�3� or,
equivalently, on Eqs. �3�, �9�, and �10�. The only term with a
second derivative in the latter set of equations is the one on
the LHS of the Poisson equation �3�. One can say that the
only way in which spots may “interact” each with other and
with the walls of the discharge tube is through electrostatic
force. Hence, the only mechanism governing patterns in the
framework of the present theory is electrostatic. According to
results of this work, the electrostatic mechanism favors ap-
pearance of modes with multiple spots.

Other mechanisms are also possible, the most important
being diffusion of the charged particles. One can expect that
diffusion tends to smooth out perturbations, i.e., produces a
stabilizing effect over the distributed mode, and this effect

becomes stronger with decreasing wavelength of perturba-
tions, i.e., with increasing k. Therefore, diffusion causes a
shift of the bifurcation points, which represent points of neu-
tral stability of the distributed mode, in the direction of lower
j, and this shift increases with increasing k. In a situation
where diffusion is the only mechanism governing patterns,
one can expect that the bifurcation curve will be similar to
the one depicted by line I in Fig. 7. �In fact, one can expect
to encounter this kind of bifurcation curve in any situation
where patterns are governed by dissipative mechanism�s�;
for example, a bifurcation curve of this kind appears in the
problem of current transfer to hot arc cathodes, where pat-
terns are governed by thermal conduction in the cathode
body.� One can say that diffusion favors appearance of a
mode with one spot, i.e., of the normal mode.

Thus, the two most important mechanisms governing the
appearance of patterns on glow cathodes, the electrostatic
mechanism and diffusion, produce competing effects: while
the former favors appearance of modes with multiple spots,
the latter favors appearance of a mode with one spot. This
allows one to explain, at least in principle, different patterns
that occur on glow cathodes: if the electrostatic mechanism
prevails, then the abnormal mode gives way at decreasing
current to multiple-spot patterns reported in Refs. �4–9�; if
diffusion prevails, then the abnormal mode gives way at de-
creasing current to a mode with one spot, i.e., to the normal
mode, which is observed in most cases.

The above hypothesis should be validated by a multidi-
mensional simulation of spot modes in the whole range of
their existence and of the stability of these modes. A bifur-
cation analysis is capable of providing valuable guidance in
this work, as it has done in the theory of near-cathode phe-
nomena in high-pressure arc discharges �38,39,49–51�. Note
that a solution describing the distributed mode in a discharge
tube with a circular cross section, obtained with account of
diffusion, is axially symmetric due to diffusion of the
charged particles to the walls of the tube. Then one needs to
deal with branching of 3D solutions from an axially symmet-
ric solution, instead of branching of axially symmetric and
3D solutions from a 1D solution, which is dealt with in the
present work. This can be done by means of a procedure
similar to the one developed in Ref. �50�. In addition to
diffusion, the model of glow discharge used in the present
work disregards a number of other effects that may play a
role, such as the presence of multiple ion and/or neutral spe-
cies and variations of the electron and heavy-particle tem-
peratures. However, a similar approach based on the bifurca-
tion theory may be applied also in the framework of more
complex models, such as, e.g., the model of microhollow
cathode discharges in xenon developed in Ref. �63�.

VI. CONCLUSIONS

Bifurcation points have been calculated at which steady-
state spot modes on dc glow cathodes branch off from the
abnormal mode or the mode corresponding to the falling
section of the CDVC. The simplest self-consistent model of
dc glow discharge is employed, namely, the one in which the
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plasma contains a single ion species and motion of the ions
and the electrons is dominated by drift. For both glow-
discharge configurations treated, which are a discharge be-
tween parallel electrodes and a space-charge sheath separat-
ing a cathode from a uniform plasma column, bifurcations in
the abnormal mode have been detected; an unexpected result
given that loss of stability and pattern appearance in dc gas
discharges are usually associated with a negative differential
resistance of the discharge.

This result may be viewed as an indication that the elec-
trostatic mechanism, which is the only mechanism governing
patterns in the framework of the present theory, favors ap-
pearance of modes with multiple spots. Diffusion of the
charged particles, which is another potentially important
mechanism, favors appearance of modes with one spot. A
competition of these two mechanisms can explain why the
abnormal mode at decreasing current densities in certain
cases gives way to modes with multiple spots and in other
cases to the normal mode, i.e., to a mode with one spot.

