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Shape deformations of surface-charged microdroplets

E. Giglio, B. Gervais, J. Rangama, B. Manil, and B. A. Huber
Centre Interdisciplinaire de Recherche lons Lasers (CIRIL), CEA-CNRS-ENSICAEN Boite Postale 5133, F-14070 Caen, France

D. Duft, R. Miiller, and T. Leisner
Institut fiir Physik, Technische Universitdit llmenau, Postfach 100565, D-98684 Ilmenau, Germany

C. Guet
CEA/Saclay, F-91191 Gif-sur-Yvette, France
(Received 6 May 2007; revised manuscript received 18 December 2007; published 31 March 2008)

We present the deformation pathway of critically charged glycol and water droplets from the onset of the
Rayleigh instability and compare it to numerical results, obtained for perfectly conducting inviscid droplets. In
this simple model presented here, the time evolution of the droplet shape is given by the velocity potential
equation. The Laplace equation for the velocity potential is solved by expanding the potential onto harmonic
functions. For the part of the pathway dominated by electrostatic pressure, the calculations reproduce the
experimental data nicely, obtained for both, glycol and water microdroplets. We find that the droplet shape and
in particular the tips, just before charge emission, are well fitted by a lemon shape. We stress that the tip is
tangent to a cone of 39° and thus significantly narrower than a Taylor cone.
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In 1882 Lord Rayleigh established the criteria for stability
of a liquid, incompressible, charged droplet [1]. Rayleigh
showed the spherical form characterized by an electrostatic
energy E., and a surface energy Ejg, is stable against all
infinitesimal deformations insofar as the fissility parameter
X=E:/2Es, is less than its critical value Xc=1. Here the
droplet becomes unstable against an infinitesimal spheroidal
deformation. When charging the droplet above this limit,
Lord Rayleigh predicted the formation of fine jets without
giving further details [1]. By charging to several thousand
volts a drop of liquid standing at the lower end of a glass
tube Zeleny observed for the first time the disintegration of
charged drops [2]. His photographs show that when electri-
fied to a critical limit the drop quickly deforms and the liquid
is pulled out into a fine thread. Working with isolated
charged bubbles, Sir G. Taylor was the first to point out that
the drop elongates until it quickly develops an apparently
conical end and that a narrow jet appears at the vertex [3].
Moreover Taylor realized that a conical point could exist in
equilibrium and gave the condition for stationarity. Namely,
the exact balance of capillary pressure and electrostatic pres-
sure on a perfectly conducting conical fluid occurs only for
an opening half-angle of 49.3°. Indeed formation of conical
liquid meniscus and associated jet emission are complex
fluid dynamical phenomena and still remain poorly under-
stood in spite of detailed investigations [4-6]. It ought to be
emphasized that the interest is not purely academic as the
production of microsized or nanosized jets is of present con-
siderable importance in modern technologies that require a
fine control of the size of jets and their decay droplets. In
passing we recall that Coulomb instabilities are fundamental
in the nuclear fission process whose seminal explanation was
actually inspired by the Rayleigh model, but which of course
requires a genuine quantum mechanical treatment to account
for most features [7,8]. Coulomb instabilities and fission of
clusters of a few to thousands of atoms also been the object
of numerous theoretical and experimental studies aiming in
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particular to understand the evolution from purely quantal
behavior to the classical charged droplet features [9,10].

In recent experiments, we observed the time evolution of
shape deformations of charged glycol microdroplets and the
onset of charge-driven instabilities leading to the formation
of fine jets [11-13]. Nowadays, highly resolved snapshots
allow us to record in detail the deformation pathway of such
a disintegration process, providing guide lines (constraints)
to theoretical models. In this paper we present the deforma-
tion pathways of ethylene glycol and supercooled water
droplets and compare them to numerical results obtained for
an inviscid charged droplet. Relying on simulations, we
show that the deformation pathway is quite general, while
the details of the pathway depend on the viscosity and charge
mobility of the liquid. Further, we discuss the droplet shape
and the stress at its surface just before break up and identify
the tip shape, from which fine jets are emitted.

