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A preformed plasma channel provides a guiding structure for laser pulses unbound by the intensity thresh-
olds of standard waveguides. The recently realized corrugated plasma channel �Layer et al., Phys. Rev. Lett.
99, 035001 �2007�� allows for the guiding of laser pulses with subluminal spatial harmonics. These spatial
harmonics can be phase matched to high energy electrons, making the corrugated plasma channel ideal for the
acceleration of electrons. We present a simple analytic model of pulse propagation in a corrugated plasma
channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several
hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes.
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I. INTRODUCTION

Preformed plasma channels allow for the propagation of
high intensity short laser pulses over distances unrestrained
by vacuum diffraction and intensities unlimited by dielectric
breakdown. These properties make the preformed plasma
channel ideal for applications that rely on long interaction
lengths for efficient operation, including x-ray lasers �1�, har-
monic generation �2�, and laser wakefield accelerators �3–9�.
In particular, laser wakefield acceleration of electrons offers
a promising alternative to conventional RF accelerators and
has already produced beams of electrons at GeV in only
several centimeters �10�—a gradient three orders of magni-
tude higher than the Stanford Linear Accelerator. Wakefield
acceleration, however, typically requires very expensive
multi-terawatt laser systems. These laser systems fail to fit on
conventional laser tables, making wakefield accelerated elec-
tron beams inaccessible to smaller labs and unrealistic for
use in small scale applications.

Direct laser acceleration of electrons has been proposed as
a lower power alternative to laser wakefield acceleration. La-
ser wakefield acceleration relies on the nonlinear pondero-
motive force of the laser pulse to generate an electrostatic
wave that accelerates the electrons. As a result, the acceler-
ating gradient is quadratic in the laser amplitude. In direct
laser acceleration, the laser field itself accelerates the elec-
trons; the accelerating gradient is linear in the laser field
amplitude. This linearity allows for a direct laser acceleration
scheme that could potentially outperform laser wakefield ac-
celeration.

Direct acceleration is, however, limited by the Lawson-
Woodward theorem �LWT� which states: the energy gain of
an electron traveling at nearly the speed of light accelerated
by a laser pulse in vacuum over an infinite distance is zero
�11,12�. Each direct acceleration scheme has thus focused on
overcoming one of the underlying assumptions of this theo-
rem to achieve net energy gain. The inverse Cherenkov ac-
celerator was one of the first experiments to demonstrate net
energy gain via direct electron acceleration �13�. The ob-
served accelerating gradient of 31 MeV /m �the maximum
energy gain was a few MeV�, although modest compared to

wakefield gradients, provided proof of principle for direct
acceleration. The experiment consisted of radially polarized
laser light pulse passed through an axicon lens incident on a
gas cell at the Cherenkov angle. The electron beam propa-
gated along the axis of the gas cell. The presence of the gas
cell overcomes the vacuum assumption of the LWT. In par-
ticular, the presence of the dielectric lowered the phase ve-
locity of the laser light, allowing for phase matching with the
electron beam over the length of the gas cell. The dielectric
that allows for direct acceleration in the inverse Cherenkov
accelerator also presents its limitation. For larger laser inten-
sities ��1�1014 W /cm2�, which can provide more competi-
tive gradients, dielectric breakdown of the gas occurs. The
phase velocity of the laser light in the resulting plasma is
superluminal precluding phase matching.

Direct acceleration has also been demonstrated in the
semi-infinite vacuum scheme �14,15�. For a proof of prin-
ciple experiment, the peak acceleration was found to be
40 MeV /m comparable to inverse Cherenkov radiation, but
maximum energy gains were only on the order of tens of
keV. The semi-infinite vacuum accelerator uses linearly po-
larized laser light incident at an angle to the propagation axis
of a relativistic electron beam. The projection of the electric
field onto the electron beam propagation axis provides the
accelerating gradient. The interaction length is terminated
after a finite length by the presence of a gold plated dielec-
tric. The presence of the terminating boundary allows a
population of properly phased electrons to gain energy,
breaking the symmetry of equal phasing and dephasing peri-
ods over an infinite interaction length predicted by the LWT.
Because the electron beam is never properly phase matched
to the laser light, extending the interaction length will not
result in larger maximum energies as with wakefield and
inverse Cherenkov accelerators. Furthermore, in the experi-
ments, the incident angle of the laser beam with the electron
beam was small ��16 mrad�. The amplitude of the electric
field projected onto the electron propagation is thus signifi-
cantly lower than its peak value.

The vacuum beat wave accelerator has been proposed as a
two laser method for direct electron acceleration �16,17�. The
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scheme utilizes the laser beams’ magnetic forces to achieve
acceleration, which are neglected in the LWT. The accelera-
tor involves copropagating two circularly polarized beams
each at a different frequency with a relativistic electron
beam. The beating of the two laser beams via the v� �B� force
on the electrons results in an axially directed ponderomotive
force that accelerates the electron beam. The phase velocity
of the beat wave can be subluminal and hence matched to the
electron velocity. Limitations on the interaction length arise,
however, due to the vacuum diffraction of the laser light.

The use of plasma waveguides for direct electromagnetic
acceleration has been previously suggested by Serafim et al.
�18�, who proposed guiding a radially polarized laser pulse
to accelerate a copropagating relativistic electron beam. For
a parabolic plasma density profile, the pulse guides as a
transverse magnetic mode. The radial component Er is a hol-
low mode with a peak intensity at r=wch /�2, where the
channel radius wch is given by wch= �2c�1/2�2 /�p,0�2 �1/4 and
�p,0�2 is the second spatial derivative of the plasma frequency.
The accelerating field is the associated axial component Ez,
which is smaller by a factor of �� /wch, where � is the laser
wavelength. The axial electric field peaks at r=0 and passes
through zero at r=wch. The magnetic field B� is purely in the
azimuth and has the same radial profile as Er. Following Ref.
�18�, the peak axial acceleration gradient from hollow mode
guiding in a plasma channel is given by Ez�GeV /cm�
=0.1�P1/2 /wch

2 �W1/2 m−1�, where P is the peak laser power
in W. For a 1 TW laser pulse with �=800 nm in a channel
supporting wch=15 �m, Ez is an impressive �30 GeV /m. If
the interaction length is long enough �which determines the
total energy gain�, this could compare favorably to laser
wakefield accelerators and at much lower power: Malka et
al. used a 30 TW laser to produce an acceleration gradient of
�70 GeV /m �200 MeV over 3 mm� �19�.

Serafim et al.’s scaling also suggests that for long enough
interaction lengths direct acceleration in the plasma wave-
guide could outperform the aforementioned direct accelera-
tion schemes. The plasma waveguide overcomes three limi-
tations of these methods. By using a plasma instead of
neutral gas, there is no limitation on the intensity of the
accelerating laser as with the inverse Cherenkov accelerator.
The natural axial field arising from the propagation of a ra-
dial polarized electric field eliminates the need for using the
projection of the linearly polarized field as in the semi-
infinite vacuum accelerator. A plasma channel with a nega-
tive radial gradient in the index of refraction �positive gradi-
ent in the plasma density� provides total internal reflections
of the laser, eliminating diffraction—the limitation of the
vacuum beat wave accelerator.

