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Pattern selection near the onset of convection in a cylindrical container heated from below is investigated
numerically for a water-ethanol mixture, with parameter values and boundary conditions relevant to experi-
ments. The Boussinesq three-dimensional equations for binary fluid convection are simulated for cylinders of
aspect ratio I'=11 and 10.5 ('=R/d, where R is the radius of the cell and d its height). The onset of
convection occurs via a subcritical Hopf bifurcation in which the critical mode is strongly influenced by small
variations of the aspect ratio of the cell. During the linear regime, an m=1 azimuthal mode consisting of
radially traveling waves grows in amplitude in the I'=11 cell, while an m=0 azimuthal mode is selected in the
I'=10.5 cylinder. As convection evolves, simulations for subcritical and supercritical Rayleigh numbers reveal
differences in the dynamics. Very close to the critical value, convection is erratic and focuses along one or
more diameters of the cell; growths and collapses of the convection amplitude take place, but convection
eventually dies away for subcritical values and persists for slightly supercritical values. For larger supercritical
values, convection grows progressively in amplitude, and patterns consist of traveling-wave regions of con-
vection initially focused near the cell center, though expanding slowly until a large-amplitude state is reached.
Depending on the reduced Rayleigh number, the final state can be a nonsteady state filling the cell or a

disordered confined state.
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I. INTRODUCTION

Convection in vertically heated binary-liquid mixtures is
an excellent system for the study of pattern formation, espe-
cially for negative separation ratio mixtures, S<0. In such
mixtures, the primary bifurcation is subcritical and gives rise
to a state of oscillatory convection. In large annular and rect-
angular containers, the linearly unstable state at the onset
usually evolves either to a traveling-wave state or to station-
ary rolls that are called states of stationary overturning con-
vection. Nevertheless, experiments on these geometries, usu-
ally performed on water-ethanol mixtures, show that a great
variety of states can arise near the onset of convection, in-
cluding states of localized traveling-wave convection (pulses
of traveling waves coexist with regions of quiescent fluid),
states characterized by repeated bursts of amplitude, or re-
gimes exhibiting spatiotemporal chaos [1-5]. If the container
is sufficiently narrow, the resulting system is approximately
two dimensional and can be modeled neglecting the effect of
the cell thickness. The numerical work dealing with the study
of several aspects of the dynamics in two-dimensional con-
tainers is abundant (e.g., [6—15]).

With the aim of investigating if the same types of states
are found in truly three-dimensional geometries, several ex-
periments on cylindrical cells have been done [16—19]. The
results of these experimental works indicate that new behav-
ior prevails. Waves that travel in the radial direction are
present, and traveling-wave convection patterns typically
consist of several competing domains of traveling waves
propagating in different directions. Transient localized pulses
of traveling-wave convection similar to the states found in
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annular cells were observed, but these pulses either decayed
back to pure conduction or grew to fill the cell.

In the experimental observations of Lerman er al
[16-18], S=-0.08 water-ethanol mixtures are used in cylin-
drical containers of aspect ratio I'=11 (I'=10.91,11.53).
Convection immediately above the onset consists of a super-
position of radially inward and outward traveling waves fill-
ing the cell. The wave amplitude presents a sinusoidal azi-
muthal modulation, which is very sensitive to the actual
value of the aspect ratio. While for the I'=10.91 cell the
dominant azimuthal modes are odd, a small variation of 0.5
in the value of I' causes the even modes to be favored at the
onset. As the amplitude of convection grows, higher azi-
muthal modes become important and convection gets local-
ized along one or more diameters of the cell. The focused
lines of convection then collapse and can result in radially
localized pulses, very similar to the ones observed in long
annular cells, or in localized but disordered regions of con-
vection. However, the localized states are not stable and al-
ways lead to a state in which the entire container is filled
with convection rolls or they decay back to the conduction
state and the process begins again. Apart from these confined
states, on one occasion a wall state consisting of a narrow
ring of azimuthal traveling waves very close to the wall and
pure conduction in the interior was observed [17].