The bifurcation approach developed in this work can be
applied also to more complex models of glow discharges and
is capable of providing valuable guidance for multidimen-
sional simulation of spot modes in the whole range of their
existence and of stability of these modes, as it has done in
the theory of near-cathode phenomena in high-pressure arc
discharges.
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APPENDIX A: ASYMPTOTIC BOUNDARY CONDITIONS
FOR THE SHEATH EQUATIONS

Equations �1�–�3� allow one to describe a smooth
�asymptotic� transition from the sheath to the plasma col-
umn. In order to exploit this opportunity, let us first discuss
properties of the plasma column described by these equa-
tions.

As usual, the electric field in the plasma column is spa-
tially uniform and directed along the z axis. The plasma col-
umn is neutral, i.e., the ion and electron densities are equal
here. Loss processes in the plasma column are balanced by
ionization, i.e., the net production rate S vanishes and Eq. �4�
gives

�i − �dif − �disne = 0. �A1�

It follows that the charged particle density in the plasma
column is spatially uniform in the framework of the model
considered. The electric field in the plasma column, E�, is
related to the current density in the plasma column �which
also is spatially uniform�.

The distribution of potential in the plasma column is a
linear function of z: �=E�z+U, where U is a constant. This
constant represents the difference between the value of the
potential, �=U, which is obtained by extrapolation to the

cathode surface of the potential distribution in the plasma
column, and the actual value of the potential of the cathode
surface, �=0. It is natural to call this difference the sheath
voltage. In fact, this is the only logical definition of a sheath
voltage; any other definition would involve a “sheath edge,”
something that does not exist in reality �since the sheath
joins the plasma column smoothly� and cannot be introduced
except arbitrarily. The sheath voltage U is related to the cur-
rent density in the plasma column, as is the electric field in
the plasma column, E�.

Thus, the missing boundary conditions for Eqs. �1�–�3� in
the near-cathode space-charge sheath assume the form �11�.
Since both E� and U are related to the current density in the
plasma column, these quantities are not independent; there-
fore one of them may be considered as a given parameter and
the other should be found as a part of the solution. It is
convenient for the purposes of this work to consider U as a
given parameter and E� as a parameter to be found as a part
of the solution.

The above needs to be slightly modified in the case where
the model of a diffusion-controlled discharge is considered.
In the framework of this model, the last term on the LHS of
Eq. �A1� is discarded and this equation becomes independent
of ne. The electric field E� in the plasma column can take
only one value, namely, the one that ensures �i being equal to
�dif. Hence, in this case one must consider U as a given
parameter and E� is a root of the equation �i=�dif. Note that
the charged particle density and the current density in the
plasma column are not spatially uniform in this case and may
depend on x and y �but not on z�; they are governed by the
solution in the near-cathode sheath.

APPENDIX B: THE 1D SOLUTION

1. Reducing the problem to an initial- or boundary-value
problem for the electric field

Let us first consider the case where the calculation do-
main includes the whole discharge from the cathode to the
anode. The current continuity equation �12� in the 1D case
may be integrated to give

e�iniE + je = j . �B1�

Here je=e�eneE is the density of electric current transported
from the plasma to the cathode by the electrons, E=�� �the
prime denotes d /dz�. Multiplying Eq. �3� by E and trans-
forming the RHS with the use of Eq. �B1�, one can write

�0�iEE� = �1 + ��je − j . �B2�

Solving this equation for je, one can express the charged
particle densities in terms of E:

ne =
j + �0�iEE�

eE��i + �e�
, ni =

j − �0�eEE�

eE��i + �e�
. �B3�

Eliminating from Eqs. �2� and �5�, and from the first equation
in Eq. �8� ni and ne with the use of Eq. �B3�, one arrives at a
boundary-value problem for the function E. Introducing a
new unknown function �=E2, one can write this problem in
the form
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�� = �� −
�dif

�e
��

���� + 2j1� −
q4�2�j1 − ����2j1 + ���

2�1 + ���
,

�B4�

�� = − 2j1
1 − ��

1 + �
�z = 0�; �� = 2�j1 �z = h� ,

�B5�

where j1= j /�0�i and q4 is given by Eq. �22�. It was assumed
for brevity that �i and �e are constant while writing this
problem.

Let us consider the current density in the discharge, j, as a
given �control� parameter instead of U. Then the nonlinear
boundary-value problem for a second-order ordinary differ-
ential equation constituted by Eqs. �B4� and �B5� is complete
and may be solved numerically. Finding solutions for various
j, one can construct a complete description of the CDVC of
the 1D mode of operation of the discharge. In this work, this
problem has been solved by iterations with the use of New-
ton’s linearization and the Petukhov method �57�.