Extending the interaction length in the plasma waveguide
is, however, a problem. The phase velocity of the laser is
superluminal and the axial accelerating electric field cannot
be phase matched to an electron beam. An electron traveling
at nearly c would slip 2� out of phase with the accelerating
field after traveling a dephasing length Ld=��n0 /ncr

+2�2 /�2wch
2 �−1, where n0 is the on-axis electron plasma den-

sity of the channel and ncr is the critical plasma electron
density for wavelength � �20�. The electron gains no net
energy: it would accelerate for a distance Ld /2, and then

decelerate an equal amount over the next Ld /2.
The experimentally created corrugated plasma waveguide

shown in Fig. 1 could quasiphase match the laser and elec-
tron beam �21�. This can be viewed in two ways. The axially
periodic plasma density provides a local phase velocity that
is faster in regions of high density and slower in regions of
low density. If the laser-electron dephasing length Ld and the
corrugation period are matched, the symmetry between ac-
celeration and deceleration in a dephasing cycle is broken,
and a properly phased electron will gain net energy; this
process can be viewed as the inverse of transition radiation
�22�. Alternatively, the guided mode can be viewed as a com-
position of Fourier spatial harmonics due to the presence of
the axially periodic density. For the proper corrugation pe-
riod, the phase velocity of the spatial harmonics is sublumi-
nal, and can be matched to the electron beam velocity.
Matching the corrugation period to the laser-electron dephas-
ing length Ld is equivalent to matching the phase velocity of
a spatial harmonic to the electron velocity.

The goal of this paper is to examine laser pulse propaga-
tion and electron beam dynamics in the corrugated plasma
waveguide and to demonstrate that large gradients
��10 GeV /m� over long interaction lengths ��2 cm� are
possible. In Sec. II we present an analytic model for pulse
propagation that provides insight into the field structure in-
side a corrugated plasma waveguide. The pulse propagation
is examined using the slowly varying envelope approxima-
tion. The electron density profile used models the one shown
in Fig. 1, and allows for an analytic solution to the wave
equation. With the field solution, we derive a scaling law for
electron energy gain, and compare it to wakefield accelera-
tion and other direct acceleration schemes in Sec. III. Section
IV includes calculations and analysis of fully relativistic
electron trajectories in the laser electromagnetic field. The
calculations are also used to validate the scaling law. Section
V contains the conclusions.
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FIG. 1. �Color online� Proposed setup for direct acceleration of
electrons by a femtosecond laser pulse in a corrugated plasma
waveguide. �a� A radially modulated Nd:YAG laser pulse focused
by an axicon onto a gas jet creates a spark several centimeters long
with micron-scale structure. The spark expands into �b� a plasma
waveguide with axial modulations, allowing fine velocity control of
guided radiation �15�. �c� A radially polarized femtosecond laser
pulse and a relativistic electron beam are injected into this
waveguide.
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II. LASER PULSE PROPAGATION IN A CORRUGATED
PLASMA WAVEGUIDE

We start with the radial component of the laser vector
potential as follows:

A� = Âr�r,z,t�exp�i�k0z − �0t�� + c.c., �1�

where k0 and �0 are the central wave number and frequency
of the laser pulse, respectively. We assume the pulse remains
azimuthally symmetric for all time, and consider corrugated
plasma channels that have sufficiently low electron densities
such that the plasma frequency satisfies �p��0, where �p

2

=4�e2ne�r ,z� /me, e is the electron charge, me is the electron
mass, and ne is the electron density. In this regime the enve-

lope Âr evolves on the time scale �0 /�p
2, which is much

longer than the laser period, 2� /�0. The slowly varying en-
velope equation then determines the evolution of the laser
pulse as follows:

�2ik0� �

�z
+

1

c

�

�t
	 +

1

r

�

�r
r

�

�r
−

1

r2
Âr =
�p

2�r,z�
c2 Âr, �2�

where �0=k0c, and we have assumed that the electron
plasma responds linearly and as a nonrelativistic cold fluid.
We will examine the validity of this assumption in Appendix
A. The r−2 term in Eq. �2� arises from the cylindrical sym-
metry of the problem. For solutions of Eq. �2� the appropri-

ate boundary condition at the origin is Âr�r=0,z , t�=0. To
determine the boundary condition at r=	 we must consider
the electron density profile ne�r ,z�. For cases of interest, the
plasma channel effectively guides the laser pulse and we

may consider Âr�r→	 ,z , t�=0.
Because the laser-electron dephasing length Ld depends

on the electron’s velocity, acceleration of subrelativistic elec-
trons would require a structure with either a graded modula-
tion period or an axial taper of the electron density to ensure
that the electron remained phase matched to the laser over
the entire interaction length. For mathematical simplicity we
consider a fixed modulation period and an axially uniform
background density, suited to acceleration of electrons with

�1 for which the relativistic electron velocity depends
only weakly on gamma and Ld is nearly constant. We limit
our analysis to a periodic electron density profile that models
Fig. 1,

ne�r,z� = n0�1 + � sin�kmz�� + n0�r
2/2, �3�

where � is the relative amplitude of the density modulation,
n0� determines the radial dependence, and km is the wave
number describing the axial periodicity of the channel. For
large radii the solution to Eq. �2� is evanescent as the local
transverse wave number, �ck�����2−�p

2�r ,z�− �ckz�2, nec-
essarily passes through zero at some radius, and becomes
purely imaginary. This is consistent with our boundary con-

dition, Âr�r→	 ,z , t�=0, or equivalently the density profile is
taken to be lossless. In Appendix B we examine the loss of
pulse power from a leaky channel and provide a condition
for which the lossless density profile is valid.

The radial dependence n0� can also be modulated, but can
lead to unstable oscillations in the laser spot size as demon-
strated in Appendix C and discussed in Ref. �23�. These os-
cillations can lead to significant leakage of pulse power from
a plasma channel, which cannot be captured by our present
analytic model. Furthermore, exact solutions to Eq. �2� with
the density profile in Eq. �3� exist, which will simplify analy-
sis of the electron beam dynamics. In arriving at Eq. �2� we
have chosen a gauge in which the electrostatic potential 


=0. Using this gauge and the fact that �� ·E� �0 to order

���p /��2, we have that �� ·A� �0. Thus once Ar has been
determined, Az and the axial electric field can be determined

by the condition �� ·A� =0.
The slowly varying envelope approximation neglects sec-

ond derivatives in z and t in the wave equation, which are
responsible for a subluminal group velocity. However, the
group velocity can be explicitly restored by replacing c−1� /�t
with vg

−1� /�t in Eq. �2�. Here vg /c=1−�p,0
2 /2�2

−4 / �k0wch�2, and we define �p,0
2 = ��p

2�0,z�
z, where the
brackets represent an average over z and wch
= �2c�1/2�2 /�p,0�2 �1/4 is the width of the guided mode. We note
that the group velocity is strictly subluminal due to the pres-
ence of the background plasma and guiding channel.

The lowest eigenmode solution of Eq. �2� is

Âr�r,z,t� = A0
r

wch
e−r2/wch

2 −�z − vgt�2/�z
2�

n

inJn���e−i�+i��k+nkm�z,

�4�

where Jn��� is the nth-order Bessel function of the first kind,
�=��p,0

2 /2c2k0km, and �k=−k0
−1��p,0

2 /2c2+4 /wch
2 �. We take

the pulse to have a Gaussian temporal shape with duration
�z /vg. In Eq. �4�, the laser pulse is written as a sum of spatial
harmonics. The harmonics have a relative amplitude given
by Jn���. For our experimental conditions of
��p,0 /�0�2�k0 /km��1, �� �1, and Jn�����n /2nn!. For
small � the relative amplitude drops rapidly with increasing
harmonic number. Thus only the first few spatial harmonics
contribute to the electromagnetic field structure in the corru-
gated plasma waveguide. This is seen in Fig. 2�a�, which
shows the relative amplitude for n=0,1 ,2 ,3 spatial harmon-
ics as a function of �.