The other available experimental study on water-ethanol
mixtures in cylindrical containers is the work of La Porta and
Surko [19]. They consider a mixture with a much stronger
Soret coupling S=-0.24, and survey the patterns arising in a
I'=26 aspect ratio cell. The larger aspect ratio cell decreases
the influence of the boundaries on the dynamics. Disordered
states consisting of many small domains of traveling waves
are observed in which a significant part of the pattern does
not interact with the boundaries. Over time, these domains
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increase their size and the boundaries become important
again. The resulting patterns typically consist of three or four
domains of traveling waves whose dynamics seems to be
controlled by the domain boundaries. The character of the
patterns changes as the value of the control parameter in-
creases, and rotating patterns are observed. Above a certain
value, stationary overturning convection consisting of re-
gions of straight rolls is observed.

The numerical work on this system is scarce [20], since
these types of three-dimensional computations are very
costly. One of the few previous numerical works on this
system deals with the stability analysis of the conduction
state in cylindrical containers of aspect ratios 2.76 and 11
[21]. In this work, Mercader et al. show that the eigenfunc-
tions take the form of different types of right-handed or left-
handed rigidly rotating spirals, or of convection rolls which
travel radially inward and outward. Additionally, as in pure
fluid convection in a rotating cylinder, the modes can be
either spatially extended body modes or wall modes confined
to the outer wall of the cylinder. In a more recent work,
Millour et al. [22] study binary fluid convection in a vertical
cylinder of aspect ratio 0.5 for two types of lateral boundary
conditions using time integration of the axisymmetric equa-
tions.

The high performance achieved by present computers
makes it possible nowadays to address fully three-
dimensional (3D) computations. However, as far as the au-
thors know, the major part of the recent numerical work deal-
ing with fully 3D simulations of convection in cylindrical
geometry is aimed at studying pure fluid convection. Con-
vective patterns including multiroll patterns, targets, and spi-
rals were obtained in moderate aspect ratio cells by Riidiger
and Feudel [23] (I'=4) and by Leong [24] (I'=2,4). Re-
cently, time-dependent states arising in 1.45=1"=1.57 cells
have been analyzed in the work of Boroniska and Tuckerman
[25]. On the other hand, the effects of rotation in pure fluid
convection in cylinders have also been studied [26-30].

The present work is concerned with the direct numerical
simulation of binary fluid convection in shallow vertical
three-dimensional cells. We have developed an efficient
three-dimensional time-evolution spectral code that solves
the full convection equations in cylindrical coordinates. We
describe and discuss the spatiotemporal dynamics arising
near the onset of convection in I'=11 and 10.5 cylindrical
cells, extending the preliminary results presented in [31]. The
parameters we consider are those used in one of the stability
analyses included in [21], which are very similar to the ex-
perimental values used in [16-18].

With our work we wish to contribute to the understanding
of the dynamics in three-dimensional convective layers of
binary mixtures, since many features remain unclear. Con-
fined convection similar to that observed in two-dimensional
systems has been obtained experimentally, but, unlike in
those systems, the pulses of convection do not seem to per-
sist indefinitely in cylindrical cells. A more detailed explora-
tion, varying the value of the separation ratio, which is
known to influence the dynamics strongly, is needed to con-
firm whether stable confined convection is possible or not,
and to provide an explanation. Another fundamental question
is to what extent the arising dynamics is influenced by the
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lateral boundaries (shape and size) or whether it is deter-
mined mainly by the intrinsic features of the system. This
problem is addressed in a very recent experimental work
[32], where the global dynamics of traveling-wave patterns
in circular, rectangular, and stadium-shaped cells is analyzed.