I. EXPERIMENTAL SETUP

Individual droplets of water and ethylene glycol were
generated on demand with a piezo driven nozzle, charged by
influence from a high voltage electrode and injected into a
thermostated electrodynamic balance operating at ambient
pressure. The balance is of the classical “Paul-trap” design
where a hyperboloidal torus electrode (radius d=5 mm) is
capped by hyperboloidal top and bottom electrodes. As
shown in Fig. 1, the torus electrode is machined from mas-
sive copper in the shape of an octagon, the faces of which
carry the various optical and electrical ports. It is connected
by copper braids to a cryostat which allows us to adjust the
temperature of the levitator between —100 and +100 °C. The
torus electrode is always kept at ground potential and carries
the top and bottom electrode mounted on boron nitride insu-
lators for optimal thermal contact. The droplets are levitated
by applying an ac voltage with constant amplitude of 1500 V
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and variable frequency to the two endcap electrodes. In order
to compensate the gravitational force on the droplet, an ad-
ditional static field in vertical direction is applied by super-
imposing the ac voltage with dc voltages of opposite polarity
at the top and bottom electrode. The whole levitator is
mounted into a vacuum chamber for thermal insulation and
placed inside a horizontally orientated long working distance
microscope (Mitutoyo, 10X and 20X objectives used). This
microscope is equipped with a triggerable flashlamp (HSP
nanolight) for illumination and a cooled CCD camera (PCO
Sensicam) for image acquisition (see Fig. 1).

A HeNe laser beam polarized at an angle of 45° with
respect to the horizontal plane of scattering illuminates the
droplet. Scattered light is used to image the droplet via a
second microscope objective onto a vertically oriented linear
CCD array in order to determine its vertical position in the
trap. This position is stabilized by feeding back the vertical
position information to the dc voltage applied to the endcap
electrodes. From the magnitude of this voltage the mass-to-
charge ratio of the droplet can be deduced. This value serves
to adjust the frequency of the ac voltage to assure stable
trapping as the droplets evaporate. Under typical conditions
this frequency varies between 200 Hz and 1000 Hz. Light
scattered from the droplet is detected angular resolved with a
two-dimensional CCD camera for phase function measure-
ments. Perpendicular polarizer segments in front of the cam-
era allow recording simultaneously parallel and perpendicu-
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FIG. 2. Size and charge of an evaporating glycol droplet.

lar polarized scattering. Thereby a time resolved
determination of the droplet size is achieved with high accu-
racy [11] at a repetition rate of 12.5 Hz. A typical example of
the size and charge of an evaporating glycol droplet is given
in Fig. 2 as a function of time.

Additionally, a photomultiplier detector probes the overall
intensity of the perpendicular polarized light scattered in an
angular range between 80° and 100° at a much higher tem-
poral resolution (f,.x=25 kHz). This signal is eventually
used to detect the onset of a Coulomb instability, as de-
scribed in more detail below. At the center of the levitator,
the droplets are subjected to a time dependent electric poten-

tial of the form <I>(r,z,t)=V0r2:1§ZZ cos(wt). This potential is
responsible for the trapping of the droplets but also induces
quadrupole shape oscillations of the extended surface
charged droplet. These oscillations modulate the light scat-
tering cross section of the droplets at the frequency of the
trap and are therefore easily detected by the photomultiplier.
Analyzing this modulation, we have been able to determine
the amplitude and phase of the quadrupole oscillation and
were thus able to confirm that the Coulomb instability coin-
cides with a resonance between droplet and trap field and
therefore does indeed occur at X=1 [12]. At the same time
we observed that the instability itself is accompanied by a
pronounced increase in light scattering intensity, as displayed
in Fig. 3.