By forming the ratio of �0 to k, and using the fact that
�k0�� �nkm� , ��k�, we obtain the effective phase velocity vp,n
for the nth spatial harmonic as follows:

vp,n

c
� 1 −

nkm

k0
+

�p,0
2

2�2 +
4

�k0wch�2 . �5�

It should be mentioned that for very large values of n, �k0�
� �nkm� is no longer valid, but as demonstrated above the
amplitude of these modes is negligible. The last two terms in
Eq. �5� are responsible for the superluminal phase velocity in
uncorrugated plasma channels. The second term, due to the
axial periodicity of plasma, allows for subluminal phase ve-
locities. The condition for subluminal phase velocity can
then be expressed in terms of the laser and channel param-
eters: nkm�k0��p

2 /2�2+4 / �k0wch�2�. Figure 2�b� depicts the
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phase velocity of the n=0,1 ,2 ,3 spatial harmonics as a
function modulation period for experimental parameters used
in Ref. �21�. As expected the funadamental laser mode �n
=0� is strictly superluminal. The n=1 spatial harmonic be-
comes subluminal for modulation periods of �300 �m;
modulations of a similar period have been created in experi-
ments �21�, which is promising for future experiments on
direct acceleration.

The local nature of the laser phase velocity is apparent
upon rewriting the sum in Eq. �4� as follows:

�
n

inJn���exp�inkmz� = exp�i� cos�kmz�� . �6�

We find the local wave number by taking the gradient of
�k0+�k�z−�+� cos�kmz�. The local phase velocity of the
guided mode is then

vp�z�
c

� 1 +
�p,0

2

2�2 �1 + � sin�kmz�� +
4

�k0wch�2 . �7�

In regions of high density, kmz=��1 /2+2��, where � is an
integer, the phase velocity is a maximum, and in regions of
low density kmz=��3 /2+2�� the phase velocity is a mini-
mum. The difference in local phase velocity between peak
and minimum density is �vp=���p /��2. Figure 2�c� shows
the local phase velocity as a function of axial distance. We
note that the local phase velocity is always superluminal.
Equation �6� also demonstrates that the spatial harmonics of
the guided mode are a result of periodic phase modulations
in the laser due to the axial periodic plasma density. Further-
more, the relative amplitude of the spatial harmonics is de-
termined by the amplitude of the phase modulation �.

III. SCALING LAW AND COMPARISON TO OTHER
SCHEMES

With an analytic expression for the electromagnetic field
in the corrugated plasma waveguide, a scaling law for the
electron energy gain via quasi-phase-matched direct accel-
eration can be derived. We start with the expression for the

energy gain of an electron in an electric field

�
 = −
q

mec
3 � v� ·

�A�

�t
dt , �8�

where 
=�1+ �p� /mec�2. We consider an electron with initial
conditions �r ,vr�= �0,0�, and �z ,vz�= �z0 ,vz,0�, where vz,0 is
assumed to be close enough to c such that �1−vz /c��0t�1
over the process of acceleration; the electron energy is high
enough such that 
 depends weakly on velocity, and phase
slippage due to acceleration can be neglected. Recalling that
the axial electric field provides the acceleration, we have

�
 = − 2
q�

mec
2 Re�� iAzdt
 . �9�

The n=1 spatial harmonic is chosen to be phase matched
to the electron because it is the largest amplitude mode that
also supports a subluminal phase velocity. For phase match-
ing, the phase velocity of the n=1 spatial harmonic is set to
c, which can be accomplished experimentally by adjusting
the corrugation period or density: km=k0��p

2 /2�2

+4 / �k0wch�2�. Although the electron has been phase matched
to the n=1 spatial harmonic, every spatial harmonic contrib-
utes to the energy change of the electron. Upon inserting the
axial vector potential into Eq. �9�, we find the energy contri-
bution of each spatial harmonic to scale as �
n
�Jn���sin�ckm�n−1�t� / �n−1�. The contribution from all the
harmonics is oscillatory except for the phase matched n=1
harmonic, which provides linear energy gain as a function of
time: �
1�J1���ckmt. This is shown in Fig. 2�d�. Not only
do the higher harmonics oscillate in time, their energy con-
tribution is small due to the coefficient Jn���. Because accel-
eration will occur over distances much longer than the modu-
lation period, we can neglect the contribution from the non-
phase-matched harmonics. The expression for the time-
dependent energy gain is then

�
 � 2�a0�1 +
2�p

2

�2wch
2 
−1� ct

wch
	 , �10�

where �p=2�c /�p,0.
As discussed in the previous section, the group velocity of

the guided mode in the channel is subluminal. An electron
traveling at approximately c will then outrun the pulse in the
pulse length dephasing time t��z / �c−vg� which places a
limit on the interaction time. Upon some algebra, we then
obtain an expression for the pulse length limited energy gain
in quasi-phase-matched direct acceleration as follows:

��
�QPMA � 4�a0� �z

wch
	��p

�
	2�1 +

2�p
2

�2wch
2 	−2

. �11�

The energy gain scales linearly with both the amplitude of
the density modulations �, and the field amplitude a0. Be-
cause thinner plasma channels can support higher axial elec-
tric fields, the energy gain is inversely proportional to wch.
The interaction length can be extended by increasing the
pulse length �z, or by increasing the group velocity, which is
represented by the factor ��p /��2�1+2�p

2 /�2wch
2 �−2 in Eq.

�11�.
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FIG. 2. �a� The relative amplitude of the spatial harmonics as a
function of the phase modulation amplitude. �b� The phase velocity
for different spatial harmonics as a function of modulation wave-
length. �c� The local laser phase velocity as a function of axial
distance. �d� Energy contribution of different spatial harmonics for
an electron initially phase matched to the n=1 spatial harmonic.
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Equation �11� can be compared to similar equations pre-
dicting the energy gain in other acceleration schemes. For
comparison, we consider parameters similar to those used in
Ref. �21�: a laser wavelength �=800 nm, a matched beam
width of w=15 �m, a normalized amplitude a0=0.25 �cor-
responding to a laser power of 2 TW�, a pulse duration �t
=300 fs, an on-axis plasma density n0=7�1018 cm−3, a cor-
rugation amplitude �=0.9, and a modulation period of Tm
=0.035 cm �these parameters will be used throughout the
rest of the paper unless otherwise stated�. A slightly larger
density amplitude modulation is used, which may be obtain-
able upon further experimental exploration. With these pa-
rameters, the predicted energy gain for direct acceleration in
the corrugated plasma waveguide is ��
�QPMA�1000.

By comparison, the dephasing-limited energy gain for
resonant laser-wakefield acceleration is �24�

��
�LWFA �
a0

2

�1 + a0
2/2�1/2��p

�
	2�1 +

�p
2

�2wch
2 	−1

. �12�

For the parameters listed, ��
�LWFA�14. As expected, direct
acceleration produces higher gradients at lower laser powers.
In the best case scenario, for semi-infinite vacuum accelera-
tion the energy gain is given by ��
�SIVA�a0
0 /2 �15�,
where 
0 is the initial electron energy; this only provides an
energy gain of ��
�SIVA�13. The energy scaling for vacuum
beat wave acceleration is given as �16�


 f
2 = 
0

2 + 8�2�a0wch

�1
	2��1

�2
− 1	 . �13�

For �1=2�2 the predicted energy gain is ��
�VBWA�9. For
parameters achievable on an actual tabletop laser at low
power, the scaling laws predict that the energy gain in quasi-
phase-matched acceleration exceed those of other schemes
by at least an order of magnitude. The derived scaling law
for quasi-phase-matched acceleration will be validated in the
next section.

IV. BEAM DYNAMICS

To study electron beam dynamics and validate the energy
scaling, we integrate the fully relativistic electron equations
of motion in the laser electromagnetic field determined by

Eqs. �2� and �3�, and the condition that �� ·A� =0, while ne-
glecting space-charge effects. After the electromagnetic
forces have been found, we provide estimates on the maxi-
mum beam density for which neglecting the space charge is
valid.