The paper is organized as follows. In the next section we
write the equations governing the behavior of the system and
describe the numerical tools we have used to solve them. In
the following section, we discuss the features of the dynam-
ics in the neighborhood of the onset of convection: the linear
transient in I'=11 and 10.5 cylinders, the nonlinear evolution
for slightly subcritical and supercritical Rayleigh numbers in
a I'=11 cylinder, and, finally, the nonlinear evolution in a
I'=10.5 cell. To conclude, the main results and achievements
of the work are summarized.

II. EQUATIONS AND NUMERICAL TOOLS

We consider Boussinesq binary fluid convection in a cyl-
inder of height d and radius R. The radial aspect ratio of the
cylinder is defined as I'=R/d. The cylinder is heated from
below, AT being the temperature difference between the
lids, and the mixture is in the presence of vertical gravity
g=—gé€_. Scaling length with the height of the layer d, time
with the vertical thermal diffusion time d?/«, being the
thermal diffusivity, and temperature with AT, the nondimen-
sional equations that describe the dynamics are

V-u=0, (1)

du+a-Vu=-Vp+oVu+Ro{(1+95)0 +S7lé.,

()
30 +u-V)®=w+V20, (3)
dm+-V)p=-V?0 + V2. (4)

Here, u=(u,v,w) is the velocity field in cylindrical coordi-
nates (r, ¢,z), O denotes the departure of temperature from
the conduction profile, @=(T-T,.)/AT, and n=—(C-C,)/
(Co(1=Cy)S;AT)-0O, where T and C are the fields of tem-
perature and concentration of the denser component, 7}, and
C, are their mean values, and S; is the Soret coefficient.
Binary fluid convection is described by four dimensionless
numbers, the Rayleigh number R, the Prandtl number o, the
Lewis number 7, and the separation ratio S, defined as

ATgd?
R=&

KV

Co=2, S=C0(1—C0)§ST,
K o

=",

K
where a and S are the thermal and concentration expansion
coefficients, xk and D are the thermal and mass diffusivities,
and v is the kinematic viscosity. The Rayleigh number is the
control parameter of the system and measures the strength of
the imposed temperature gradient. The Prandtl number re-
lates momentum diffusion to heat diffusion, while the Lewis
number relates concentration diffusion to heat diffusion. The
separation ratio gives the coupling between the thermal and
concentration density gradients. A negative value of § indi-
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cates that the concentration density gradient opposes the
thermal density gradient, and tends to stabilize the fluid layer
against thermal convection. For small 7 and sufficiently
negative values of S, the onset of convection is a Hopf bi-
furcation to a state of oscillatory convection.

For the boundary conditions, we consider a no-slip, no-
flux, fixed temperature boundary at the top and bottom
plates, and a no-slip, no-flux, insulating boundary on the lat-
eral wall,

u=0=49.7=0 on z=0,1, (5)

u=90=09=0 on r=TI. (6)

As a measure of the heat transport by convection, we use the
Nusselt number Nu, defined as the ratio of heat flux through
the top plate to that of the corresponding conductive solu-
tion:

Nu=1 —A‘lf 9.0|._,dA,
A

where A is the area of the cylinder lids.

To estimate the contribution to the solution of each azi-
muthal Fourier mode m, we will also evaluate the Kkinetic
energy contained on them defined by

4 z=1 r=I'
Ek’”:—zf f u,-u,rdrdz.
r z=0 Y r=0

To integrate the equations in time, we have used the second-
order time-splitting method proposed in [33] combined with
a pseudospectral method for the spatial discretization,
Galerkin-Fourier in the azimuthal coordinate ¢, and
Chebyshev collocation in r and z. The radial dependence of
the functions is approximated by a Chebyshev expansion be-
tween —R and R, but forcing the proper parity of the vari-
ables at the origin [34]. For instance, the scalar field ® has
an even parity O(-r, $)=0(r, ¢+ ), the vertical velocity w
and 7 obey the same even parity condition, whereas u# and v
are odd functions. To avoid including the origin in the mesh
grid, we have used an odd number of Gauss-Lobatto points
in r, and we have enforced the equations only in the interval
(0,R]. We have used the standard combination u,=u+iv and
u_=u—1iv in order to obtain, as a result of the splitting, Helm-
holtz equations for all the variables ®, 7, w, u,, and u_. For
each Fourier mode, these equations have been solved using a
diagonalization technique in the two coordinates r and z. The
imposed parity of the functions guarantees the regularity
conditions at the origin needed to solve the Helmholtz equa-
tions [35].