The figure shows, at negative times, the strongly modu-
lated light scattering from the oscillating droplet before Cou-
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FIG. 3. Light scattering from an oscillating droplet in the vicin-
ity of a Coulomb instability.
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FIG. 4. (Color online) Snap-
shots showing the shape evolution
of the glycol droplet of a radius of
32 um after the onset of instabil-
ity. Droplet’s temperature is
85 °C. Jet emission is chosen as
origin of time. The second jet at
the bottom of the droplet form is
not shown.
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lomb instability. Around time zero we observe a Coulomb
instability which is accompanied by a pronounced increase
in light intensity. After the instability the droplet is less
charged and oscillates at a much lower amplitude, which is
reflected by the gentle modulation of the scattered light in
phase with the ac drive voltage at positive times. The peak in
light scattering is the result of a strong geometric deforma-
tion of the droplet and is used to determine the onset of a
Coulomb instability. It allows us to activate the CCD camera
attached to the long distance microscope and to trigger the
flashlamp at a preset time delay after the detection of the
instability. By repeating this procedure with subsequent
droplets at increasing delay time we are able to analyze the
process of the Coulomb instability with high temporal and
spatial resolution.

In Fig. 4 we show an ethylene glycol droplet character-
ized by a radius of 24 um carrying a charge of ~3.3 pC, at
the onset of the Coulomb instability. This corresponds to the
Rayleigh limit at X=1. After roughly 200 us, the droplet is
strongly deformed, its ellipsoidal shape has an aspect ratio
larger than 2 (snapshot labeled r=—22 us of Fig. 4). This
value increases further within the next 20 us to about 3.5,
when two tips are formed and two jets are ejected at opposite
sides of the droplet. Within a time duration of about 4 us the
system loses about 1/3 of the charge, without any essential
mass loss (<0.5%). The discontinuities, which appear
within the jets, indicate the formation of small segments and
later on small charged droplets with a diameter of about 1 to
2 pm. Within experimental resolution, we cannot determine
here with certainty if the jets are emitted from well defined
conical ends or not. In any case, the observed tip seems close
to a cone with a half-angle estimated here to ~30°.

After charge emission, the deformed droplet relaxes to its
spherical form nearly twice as fast as the original deforma-
tion has required. However, it does not follow the ellipsoidal
shapes but rather those of an elongated capsule (see ¢
=+28 us). In Fig. 5 we show the disintegration of a water

t=18us

t=28us t=50ps

droplet characterized by a radius of 35 um. The process is
almost 2 times faster than for the glycol droplet but it ap-
pears that the droplet deformation pathway, from instability
to break up and back to the initial spherical form, is quite
general, even if the details of the pathway (mainly the last
part) should be attributed to dynamical properties of the
fluid.

II. THE MODEL

For a better understanding of the observed phenomena,
we simulate the evolution of a critically charged droplet from
the Coulomb instability up to fission and back to the initial
sphere. The model is not intended for describing the fission
itself (the jets of charged matter at both tips) but merely the
nonlinear evolution that develops after the onset of the Cou-
lomb instability. The liquid is assumed to be inviscid and
incompressible with an irrotational flow. The latter implies
that the velocity field v of the fluid can be defined as the
gradient of a scalar function ¢, v=V. Together, these as-
sumptions yield Ay=0, which ensures that the evolution of
the droplet occurs at constant volume, while ignoring viscous
properties of the fluid. The liquid is considered to be per-
fectly conducting so that the Coulomb potential V is constant
all over the surface. The surface charge density o is then
proportional to the normal derivative of the electric potential
V outside the surface. Finally, we assume axisymmetry for
the shape and assign 6 to the polar angle, the origin coincid-
ing with the droplet center. Within these hypotses, the droplet
deformation is described by the time evolution of the surface
vector s(6,1). Note that, unlike Betel et al. [14] who studied
the shape deformation using the Stokes equation, we discard
the Oviscosity term but include the inertial term of the
Navier-Stokes equation, allowing for dynamical effects. We
introduce the characteristic deformation time scale 7
= \J’pRg/ v, with R, p, ¥ being the initial droplet radius, den-
sity, and surface tension, respectively. This allows defining

036319-3



GIGLIO et al.