A. Equations of motion

We write the generalized electron equation of motion as

dp�

dt
= −

q

c
� �A�

�t
− v� � �� � A�	 , �14�

where p� =
mev� and 
2=1+ �p� /mec�2. Recalling that
� /wch ,�p /� ,� /�m�1, we can write the three simplified
components of Eq. �14� in terms of A� as follows:

dpr

dt
=

L2

mer
3 + q��1 −

vz

c
�1 + �−2 �

�r
�� · r̂	
A�, �15�

L = const, �16�

dpz

dt
= − q���� · r̂� − �

vr

c
�1 + �−2 �

�r
�� · r̂	
A�, �17�

where L=
mer
2�̇, ��z , t�= ik0−2�z−ct� /�z

2, and taking twice
the real part, 2 Re� �, is understood, but not symbolically
written. The first bracketed term in Eq. �15� is the force due
to the transverse electric field. The last two terms, propor-
tional to vz, are the contribution from the magnetic field �the

v� �B� force�. The last term, in particular, is a contribution due
to the finite spot size of the laser, which will have important
consequences on the transverse dynamics. The constancy of

L=
mer
2�̇ is a result of using the azimuthally symmetric,

lowest transverse magnetic mode of the channel. The first
force in the z direction is simply the z component of the laser
electric field which will accelerate the electron to high ener-
gies. The second force, which is smaller by ��wch /��
��v� /c�, is the contribution to the longitudinal Lorentz
force from the magnetic field. For this paper, we consider

electron beams with zero initial beam divergence, J�b�r ,z , t
=0�=Jb�r ,z , t=0�ẑ, where Jb is the electron beam current
density. In this case, the force from the second term in Eq.
�17� is small over the entire interaction length, and the z
component of the laser electric field provides the dominant
force. We do, however, keep this term in our simulation, but
neglect it in our analysis of the beam dynamics later on.
Equations �15�–�17� are integrated over the waveguide-
limited interaction time, which is the time it takes an electron
going nearly c to travel the length of the waveguide. For our
simulations the waveguide length is set to 1.8 cm corre-
sponding to waveguides created in Ref. �21�. It should be
noted that for our case, the waveguide-limited interaction
time is less than the pulse length dephasing time by a factor
of �2; the maximum energy gain will thus be limited by the
waveguide length.

B. Scaling law validation

To validate the scaling law, the electron trajectories were
initiated on axis from −10 �m to −11 �m behind the peak
of pulse �one micron is approximately a wavelength or a
percent of the full width half maximum�. The initial trans-
verse momentum of the electrons was set to zero, and the
initial axial momentum pz /mec was set to three different val-
ues: 30, 100, and 1000. Figure 3 shows a comparison of our
scaling law from Eq. �11� with simulated electron trajectories
that have been phase selected to produce the highest energy
gain over the waveguide-limited interaction length. In Fig.
3�a�, the effective phase velocity of the n=1 spatial harmonic
is matched to three different initial electron velocities by
tuning the modulation period, which could be accomplished
experimentally by inserting imaging optics in the radially
modulated channel formation beam shown in Fig. 1. For an
initial energy of 
0=30 the electron begins to accelerate but
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quickly becomes dephased from the n=1 spatial harmonic as
its velocity increases. The electron is then decelerated and
again becomes phase matched. For 
0=100 the electron and
slow wave remain phase matched longer; the increase in
electron energy results in a small change to its velocity. The
electron does begin to outrun the slow wave towards the end
of the waveguide. As expected, we see the best agreement
with the scaling law for an initial energy of 
0=1000. The
electron’s velocity remains essentially constant, and phase
matching is maintained over the entire waveguide.

In Fig. 3�b� the phase velocity of the n=1 spatial har-
monic was set to c for all three initial electron energies. The

0=30 trajectory never catches up with the spatial harmonic
and experiences alternating regions of acceleration and de-
celeration as the slow wave continually sweeps past it. The

0=100 electron gains more energy than when it started
phase matched with the spatial harmonic. Before the electron
begins to dephase, it is accelerated up to the slow wave phase
velocity. The electron spends more time in the acceleration
phase and as a result gains more energy. For 
0=1000 the
change is minimal; the phase velocity for the n=1 spatial
harmonic in the previous case was essentially c already.

The limitations of our scaling law are apparent in Figs.
3�a� and 3�b�. The scaling law assumed phase matching over
the entire interaction length, and cannot be applied to lower
energies for the distances considered here, explaining the
large discrepancy for 
0=30 and 
0=100. As stated previ-
ously, for low initial energies gradients in the modulation
period or background density are required to maintain phase
matching over longer distances. Furthermore, our scaling law
assumes a constant pulse amplitude over the entire pulse
length �a flat top pulse�, whereas the pulse in the simulation
was Gaussian. The discrepancy in the slope of the scaling
law and the energy gain of the 
=1000 particle is a result of
the smaller field amplitude experienced by the electron as it
moves through the pulse. The resulting energy gains from the
simulations for 
0=100 are still at least an order of magni-
tude better than the energy gains from both laser wakefield
acceleration and other direct acceleration schemes.

A simple Hamiltonian model for the longitudinal dynam-
ics explains the features observed in Fig. 3. We start with
equations describing the evolution of the energy and phase of
an electron as follows:

d


dz
= k0â0 cos��� , �18�

d�

dz
= k −

�0

vz�
�
, �19�

where �=kz−�0t, k=k0+�k+km, â0=4J1���a0 /k0wch, and it
has been assumed that the electron starts on axis near the
peak of the pulse. From Eqs. �18� and �19� we find that the
Hamiltonian is given by

H = k
 − k0�â0 sin��� + �
2 − 1� . �20�

We note that k0 /k=vp,1 /c, where vp,1 is the phase velocity of
the n=1 spatial harmonic. H contains no explicit dependence
on z and thus dH /dz=0 or H�
0 ,�0�=H�
 ,��, where 
0 and
�0 are the initial relativistic factor and phase of the electron,
respectively.

For mathematical simplicity, we first consider the case
when k0 /k=1 or vp,1=c, corresponding to Fig. 3�b�. The
electron velocity is then less than the n=1 phase velocity.
Equation �20� then has one solution for 
��� as follow:


��� =
1 + �k0

−1H + â0 sin����2

2�k0
−1H + â0 sin����

. �21�

Setting d
 /d�0=0 and solving for �0, we determine what
initial phase results in the maximum energy gain: �0,max
=� /2. As expected, the maximum energy occurs when the
electron starts at a zero of the accelerating field and experi-
ences the entire accelerating phase as the slow wave passes
by. We will consider the motion of the maximum accelerated
electron and thus set H=H�
0 ,� /2�.

The denominator of Eq. �21� shows that there is a critical
initial energy, 
0,crit= �1+4â0� /4â0, which we rewrite for our
parameters using the fact that â0�1,


0,crit � � kmwch

4�a0
	� �

�p,0
	2

. �22�

Above 
0,crit, the electron will continually gain energy as it
phase slips with respect to the field. Furthermore, for
energies above 
0,crit, the electron phase slippage is limited;
the electron can phase slip by at most �max
=sin−1�H�
0 ,�0� /k0â0�. For energies below 
0,crit, electrons
can phase slip by 2� radians and, as a result, undergo energy
oscillations as the slow wave fronts continually move past
them. The maximum energy for 
0�
0,crit is 
�−� /2�. For
our parameters 
0,crit�81; both the 
0=100 and 
0=1000
cases are above 
0,crit, explaining their steady increase in
energy. 
0=30 is below 
0,crit which explains the energy os-
cillations. Equation �22� also shows that the critical energy
can be reduced by increasing the modulation period; for ac-
celerating low energy electrons, longer modulation periods
are preferable.