Now let us consider the case where the calculation do-
main includes only the near-cathode space-charge sheath. In
this case, one can go a step further and reduce the problem to
an initial-value problem for a first-order ordinary differential
equation. Eliminating ne in terms of je and ni with the use of
Eq. �B1�, one can rewrite Eq. �2� as

je� =
je

E
�K −

L

E
�j − je�� , �B6�

where L=�dis /e�i�e.
Equation �B2� may be solved for E�:

E� =
�1 + ��je − j

�0�iE
. �B7�

Values jew and je� of the electron current density je at the
cathode surface and in the plasma column may be expressed
in terms of j by, respectively, using the boundary condition
Eq. �5� and setting E�=0 in Eq. �B7�:

jew =
�j

1 + �
, je� =

j

1 + ��

. �B8�

�The index � here and below denotes values of correspond-
ing quantities in the plasma column.�

Note that the asymptotic behavior of solutions to Eqs.
�B6� and �B7� at large z can be found by means of linearizing
the equations around je� and E� and these solutions tend to
je� and E� exponentially; see the next section.

It is convenient to transform the problem to the indepen-
dent variable je and the dependent variable E. A differential
equation for the new unknown function E�je� is obtained by
dividing Eq. �B7� by Eq. �B6�:

dE

dje
=

1

�0�i je

�1 + ��je − j

K − LE−1�j − je�
. �B9�

There is an uncertainty on the RHS of Eq. �B9� at je= je�. It
follows from results of the next section that the ratio E� / je�
tends to E�C2 / je�� at large z, where C2 and � are given by
Eqs. �B14� and �B16�. Hence, the RHS of Eq. �B9� at je
= je� equals E�C2 / je��. Note that this result can be derived
also by a direct resolution of the uncertainty.

The procedure of solution is as follows. A value of the
current density in the discharge, j, is chosen. The value of the
electric field in the plasma column, E�, is found by solving
Eq. �A1� written in the form

e�e�
2 �1 + ���K�E� = �disj . �B10�

After this, the first-order differential equation �B9� is numeri-
cally solved on the interval jew� je� je� with the initial con-
dition E�je��=E�. After this equation has been solved, one
can find the function je�z� �and, consequently, the function
E�z�� by means of numerical evaluation of an integral that
follows from Eq. �B6�:

z = 

jew

je E

Kje − LE−1je�j − je�
dje. �B11�

The sheath voltage corresponding to the value j being con-
sidered is given by the formula

U = 

jew

je� E�E − E��
Kje − LE−1je�j − je�

dje. �B12�

2. Asymptotic behavior of 1D solution to the sheath equations
at large z

In order to find the asymptotic behavior of solutions to
Eqs. �B6� and �B7� at large z, let us represent je�z�= je�

+w�z� and E�z�=E�+v�z�, where w and v are small quanti-
ties, �w�
 je� and �v�
E�. Retaining in Eqs. �B6� and �B7�
terms of the first order in w and v, one gets the equations

w� = C1w +
je��K1� + ��C1�

E�

v, v� =
E�C2

je�

w , �B13�

where the constant coefficients C1 and C2 are

C1 =
K�

��E�

, C2 =
j

�0�i�E�
2 . �B14�

While deducing Eqs. �B13�, the function K=K�E� was ex-
panded as K=K�+K1��E−E��. Note that, since the function
K�E� is growing, K1��0. For brevity, the treatment is re-
stricted to the case where the derivatives ��d�i /dE��E=E�

and
��d�e /dE��E=E�

are zero.
Equations �B13�, being a system of linear equations with

constant coefficients, have an exponential solution: w�e�z,
v�e�z, where � is a constant quantity satisfying the qua-
dratic equation
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�2 − C1� − C2�K1� + ��C1� = 0. �B15�

The roots of this equation are of opposite signs. The negative
root is

� =
C1

2
−�C1

2

4
+ C2�K1� + ��C1� . �B16�

Thus, solutions to Eqs. �B6� and �B7� tend to je� and E�

exponentially.