PHYSICAL REVIEW E 77, 036319 (2008)

15us 40ps 45ps 71ps 71.5ps

¢ ¢ ¢

T2ps

0 0 0 6 ¢ ¢ o

80ps 90ps 100ps 110us 120ps

FIG. 5. Snapshots showing the shape evolution of a supercooled water droplet (=5 °C) with a radius of 35 wm after the onset of

instability.
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The quantity H stands for the mean curvature of the droplet
surface. In order to calculate the fluid velocity at the surface,
we have to solve the Laplace equation for ¢ inside the drop-
let volume () with the boundary condition given by Eq. (1).
As Ay=0, ¢ can be written as a linear combination of har-
monic functions, having the correct behavior close to the
origin. We choose to solve the Laplace equation in the pro-
late spheroidal coordinate system (7,,¢), as it is well
adapted to our boundary problem, while the harmonic func-
tions f, ,, are still separable

fn,m( 7, g’ ¢)) = E an,mPn(n)PZI(g)eimQS’

n,m

where P is a Legendre polynomial of order n and degree m
[16]. Assuming axial symmetry, m=0 and the expansion co-
efficients {a,} are chosen such as to satisfy the boundary
conditions

&) =2 a,PLn(E)P.(L). )

Here, the vector {#%({;),{;} describes the droplet surface in
the prolate coordinate system. As the boundary conditions
change in time, the set of linear equations must be solved at
each time step. A similar technique is used to calculate the
Coulomb potential V outside the droplet. We used 600 angu-

lar points {; and a maximum of 200 harmonic functions.
Careful testing of the results convinced us that we were us-
ing a sufficient number of terms. As we consider here a per-
fectly conducting, inviscid liquid, the fissility parameter X is
the only free parameter of the model that influences the path-
way. The quantities R, p, and 7y define merely the time scale
7 of the droplet deformation. The latter is therefore quite
general within the given hypotheses.

III. COMPARISON BETWEEN EXPERIMENTAL AND
SIMULATED RESULTS

In Fig. 6, we show snapshots of the simulation before
(X=1) and after charge emission (X=0.5). The starting point
is a critically charged prolate spheroid of an eccentricity of
¢=0.2 (almost spherical drop). We see that the model is able
to reproduce with high quality the whole sequence of the
nonlinear deformation dynamics of a critically charged drop-
let. In particular, for X=1, we end up with the same spindle-
like form as the glycol droplet (see Figs. 4 and 6). At the
moment, when the droplet starts to form a jet at the tips
(snapshot labeled by time 7=0), we reduce the charge by
~30% by changing suddenly the fissility to X=0.5. This al-
lows us to simulate the charge emission and to describe the
shape deformation after it, without stopping the calculation.
After emission, the droplet retracts similarly to experimental
data, adopting a capsulelike form, which, however, initially
has a bulge in the middle. The model also shows some weak-
nesses. The lack of viscosity hinders the dissipation of the
excess of potential energy obtained during charge emission.
The model is therefore not able to describe the deformation
back to equilibrium shape (sphere). Further, as viscosity
slows down the flow, we expect that the deformation time we
get from simulation underestimates the experimentally
observed one. Indeed, glycol droplets such as the one
shown in Fig. 4, with {p,¥(85°C),Ro}={1.1 g/cm?,
43 mN/m,32 um}, have a characteristic time scale of 7
=29 us. From Fig. 4 we note that the glycol droplet needs
130 us to attain the spindlelike shape (starting from an al-
ready prolate spheroid of e¢=0.745), while the simulation
gives 2.257=65.1 us. Compared to the observed 130 us, it
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is almost 2 times faster. For the supercooled water droplets
shown in Fig. 5, jet emission occurs after only 70 us. Having
a characteristic time of 7=23 us, we obtain a simulated de-
formation time of 2.257=53 us. The difference is thus much
smaller, which we assign to their lower viscosity.