We now consider the case where the initial electron ve-
locity is matched to the n=1 phase velocity,vp,1=vz,0. The
Hamiltonian constant is given by H�
0 ,�0�=k /
0−k0â0, and

Scaling Scaling

γγo=1000 γγo=1000

30 60
time (ps)

500

250

time (ps)
30 60

∆∆γγ

γγo=100

γγo=100

γγo=30γγo=30

(a) (b)

0

FIG. 3. �Color online� Comparison of energy gain predicted by
our scaling law, dotted �red� with numerical results obtained by
integrating the fully relativistic electron equations of motion. �a�
The slow wave phase velocity is matched to the initial electron
velocity. �b� The slow wave velocity is set to c.
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because we are interested in relativistic electrons k0 /k�1
−1 /2
0

2. Solving Eq. �20� for 
, we have for large electron
energies, â0
0 /2�1, that


���

0

� 1 + 2
0â0�1 − sin���� , �23�

where the maximum energy gain is given by �
max
= �
0 /
0,crit�
0. The large energy limit corresponds to our

0=1000 case in Fig. 3�a�. When the electron velocity and
n=1 phase velocity are initially matched there is a limit on
the maximum energy gain due to the electron outrunning the
slow wave. Our parameters give �
max�1.2�104, which
explains the similarity between Figs. 3�a� and 3�b�; the 
0
=1000 electron had not yet approached its maximum energy.
For lower electron energies â
0 /2�1, we have that


���

0

� 1 + �2
0â�1 − sin���� + 
0â�1 − sin���� , �24�

where the maximum energy gain is given by �
max
= ��
0 /
0,crit�1/2+ �
0 /2
0,crit��
0, and we have retained an
extra order in �
0 /
crit�1/2 to better match our results. When

0=100, we find that �
max�210 similar to the value found
in Fig. 3�a�. The energy gain for the 
0=100 electron is
limited when vp,1=vz,0, explaining the higher yields in Fig.
3�b�.

Figures 3�a� and 3�b� also show a rapid oscillation due to
the longitudinal force of the fundamental n=0 laser mode,
with the oscillation frequency determined by the difference
between the laser fundamental phase velocity and the elec-
tron phase velocity, cLd. Although not visible, the electron
also undergoes rapid oscillations due to all other spatial har-
monics at a frequency �n−1�ckm, but the amplitude of these
oscillations becomes diminishingly small as n is increased
��n /2nn�n!�. The rapid oscillations due to n=0 will become
important when considering the transverse electron motion.

C. Transverse dynamics

For examining the transverse dynamics of the electron
beam, electrons were distributed uniformly in the axial direc-
tion from −1 �m to −11 �m behind the peak of the pulse
and as a Gaussian in the radial direction with varying width
�b. The initial electron momentum was set to pz /mec=100
and the phase velocity of the n=1 spatial harmonic was set to
c.

Figure 4 shows the final electron distribution functions as
a function of momentum on a log scale after 60 ps, the wave-
guide limited interaction time. When all the electrons start on
axis ��b=0�, the distribution function contains a quasimo-
noenergetic peak at pz /mec�400 with a full width at half
maximum value of 8 MeV �a relative width of �4%�. The
distribution function is also asymmetric about the initial mo-
mentum. For larger initial energies, we would expect a dis-
tribution function symmetric about the initial momentum;
dephasing over the interaction length would be negligible,
and an equal number of electrons would start in the acceler-
ating phase as in the decelerating phase. Here some electrons
have the proper z0 �initial phase� to be accelerated up to the

slow wave, which, as discussed above, can result in higher
energies. The remaining electrons are initially accelerated or
decelerated based on their phase. These electrons are never
properly phase matched and their phase slippage results in a
slow spreading of the distribution function about the initial
momentum.

As the width of the electron beam is increased from �b
=0 to �b=9 �m the quasimonoenergetic peak is lost. The
increased electron beam radius places more electrons in the
low amplitude periphery of the accelerating field, which de-
creases as a function of radius, Az�1−2r2 /wch

2 . Figure 5,
which shows a comparison of the Gaussian widths of the
electron beam to the axial field profile, suggests, however,
that for �b=1 �m and 3 �m most of the electrons still ex-
perience the peak of the accelerating field. The loss in the
high energy peak is then a result of the transverse motion of
the beam electrons.

Some of the features of the transverse dynamics are de-
picted in the multimedia file linked in Ref. �25�. The movie
shows a subset of electrons distributed uniformly in z from
−10 �m to −11 �m behind the peak of the laser with �b
=6 �m. The vertical scale is radius and the horizontal scale
is z−ct, following the movement of the electron beam; both
scales are in microns. The color scale is in units of energy
normalized to rest mass and changes as the beam propagates.
The electrons in the decelerating phase experience a large
transverse force and are expelled from the center of the elec-
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FIG. 4. Electron axial momentum distributions for different ini-
tial electron beam widths after 1.8 cm of propagation �the extent of
a physical plasma waveguide�.

FIG. 5. Comparison of electron beam Gaussian widths with
axial field profile.
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tron beam. The accelerated electrons remain mostly colli-
mated towards the center of the beam, but undergo a slow
transverse spreading. The collimation of the higher energy
electrons can be used for spatial filtering of the electron
beam if quasimonoenergetic peaks are desired. To examine
the transverse dynamics in detail, we turn to the transverse
equations of motion.

An electron displaced from the axis will experience two
types of transverse force in the absence of space charge. For
an electron close to the axis, near the peak of the laser pulse,
we can write the transverse equation of motion as

dpr

dt
=

q

c
� �

�t
+ vz

�

�z
− vz� 2

wch
	2 2

ik0

A�. �25�

Inserting the solution for A�, and using the phase-matching
condition for the n=1 spatial harmonic, we obtain an expres-
sion for the quasi-phase-matched focusing or defocusing
force due to the slow wave as follows:

Fr
qpm =

mec
2k0�a0

�1 + 2�p
2/��2wch

2 ��
r

wch
�1 −

vz

c
�1 +

8

k0
2wch

2 	

�cos�k0z − �0t� . �26�

This is the transverse force associated with the phase-
matched axial accelerating force. The axial and transverse
forces are 90° out of phase. As observed in the multimedia
file, electrons in the maximum axial accelerating phase ex-
perience no quasi-phase-matched focusing or defocusing.
The force is either focusing or defocusing depending on the
phase of the electron z. In particular, for an axial uniform
distribution of highly relativistic electrons for which �=k0z
−�0t is constant over the entire interaction length an equal
number of electrons experience focusing as defocusing.
From Eq. �26� we can estimate the shortest time scale for the
growth of the focusing or defocusing for orbits slightly off
axis as

� � �2�

�0
	� c

c − vz
	5/6� �k0wch��k0�p��km�p�

16�2�5�a0

1/3

. �27�

For our parameters we find that ��12 ps for 
0=100, con-
sistent with simulated electron trajectories shown in the Ref.
�25�.

The terms proportional to vz in Eq. �26� result from the

v� �B� contribution to the Lorentz force. For plane waves as
the axial velocity approaches c the quasi-phase-matched
transverse force becomes diminishingly small. Because the
pulse has a finite spot size, we obtain a correction 8 /k0

2wch
2 ,

that reduces the velocity where the transverse force vanishes.
Specifically, we find that the transverse force vanishes when

=k0wch /2�2, which for our parameters is 
0�42. By
matching the injection energy to k0wch /2�2, deflection of the
electron beam can be limited in the early stages of accelera-
tion. Furthermore, this suggests that by adiabatically chang-
ing the channel radius over the interaction length, wch�z�
=2�2
�z� /k0, it may be possible to maintain a collimated
beam, which will be a topic of future research.

The forces due to the other spatial harmonics �n�1� also
contribute to the transverse motion of the electron beam. As

discussed earlier, the electron moves through the phase fronts
of these harmonics and undergoes rapid oscillatory motion,
�osc��n−1�ckm. Over the entire interaction length the oscil-
lations undergo many cycles, k0�z �for our parameters k0�z
�700�. The oscillations themselves thus contribute little to
the long term directed motion of the electron beam. How-
ever, because of the spatial variation of the field envelope the
oscillations can beat and give rise to directed motion through
their ponderomotive force on the electron beam. The n=0
spatial harmonic provides the dominant contribution to this
motion on account of its large relative amplitude.