3. 1D solution at small current densities

In the case where the calculation domain includes the
whole discharge from the cathode to the anode, the limit of
low current densities corresponds to the Townsend discharge,
in which a distortion of the applied electric field by plasma
charges is negligible. Let us introduce a normalized current
density

� =
jh

�0�iE
�0�2 , �B17�

where E�0�=U /h is the applied electric field. �Note that the
kinetic and transport coefficients of the plasma to a first ap-
proximation may be treated as constant in the gap since the
electric field in the gap also is constant to a first approxima-
tion.� The parameter � may be interpreted as the ratio of the
density of space charge in the gap, j /�iE

�0�, to a character-
istic value of the charge density needed to distort the applied
electric field, �0E�0� /h. The limiting case of the Townsend
discharge corresponds to small values of this parameter.

The electric field in the gap is sought as a superposition of
the applied electric field and of a �small� distortion of the
applied field due to plasma charges,

E�z� = E�0� + �E�1��z� + ¯ , �B18�

where the ellipsis represents terms of the order of �2E�0� and
of higher orders. Substituting the expansion �B18� into Eqs.
�B4� and �B5�, expanding in �, and retaining linear terms,
one arrives at

E�1�� = �̃�E�1�� +
E�0�

h
� , �B19�

E�1�� = −
1 − ��

1 + �

E�0�

h
�z = 0�; E�1�� = �

E�0�

h
�z = h� .

�B20�

Here �̃=�−�dif /�eE
�0�. Note that the recombination term of

Eq. �B4� is of the order of q4� relative to the term on the
LHS; if the coefficient q4 is of the order unity or smaller, the
recombination term may be dropped. �Using data cited at the
beginning of Sec. IV, one finds q4=5.8
10−7 p /Torr, so
this coefficient indeed is small under the considered condi-
tions.�

A solution to Eq. �B19� satisfying the first boundary con-
dition �B20� is

E�1�� =
E�0�

h
���1 + ��

1 + �
e�̃z − 1� . �B21�

In order that this solution satisfy the second boundary con-
dition �B20�, one should set

�̃h = ln�1 + �−1� . �B22�

This equation represents a well-known condition for initiat-
ing a self-sustained discharge and governs E�0�.

Let us now consider the case where the calculation do-
main includes only the near-cathode space-charge sheath. As
the current density tends to zero, the densities of charged
particles both in the plasma column and in the sheath tend to
zero. As in the case of a parallel-plane discharge, a distortion
of the electric field in the sheath by plasma charges becomes
negligible and the recombination becomes negligible as well,
i.e., the discharge becomes controlled by diffusion. The latter
means that E�, the electric field in the plasma column, satis-
fies to a first approximation the equation K�E��=0 and is
independent of j; the former means that the electric field
throughout the sheath is close to E�.

A normalized current density that plays the role of a small
parameter is introduced by an equation similar to Eq. �B17�

� =
jK1�

−1

�0�iE�
2 , �B23�

where K1�
−1 plays the role of a length scale.

We seek a solution to Eq. �B9� in the form of a two-term
asymptotic expansion:

E�je� = E� + ��E�1��je� + ¯ . �B24�

Substituting this expansion into Eq. �B9� and expanding in �,
one arrives to a first approximation at

��
dE�1�

dje
=

1

�0�i je

�1 + ��je − j

K1�
��E�1� . �B25�

Note that the second term in the denominator of the second
multiplier on the RHS of Eq. �B9� is of the order of q4

��
relative to the first term and therefore can be dropped.

A deviation of E� from the root of the equation K��E��
=0 may be estimated from Eq. �B10� and is of the order of
q4��E�. Hence, a boundary condition for Eq. �B25� at je
= je� is E�1�=0. A solution reads

E�1� = �2E�� je

je�

− 1 − ln
je

je�
�1/2

. �B26�

Equations �B11� and �B12� at �→0 assume the form

�2�
z

K1�
−1 = 


jew/je�

je/je� dx

x�x − 1 − ln x�1/2 , �B27�

U = E�K1�
−1 ln

1 + �

��1 + ��
. �B28�

Thus, the sheath voltage tends to a finite value at small cur-
rent densities.

One can see from Eq. �B27� that the sheath thickness
grows infinitely �proportionally to �−1/2� at small current den-
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sities. This obviously restricts the physical applicability of
the results obtained. However, the results, in particular, the
conclusion that the sheath voltage tends to a finite value at
small current densities, may be useful for understanding bi-
furcations of solutions in the model considered.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF SHEATH
PERTURBATIONS AT LARGE z

Let us start with the particular case of a diffusion-
controlled glow discharge, where one can set �dis=0. One
finds for the coefficients q2, q3, and q5 at large z

q2 → ne�, q3 
 K1��E − E��, q5 → − ne�K1�E�.