Nevertheless, the model allows access to the shape and in
particular to the tip of the droplet just before surface break-
up. Up to now, it was unknown whether the jets are emitted
from a Taylor cone [3] as assumed by de la Mora [17], likely
to electrosprays [3,18], or rather from a hyperboloidal tip as
was pointed out by Yarin ef al. [19] in the case of sessile and
pendant droplets in an electric field. When zooming on the
tip, we note that the jets are not emitted from a conical tip,
but at best from a hyperboloid which is tangent to a cone of
33°. Yarin et al. showed that the maximal electric potential at
which a stationary infinite hyperboloid can exist, corre-
sponds to a hyperboloid tangent to a cone of 33.5° [19]. This
critical hyperboloid was the starting point from which jets
are formed from pendant droplets for increasing electric
fields. Interestingly, it is close to the hyperboloid that best fits
the tip, hinting that the last one is close to break-up. Never-
theless, in our case, the hyperboloid is not a satisfying fit
either, in the sense that it only fits the tip, instead of the
whole droplet. We looked for a geometrical description of
the whole shape, just before charge emission, and found that
the droplet is remarkably well fitted by a “lemon” of equa-
tion z2=A2—(B+r)?, A=3.02, B=2.25, with r=\x?>+y” being
the distance from the symmetry axis. Note that the fit has
only one free parameter as A and B are related by the volume
constraint. The lemon is shown in the upper inset of Fig. 7 as
a red contour. When zooming on the tip, we see only a small
discrepancy close to the apex (lower inset of Fig. 7). We
deduce that the tip is tangent to a cone of 39°, thus signifi-
cantly narrower than the Taylor cone (49.3°) but larger than
the one obtained by Betelu et al. (cone of 25°) for a viscous
droplet [14]. The experimentally observed tip’s opening half-
angle of 30° lies between both predictions. The lemon may
be considered as the asymptotic shape of a critically charged
droplet, if breaking up could be hindered.
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FIG. 6. (Color online) Calcu-
lated shape sequence of an ini-
tially critically charged droplet
(X=1), experiencing charge emis-
sion (X=0.5) at the moment a
bulb appears at the tip. Physical
times are obtained by multiplying
dimensionless times 7, shown un-
der each shape, by the characteris-
tic time 7 of a given droplet. Fluid
is nonviscous and perfectly con-
ducting. Charge emission is cho-
sen as origin of time. The red
lemon-fit has been slightly shifted
for better comparison.

0.81

For further analysis of the tip behavior, we introduce the
local fissility x(6) defined as the Coulomb pressure divided
by the pressure due to the surface tension, x(6)
=Xo?(0)/H(6). In order to be able to break up the surface,
the Coulomb pressure must outbalance the stress due to the
surface tension x(6) >x,=1, where the critical local fissility
x. still needs to be determined. For a spheroid, the Coulomb
pressure can be expressed as a function of the Gaussian cur-
vature K of the surface [20], yielding x(0)=XV’m/ H(0).
As for spheroids, H*>=K, independently of the eccentricity
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FIG. 7. (Color online) Local fissility x and charge density of the
droplet at two different times 7,=-0.05 and #;=-0.43 just before jet
emission. Dashed line stands for the lemon shape. Insets show the
fit of the droplet by a lemon shape (red contour).
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[20], the local fissility of critically charged spheroids (X
=1) cannot exceed the unit [x(#) <1] and jets cannot appear
at their ends, even for large eccentricities. Critically charged
lemons, however, behave differently as the local fissility is
no longer bound and can exceed one at the tips. Indeed, for
the lemon tip shape depicted in Fig. 7, the surface charge
density diverges close to the apex as o(r— 0) < r~%%, while
the mean curvature diverges as H(r— 0)r !(not shown).
Hence, the local fissility diverges at the apex as x(r—0)
o018 Such critically charged lemon shapes lead therefore
inevitably towards surface break up of the tip.

In Fig. 7, we give the local fissility (upper panel) and
charge distribution (lower panel) of the droplet at different
times (shapes) before charge emission and compare them to
the one calculated for the lemon shape. As soon as the shape
deviates from a spheroid to become rugbyball-like (around
t;=-0.43), the local fissility exceeds 1 at the tips [x(0)
=1.08]. This shows that the local fissility can reach values
larger than 1 at nonsingular surface points. However, this
also shows that x>x_.=1 is not a sufficient criterion for sur-
face break-up but indicates rather the less stable region. At
time #,=-0.05, the charge distribution compares well to the
charge distribution on the lemon surface except that it stays
bounded at the apex. At that moment, the electric field at the
tip is about 6 times larger than initially. Finally, a bulb ap-
pears at the tip, which indicates the formation of a jet.