Expanding around the initial electron velocity v� =v0ẑ and
averaging over the fast time scale kmvz, we have to lowest
order in � /wch,

Fr
pm = −

1

2me
0
� �p1,r

2 
 , �28�

where the angled brackets denote the time averaging. The
contribution to the ponderomotive force from the first order
axial momentum p1,z, which accounts for corrections to
the initial momentum p0,z=m
0v0, provides corrections to
Eq. �28� of order �� /wch�2 and has been neglected. Inserting
our expression for the axial field, we obtain the ponderomo-
tive force due to the fundamental n=0 laser mode for small
radii near the peak of the laser pulse as follows:

Fr
pm = −

2mec
2


0

r

wch
2 a0

2�1 −
4

�2

v0

c
� �p

wch
	2�1 +

2�p
2

�2wch
2 	−1
2

.

�29�

The force is independent of the electron’s phase. In addition,
the hollow profile of the transverse field results in an inward
force. The ponderomotive force thus provides a focusing
over the entire electron beam. Higher energy electrons will
experience a smaller ponderomotive focusing due to the in-
verse dependence on 
0, further explaining the small trans-
verse excursions observed in the multimedia file �25�. The
second term in the brackets, which results from the finite
spot-size, reduces the focusing effect of the ponderomotive
force. The finite spot-size correction is not necessarily neg-
ligible, and for our case is �0.25.

The ponderomotive force when taken in addition to the
quasi-phase-matched focusing or defocusing force provides
an overall focusing of the electron beam for small radii. The
overall focusing is limited by the amplitude of the pondero-
motive force, which is typically smaller than the quasi-
phase-matched focusing or defocusing force except near the
maximum accelerating phase. The phase independent ratio of
the forces is

Fr
pm/Fr

qpm �
1

4
0
a0� k0wch

�
	�1 +

�p
2

�2wch
2 	−1

, �30�

which for our parameters Fr
pm /Fr

sw�0.08.
Figures 6 and 7 show the number-averaged final z mo-

mentum in units of mec as a function of initial and final
position, respectively, for an initial electron beam radius of
�b=9 �m. The accelerated electrons started in buckets one
half of a slow wavelength long. Buckets are limited in the
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transverse direction by the laser spot size. After acceleration
the momentum is concentrated in z as the high energy elec-
trons move towards the front of the slow wave, but is spread
transversely as some of the electrons in the accelerating
phase are initially defocused. Figure 8 shows the final elec-
tron beam density as a function of position; the beam has
acquired a significant transverse spread which peaks off axis.
Comparing Figs. 7 and 8 we see that these peaks are mostly
composed of lower energy electrons that have been expelled
from the center of the electron beam. As seen in the multi-
media file and predicted by our analysis the high energy
electrons remain collimated at the center of the beam. They
see little to no focusing or defocusing quasimatched force,
and only the small focusing ponderomotive force.

The electron beam experiences a net outward density flow
as seen in Fig. 8. At radii greater than wch /�2, electrons that
were initially defocused move outside the peak of the hollow
mode fields and experience a larger defocusing force due to
the ponderomotive force switching sign. These electrons are
expelled from the beam. Eventually electrons initially in a
focusing phase begin to phase slip and enter the defocusing
phase where they undergo the same process.

Many of the transverse effects on the electron beam can
be managed by increasing the radius of the plasma channel
�matched laser spot size�. Increasing the spot size increases
the defocusing time in Eq. �27� as ��wch

1/3. Furthermore, for
highly relativistic injection energies the quasi-phase-matched

defocusing can be reduced by decreasing the finite spot-size
correction to the Lorentz force. At the same time, the pon-
deromotive focusing force would be increased due to the
reduction in the spot-size correction. The outward flow of
beam electrons can also be minimized by using electron
beams with widths less than wch /�2 �for our case �2�r /wch
�0.85�. Due to limitations on injection beams, it may be
easier to increase the channel radius than decrease the elec-
tron beam radius. Unfortunately, by increasing the channel
radius the predicted energy gain of the electrons decreases,
�
�wch

−1. This can be overcome by maintaining the ratio of
the field amplitude to the spot size, a0 /wch=const. This,
however, greatly increases the laser power requirements for
quasi-phase-matched direct acceleration,P��a0wch�2�wch

4 .
In instances where power is not a limiting factor, larger spot
sizes can greatly improve the quality of the accelerated elec-
tron beam.

D. Space-charge estimation

For a simple estimate of the magnitude of the transverse
space-charge force we consider a uniform cylindrical elec-
tron beam. We suppose the electron beam is infinitely long so
that we may ignore longitudinal edge effects and thus ignore
any axial electric field due to the beam. Noting that the elec-
trons themselves give rise to a radial electric field and that
their motion gives rise to an azimuthal magnetic field, we
find the space-charge force to be

Fr
sc =

1

2
me�p,b

2 �1 −
vz

2

c2	r , �31�

where �p,b is the plasma density of the electron beam. The
first term in parentheses is the result of the beam’s electric
field, and the second term is due to the beam’s magnetic
field. We note that for highly relativistic beams the transverse
space-charge force can be neglected altogether.

The maximum allowable charge density can be estimated
by forming the ratio of the transverse space-charge force to
the quasi-phase-matched focusing or defocusing force,
Fr

sc /Fr
qpm as follows:
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FIG. 7. �Color online� Averaged final �after 1.8 cm of propaga-
tion� axial momentum as a function of final position �zf ,xf� �the
axial distance traveled by the leading electron has been subtracted
out�.
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FIG. 8. �Color online� Final electron density as a function of
final position �zf ,xf�. The electrons are accelerated into the slow
wave fronts resulting in bunching.
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FIG. 6. �Color online� Averaged final �after 1.8 cm of propaga-
tion� axial momentum as a function of initial position �xi ,zi�.
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ne,b�cm−3� �
2.3 � 1012

�1 + 2�p
2/�2wch

2 �
� �a0

k0wch
	wch

−2�cm−2�
�1 − vz/c�

, �32�

where ne,b is the electron beam density, and we have as-
sumed vz�c. Equation �32� uses the maximum focusing
phase of the quasi-phase-matched force and as a result is
phase independent; the actual maximum charge will be lower
by approximately one order of magnitude. For our param-
eters with vz corresponding to 
0=100 and including an or-
der of magnitude for phases where the transverse force may
be smaller, we find that ne,b�3�1018 cm−3. For a uniform
cylindrical beam with a length and radius of 10 �m, ne,b
=3�1018 cm−3 corresponds to 1010 electrons.

To estimate the longitudinal space-charge force, we con-
sider the electron beam after acceleration when the electrons
have accumulated at the slow wave fronts as shown in Fig. 8.
If the electron bunch spacing is much smaller than the beam
length, the force on one bunch due to adjacent bunches can
be neglected. The local Poisson equation for an electron
bunch is then

�� · E� = 4�qne,b� �b

2�
	��z� , �33�

where �b=2� / �k0+�k+km� is the spacing between bunches.
Integrating over the axial coordinate we obtain the local lon-
gitudinal space-charge force

Fz
sc = 2q�bne,b. �34�

Forming the ratio Fz
sc /Fz

qpm, we find an expression for the
maximum allowable beam density.

nb�cm−3� �
3.6 � 1012

�1 + �p
2/�2wch

2 �
�a0�wch�0�−1�cm−2� . �35�

For the parameters used in our simulations we find that ne,b
�6.3�1018 cm−3 similar to the value obtained for the trans-
verse space-charge force. Unlike the longitudinal space-
charge force, the expression is naturally phase independent
due to the axial bunching of the electrons. Also, the allow-
able density does not increase as the electron’s axial momen-
tum increases; for highly relativistic electron beams the ac-
tual bound on the density is provided by the expression for
the longitudinal space-charge force, Eq. �35�.