�C1�

As shown in Appendix B, the difference E−E� at large z
decays proportionally to e�z, where �=−�C2K1� in the case
of the diffusion-controlled discharge being considered. Equa-
tion �34� to a first approximation assumes the form

�e−�z�f� − �k2 + �2�f���� = 0. �C2�

This equation has exponential solutions f �e�z, with � satis-
fying an algebraic equation of the fourth order,

��� − ����2 − �2 − k2� = 0. �C3�

The latter equation has four roots, which are, in the order of
their increase,

�1 = − ��2 + k2, �2 = �, �3 = 0, �4 = ��2 + k2.

�C4�

Hence, the asymptotic behavior of a general solution to Eq.
�34� at large z includes in the particular case of a diffusion-
controlled glow discharge two exponentially decaying terms,
a constant term, and an exponentially growing term.

Now let us consider the general case where the discharge
is not controlled by diffusion, �dis�0. All the coefficients
involved in Eq. �34� tend at large z to finite limits in this
case, in particular,

q3 → − K�, q5 → − ne��K1�E� + K��, q6 →
�0K�

eE��1 + ��
.

�C5�

��i and �e are treated as constant in this appendix, as in Sec.
III; hence there is no need to attribute the index � to �.�

Equation �34� to a first approximation assumes the form

�f� − k2f�� − C1�f� − k2f�� − C2�K1� + �C1�f� + �C1C2k2f

= 0. �C6�

This is an equation with constant coefficients which has ex-
ponential solutions f �e�z, with � satisfying the algebraic
equation of the fourth order

�2��2 − k2� − C1���2 − k2� − C2�K1� + �C1��2 + �C1C2k2

= 0. �C7�

Let us first find approximate solutions to Eq. �C7� in the

limiting cases k→0 and k→�. In the limiting case k→0,
this equation has two finite roots, which are found by setting
k=0, and two roots of the order k, which are found by drop-
ping the first and second terms of this equation. In the order
of their increase, the roots are

�1 = �, �2 = − k� �C1

K1� + �C1
, �3 = k� �C1

K1� + �C1
,

�C8�

�4 =
C1

2
+�C1

2

4
+ C2�K1� + �C1� . �C9�

Note that �2 tends to zero proportionally to k at small k,
which means that the length of attenuation of the function
f�z� at large z, being equal to ��2�−1, is much larger than the
length of attenuation of functions je�z�− je� and E�z�−E�,
which equals ���−1. This complicates a numerical solution of
the eigenvalue problem.

In order to treat the limiting case k→�, it is convenient to
rewrite Eq. �C7� as

��2 − k2���2 − C1� − �C1C2� = C2K1��2. �C10�

Dropping the term on the RHS, one finds the roots �again in
the order of their increase�

�1 = − k, �2 =
C1

2
−�C1

2

4
+ �C1C2,

�3 =
C1

2
+�C1

2

4
+ �C1C2, �4 = k . �C11�

One can see from Eqs. �C8� and �C11� that in both limiting
cases Eq. �C7� has two positive roots and two negative roots,
which means that the asymptotic behavior of a general solu-
tion to Eq. �34� at large z includes two exponentially growing
terms and two exponentially decaying terms.

Let us prove that the latter is the case not only for small or
large k, but for any k. Equation �C7� may be written as a
standard quartic equation,

a0�4 + a1�3 + a2�2 + a3� + a4 = 0 �C12�

with the coefficients

a0 = 1, a1 = − C1, a2 = − k2 − C2�K1� + �C1�,

a3 = C1k2, a4 = �C1C2k2. �C13�

With the aim of invoking the Routh-Hurwitz criterion, let
us consider the sequence

a0+
, a1

−
, a1T2

−
, T2T3+

, a4+
, �C14�

where

T2 = �a1 a0

a3 a2
� = C1C2�K1� + �C1� ,
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T3 = �a1 a0 0

a3 a2 a1

0 a4 a3
� = C1

2C2K1�k2. �C15�

Given that C1, C2, and K1� are positive, the terms of the
sequence have signs as shown below each term. There are

two sign changes in the sequence. According to the Routh-
Hurwitz criterion, Eq. �C7� has two roots with positive real
parts and two roots with negative real parts. Hence, the
asymptotic behavior of solutions to Eq. �34� at large z in-
cludes two exponentially growing terms and two exponen-
tially decaying terms.
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