The simulated sequence is quite general for inviscid per-
fectly conducting liquid droplets. However, dynamical prop-
erties of the fluidlike viscosity and charge mobility may
change the details of the deformation dynamics. Indeed, un-
like metallic droplets, for which the charge mobility is infi-
nite, the charge mobility in polar liquids is due to ionic mo-
bility and thus related to the viscosity of the fluid and the
shape and size of the ion. Thus, for polar liquids like water
and glycol the Coulomb pressure on the droplet surface may
significantly deviated such as the one of a perfectly conduct-
ing droplet. In order to compare easily the pathways of dif-
ferent droplets, the shapes have been fitted with a super-
spheroid of the form (z2/a?)"?+[(x*+y?)/b*]">=1 with the
constraint of constant volume. Superspheroids can either fit
capsule or spindlelike forms, depending on n, so that the
whole droplet deformation can be represented reasonably
well on a 2D graph. The exponent n is shown as a function
of the aspect ratio (a/b) at different deformation times. First
consider the experimental glycol and water results, shown in
Fig. 8. We find that the general behavior is similar in both
cases: the instability starts with increasing a/b, while n re-
mains nearly constant at n=~2, meaning that the initial de-
formation remains mainly prolate spheroidal. Then n de-
creases and the form becomes spindlelike. The charge
emission occurs at a/b~3.2 to 3.5 with an n value of 1.4 to
1.6. After emission, the system retracts, while n increases
quickly well above 2 to fit an elongated capsule, before both
parameters come back to their initial values. The return can
be monotone or oscillatory, depending on the fluid proper-
ties. Indeed, the water droplet exhibits a double oscillatory
behavior between an oblate and prolate ellipsoid and be-
tween sharp and flattened ends. For glycol, the amplitudes of
this motion are much smaller than for water, as dissipation is
much stronger.
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FIG. 8. (Color online) Comparison between simulated pathways
(red) with experimentally observed deformation paths for glycol
(black triangles) and undercooled water (blue squares) droplets. The
aspect ratio a/b and exponent n correspond to a shape fitted with a
superspheroid.

We add the simulated pathway to Fig. 8 and compare it to
the experimental data. The simulation should well describe
the deformation of a critically charged mercury droplet,
which has low viscosity and is an excellent conductor. It
predicts that the pointed ends are formed for a ratio a/b
=2.6, which is significantly lower than the values obtained
for water (a/b=3.2) and glycol (a/b=3.5). As the compari-
son does not hold even for low-viscous water droplets, we
expect that the difference is due to the finite charge mobility
of polar liquids. Work on the influence of the charge mobility
on the pathway is underway. After charge emission, the de-
formation is mainly driven by the surface tension. The latter
tends first to flatten the tips (capsule) before it drives the
shape towards a sphere. In fact, the slope of the simulated
curve after charge emission compares well to the experimen-
tal low-viscous water curve. As mentioned before, the model
cannot describe the way back to the equilibrium shape and
we stop the simulation when n=3.2. However, the compari-
son with the experimental curve for glycol fails, highlighting
the role of viscosity and charge mobility. We deduce that
after charge emission, the details of the pathway are domi-
nated by viscous properties of the fluid and, thus, poorly
described by the present model. Nevertheless, the simulation
gives the limiting slope of the curve that cannot be overcome
by real fluids.

IV. CONCLUSION

In conclusion, we have studied the deformation dynamics
of critically charged microdroplets from an experimental and
theoretical point of view. We showed that the whole shape
sequence is well reproduced in the case of an inviscid fluid.
Our work indicated that critically charged low-viscous me-
tallic droplets (not yet observed) exhibit less elongated
shapes than polar liquids such as water and glycol. It also
showed that the jets are not emitted from a Taylor cone, as
for electrosprays, but rather from lemonlike tips. This is con-
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firmed by the analysis of the local fissility, which diverges at
the tip apex. Finally we found that the deformation path fol-
lows always the same pattern independently of the static
properties of the droplet: density, surface tension, size. Nev-
ertheless, comparisons with experimental data highlight the

PHYSICAL REVIEW E 77, 036319 (2008)

importance of the viscosity and charge mobility of the liquid
on the details of the pathway. In particular, differences in the
pathways of low-viscous fluids such as water are therefore
expected to be due to finite charge mobility. Work in this
direction is underway.
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