V. SUMMARY AND CONCLUSIONS

We have developed an analytic model for laser pulse
propagation in a corrugated plasma waveguide, using the
slowly varying envelope approximation. The background
plasma was assumed to be a cold nonrelativistic fluid that
responded linearly to the laser field. The plasma density pro-
file was chosen to model the density profiles created in ex-
periments �21�, while at the same time providing an analytic
solution, facilitating analysis of the electron beam dynamics.
The field structure of the laser was examined. It was shown
that as a result of the axial periodic density profile, the
guided mode is composed of spatial harmonics. For a small
enough plasma corrugation period the phase velocity of the
spatial harmonics could be subluminal—a requirement for

electron acceleration. The contribution of each spatial har-
monic was determined by its relative amplitude, which, for
parameters of interest, was shown to decrease significantly
with an increasing harmonic number. Only the first few spa-
tial harmonics contributed to the field structure in the plasma
channel. The spatial harmonics can also be viewed as a pe-
riodic phase modulation of the guided mode. The spatially
local phase velocity of the guided mode was shown to oscil-
late at the modulation period.

With the solution for the electromagnetic field, a scaling
law for the energy gain via quasi-phase-matched direct ac-
celeration was derived. The term quasiphase matched refers
to matching the electron velocity to the phase velocity of a
spatial harmonic. The fundamental laser mode is strictly su-
perluminal, thus quasiphase matching requires the presence
of subluminal spatial harmonics. Due to the drop-off in am-
plitude of spatial harmonics with an increasing harmonic
number, the first spatial harmonic was chosen as the phase-
matched mode. The scaling law compared favorably to both
laser wakefield acceleration and other direct laser accelera-
tion schemes, predicting energy gains in excess of an order
of magnitude higher for actual tabletop laser parameters.

To validate the scaling law and examine the transverse
dynamics, simulations of electron trajectories in the presence
of the laser’s electromagnetic field were conducted. Space-
charge forces were ignored, and estimates of the validity of
this omission were later provided in terms of allowable elec-
tron beam densities. Scaling law validations showed close
agreement for an initial electron energy of 
0=1000. A dis-
crepancy in the slope of the energy gain as a function of time
was a result of using a Gaussian pulse in the simulations and
a flattop pulse when calculating the scaling law. For initial
energies of 
0=100, it was shown that allowing the electron
to catch up to the spatial harmonic phase velocity yielded
higher energy gains than starting the two perfectly phase
matched; the electron acceleration resulted in phase slippage
with respect to the spatial harmonic. For lower energies 
0
=30, phase slippage occurs rapidly, and graded modulation
periods or tapered axial densities are required for accelera-
tion over waveguide limited distances. These results were
explained using a simple Hamiltonian model for the longitu-
dinal dynamics.

Two forces were responsible for the transverse dynamics
of the electron beam: the quasi-phase-matched focusing or
defocusing force, and the ponderomotive force due to the
fundamental laser mode. The quasi-phase-matched force fo-
cuses or defocuses based on the electron’s phase, whereas the
ponderomotive force focuses regardless of phase for small
radii. Both forces contained a correction due to the finite spot
size of the laser. The quasi-phase-matched transverse force is
90° out of phase with the quasi-phase-matched axial force;
electrons in the maximum accelerating phase only experi-
ence a ponderomotive transverse force. As a result, highly
accelerated electrons remain collimated in the electron beam,
while the remaining electrons are expelled from the beam. A
net outward flow of electrons resulted from initially focused
electrons slipping into the defocusing phase, and the pon-
deromotive force causing defocusing at large radii.
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APPENDIX A: NONLINEAR AND RELATIVISTIC
PLASMA EFFECTS

The assumption of linear plasma response is not always
valid in the regime of high intensity lasers where the effect
of the ponderomotive force on the background plasma be-
comes important. We seek to find an estimate of the relative
density fluctuations due to the ponderomotive force and
show that for the laser intensities considered these fluctua-
tions are small. We start with the equation for the first order
motion of the density in the presence of the laser field as
follows:

�2n1

�t2 + �p,0
2 n1 =

1

4
n0c2�2�âr

2
 , �A1�

where �p,0 is the plasma frequency for the background den-
sity, the brackets represent an average over the laser fre-

quency, âr=eÂr /mec
2, and only the largest amplitude funda-

mental laser harmonic is considered. By replacing the
Laplacian with its peak value 4a0

2 /wch
2 , which occurs at r

=0, we obtain an estimate on the magnitude of the density
perturbation due to the transverse ponderomotive force as
follows:

n1

n0
�

1

4�2a0
2� �p

wch
	2

, �A2�

which for the parameters considered here gives n1 /n0
�0.001. This ratio seems to justify ignoring the ponderomo-
tive current in Eq. �2�. It should be noted that �2�âr

2
 /�z2=0
at r=0, the peak of the Laplacian. However, the density per-
turbation is excited by the maximum of �2, wherever it oc-
curs. In addition, the pulse length considered is much longer
than the spot size, making the longitudinal contribution to
the displaced charge negligible.

By including a correction to Eq. �2� corresponding to a
ponderomotive driven modulation of the electron density, but
maintaining the slowly varying envelope approximation, we
can describe Raman side scattering �RSS� of the laser pulse.
RSS can cause rapidly growing perturbations in the plasma
density and pulse profile which can severely limit the accel-
erating gradient of the laser electric field. Antonsen and
Mora have suggested, however, that the unstable growth due
to RSS can be suppressed by utilizing leaky density profiles,
allowing for the stable propagation of the lowest radial
eigenmode of the plasma channel �26�. The remaining eigen-
modes are not confined to the channel and are damped, pre-
venting their growth.

In order to neglect the generation of higher order eigen-
modes, we must stipulate that our density profile given in Eq.
�3� is meant to model a leaky channel with one well confined
quasibound mode. In addition, the actual mode profile for the
leaky channel must be accurately represented by our solution
to Eq. �2�. From WKB theory we obtain the condition for
modes as follows:

�
ri,�

r0,�

k�,�dr =
�

2
�� +

1

2
	 , �A3�

where ck�,�= �2c2k0��k��− ��p
2�r�
z−3c2 /4r2�1/2, which has

roots at the inner and outer classical turning points ri,� and
r0,�, respectively. We note that for different values of � there
are different k�’s and different turning points. The r−2 term
in Eq. �2� provides an effective potential that appears in our
expression for k� and provides an inner turning point. For
one quasibound mode we need to ensure that Eq. �A3� is
only satisfied for �=0 by setting the radius where the density
profile is a maximum. For our model density profile, we find
that

�k� = − k0��p,0
2

2�2 +
4� + 2 + �3

k0
2wch

2 
 , �A4�

and

r0,�
2 =

1

2
wch

2 ��2� + 1 +
�3

2
	 +��2� + 1 +

�3

2
	2

−
3

4

 .

�A5�

The outer turning point is a monotonically increasing func-
tion of �. We can then ensure one quasibound mode by
choosing the density to be a maximum between r0,0 and r0,1.

As pointed out in Ref. �26�, extending the maximum den-
sity past the outer turning point r0,0, allows for a more con-
fined mode due to k� becoming evanescent. Furthermore, it
allows for consistency with our lossless model density pro-

file and boundary condition Âr�r→	 ,z , t�=0, via the condi-
tion

Im��
r0,0+�

	

k�dr
 � 1, �A6�

where the density profile peaks at r0,0+��r0,1. If �=0 the
integral in Eq. �A6� would be strictly real, allowing for out-
going waves, and our model boundary condition would no
longer be adequate. Thus our analytic model provides a good
representation of a radial density profile of the form

ne�r� = �n0 + n0�r
2/2 0 � r � r0,0 + �

n1�r� r0,0 + � � r � 	 ,
� �A7�

where n1�r� should satisfy Eq. �A6� and ensure that ne�r� is
continuous. If we restrict ourselves to modeling radial
plasma density profiles shown in Eq. �A7�, our analytic
model provides a good representation of laser propagation,
while at the same time stabilizing the effect of RSS. Figure
10�a� shows a plasma density profile that is consistent with
our requirements including only one quasibound mode; Fig.
10�b� shows the corresponding k�

2 .
In addition to RSS, we have neglected Raman forward

scattering �RFS� by assuming linear nonrelativistic plasma
response and dropping mixed derivates in Eq. �2�. The
growth rate for RFS perturbations to the laser is smaller than
the growth rate for RSS by ��p /�0 �27�. However, over
propagation distances required for desired interaction lengths
in direct electron acceleration, these perturbations may be-
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come non-negligible. The pulse lengths required for extend-
ing the interaction length in direct acceleration also makes
the laser more susceptible to Raman instabilities �27�. To test
the effect of RFS on the pulse we conducted simulations of
radially polarized laser propagation in a corrugated plasma
channel with WAKE �28� for our parameters of interest. Fig-
ure 9 shows the envelope of the transverse vector potential
for the radially polarized laser pulse at different Rayleigh
times, where a Rayleigh time is defined as tR=�wch

2 /�c �the
waveguide limited time is 20tR�. The results show stable
propagation over 20 Rayleigh lengths with no fragmentation
or distortion of the laser pulse. The stable propagation is
consistent with our estimate on the density fluctuations due
to the presence of the ponderomotive force. Propagation was
also tested in an uncorrugated channel and showed similar
behavior; the underlying mechanism allowing for stable
propagation of the radially polarized laser is not an artifact of
the corrugated channel. The wake simulations and preceding
analysis indicate that our assumptions of the plasma response
are valid for the parameters and propagation distances con-
sidered.

APPENDIX B: PULSE POWER LEAKAGE FROM
PLASMA CHANNEL

Our choice of model density profile given by Eq. �3� con-
tinues to increase as r→	, providing zero vector potential as
r→	. As a result, our model pulse propagates down the
length of the plasma channel without any loss due to radially
outgoing waves. Actual experimental plasma density profiles
peak at some finite radius and decay to zero for large radii
�as seen in the density contours of Fig. 1�. Depending on the
density profile, the loss of pulse power to outgoing waves
may be significant �21�, and the accelerating gradient can be
reduced as the pulse propagates. Here we want to examine
the loss of pulse power due to more realistic leaky plasma
channels like the one shown in Fig. 10�a� and obtain a con-
dition for which our lossless profile is valid. In the following
analysis we will neglect the axial corrugations for math-
ematical simplicity. The modulations will result in a modu-
lation of the power loss that will average out when integrat-
ing over the length of the waveguide.

We start by writing an expression for the differential ra-
dial power flow as follows:

1

r

dP

dz
=

c

2
Re�E� � B� *� · r̂ , �B1�

or equivalently

1

r

dP

dz
=

c

2
Re�EzB�

*� . �B2�

With an expression for Âr, and thus Az using �� ·A� �0, we can

find Ez from E� =−�A� /�ct, and B� from Faraday’s law. We
proceed by using the WKB approximation for finding an

expression for Âr outside of the channel. As stated in Appen-
dix A, ck�,0= �2c2k0��k0�− ��p

2�r�
z−3c2 /4r2�1/2, where �k0 is
given by Eq. �A4� with �=0. Figure 10�b� shows k�,0

2 for a
typical leaky channel and shows schematically how we de-

fine our turning points. Our approximate solution for Âr out-
side the channel �r�R0,0� is given by

Âr�r,z,t� = �� +
1

4�
	−1 A0

�k��r�r
exp�i�

R0,0

r

k��r�dr

−
�z − vgt�2

�z
2 + i�kz
 , �B3�

where A0 is the amplitude of the mode at the center of the
channel and

� = exp�− i�
r0,0

R0,0

k��r�dr
 . �B4�

The amplitude outside the channel has fallen by a factor of
�+1 /4�. As expected, by extending the evanescent region
between r0,0 and R0,0, � becomes larger, limiting the ampli-
tude of outgoing waves. Our expression for the differential
radial power loss is then

dP

dz
= − ck0�� +

1

4�
�−2

A0
2 exp�−

2�z − vgt�2

�z
2 
 . �B5�

The amplitude of the guided mode A0 will decay as energy
leaks out of the channel; in particular, we have that

t=13tr t=20tr

t=6trt=0tr

r r

z z

z z

rr

|ao|2.2 |ao|2.2

|ao|2.2 |ao|2.2

FIG. 9. The envelope of the transverse vector potential propa-
gating in the axially modulated channel at different times in a frame
moving at c. Results were obtained using the WAKE simulation
�28�.
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FIG. 10. A sample density profile allowing for one quasibound
mode and also limiting the loss of pulse power to outgoing waves.
Solutions to Eq. �2� for our model density profile in Eq. �3� accu-
rately represent the shown density profile. �b� k�

2 corresponding to
the density profile shown in �a�.
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P�z� �
c

16
�k0wch�2A0

2�z� . �B6�

Inserting Eq. �B6� into Eq. �B5� gives

1

P

dP

dz
= −

16

k0wch
2 �� +

1

4�
�−2

exp�−
2�z − vgt�2

�z
2 
 .

�B7�

For simplicity we continue by considering the peak of the
pulse and find that P= P0 exp�−z /��, where

� =
k0wch

16
�� +

1

4�
�2

wch. �B8�

The leaky channel results in an exponential decay of the
guided pulse’s power. This decay can be limited by making
� as large as possible, which is accomplished by using a
long flat density profile as shown in Fig. 10�a�. Extending the
maximum density to a larger radius would also increase the
value of �, but allows for higher order quasibound modes
and may make the guided pulse susceptible to instability as
discussed in Appendix A.

APPENDIX C: UNSTABLE SPOT-SIZE OSCILLATIONS

We start by considering solutions to Eq. �2� for a back-
ground electron density profile of the form

ne�r,z� = n0�1 + � sin�kmz�� +
n0�r

2

2
�1 + � sin�kmz�� ,

�C1�

which adds a radial profile modulation to Eq. �3�. We write
the envelope of the transverse vector potential as

Âr�r,z,t� = A0�z − vgt�
r

wch
��z�exp�− ��z�r2� , �C2�

where we have used the explicit group velocity approxima-
tion explained in the main text, A0�z−vgt� determines the

pulse shape, ��z� determines the axially dependent phase and
amplitude, and ��z� determines the axial dependence of the
laser spot size. Upon inserting Eq. �C2� into the slowly vary-
ing envelope equation we obtain an equation for ��z� as
follows:

d�

dz
+

2i

k0
�2 =

i

4k0
��p,0

2�

c2 	�1 + � sin�kmz�� . �C3�

We expand �=�0+�1+¯., and set the equilibrium value to
the matched spot size,�0=1 /wch

2 . Plugging the expansion
into Eq. �C3�, we find that �1 satisfies the equation for a
forced harmonic oscillator as follows:

d�1

dz
+ 2i��1 =

1

2
i�k0�2 sin�kmz� , �C4�

where �=2 /k0wch
2 . When km=2�, the amplitude of �1�z� will

undergo secular growth. In the absence of radial profile
modulations, the pulse would undergo spot-size oscillations
if it were not matched to the plasma channel, ��1 /wch

2 . The
presence of the density profile modulations drives the oscil-
lations resulting in the secular growth. In particular, the so-
lution for �1�z� when km=4 /k0wch

2 is

�1�z� = −
�

k0wch
4 z exp�ikmz� . �C5�

Unstable spot-size oscillations are also possible at higher or-
ders of � due to harmonics of km. In general, growth can be
expected when km=4 /�k0wch

2 , where � is an integer. For our
parameters, the unstable modulation wavelength is �m
= �� /2�k0wch

2 �0.3 cm, an order of magnitude higher than
the modulation wavelength used. These modulations may be
detrimental by spoiling the guiding of a desired mode, or
beneficial by spoiling guiding of unwanted modes.
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