In our simulations we have used 32 collocation points in
the vertical direction z, 320 Fourier modes in the azimuthal
direction, and 200 points in the radial direction. A time step
of 5X 107 has proved to be sufficient to achieve conver-
gence. It should be noted that the spatial resolution required
to accurately resolve the arising patterns is very large. This is
due to the large size of the container (I'=11) and to the sharp
boundary layers of the concentration field in binary mixtures.
As a result, the 3D simulations presented in this paper turn
out to be extremely costly.
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FIG. 1. (Color online) Contour plots of temperature at z=0.5d
during the linear transient, showing the structure of (a) an m=1 and
(b) an m=0 azimuthal mode, which are the critical modes for a I"
=11 and a I'=10.5 cylinder, respectively. The linear transient is
independent of the Rayleigh number.

III. RESULTS

In this section we present results for a water-ethanol mix-
ture with parameters S=-0.09, 0=24, and 7=0.008. We ana-
lyze pattern formation near the onset of convection in cylin-
ders of aspect ratio I'=11. This choice of parameters is
motivated by the experiments of Lerman er al. [16-18], and
are the same as those used in the linear analysis of Mercader
et al. [21]. We tested our time-evolution code with the linear
stability results, and the critical Rayleigh number R,
=1916.2 and frequency w.=6.157 in our simulations agree
well with the values reported in [21]. Additionally, we have
considered a I'=10.5 cell, to analyze variations in the dy-
namics in a slightly different aspect ratio cell.

As an indication of the patterns arising close to the con-
vection threshold, we have explored the following ranges of
values of the control parameter in the neighborhood of the
critical Rayleigh number: e €[-1.174% 1073,9.263 X 107]
for the I'=11 cell, and £ €[8.345%X 1074,3.974 X 1073] for
the I'=10.5 cell. In the following, a representative selection
of the simulations is presented to explain the main features
of the dynamics we have obtained. The linear transients are
independent of the Rayleigh number and will be described in
Sec. IIT A. The nonlinear evolution depends on the value of
the Rayleigh number, and different behaviors are observed
for subcritical or slightly supercritical values of the control
parameter (Sec. III B) and for supercritical values (Sec.
III C). The differences observed in the nonlinear evolution
for the I'=10.5 cell will be discussed in Sec. III D.

A. Linear transients

We begin the simulations by using as initial condition a
profile having a small Gaussian noise in the temperature field
of the critical mode and zero in the remaining modes and
fields, and allow the system to evolve. The linear transient
for supercritical values of the Rayleigh number is similar in
all the cases.

In the I'=11 cell, m=1 is the selected mode at the onset of
convection; its structure can be visualized in Fig. 1(a). The
pattern consists of radially traveling waves and is nearly a
standing wave in the azimuthal direction. This structure re-
sults from the superposition of two counterpropagating spiral
modes, which correspond to the spiral eigenfunctions ob-
tained in the linear stability analysis [21]. The eigenfunctions
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TABLE I. Critical values of the Rayleigh number and frequency of the first three modes that become
unstable for a ['=11 and a I'=10.5 cylinder. While the dominant modes are odd in the I'=11 cylinder, they

are even in the I'=10.5 cell.

r=11 n R . r=10.s n R O,
1 1916.2 6.157 0 1917.4 6.156
3 1916.7 6.137 2 1917.6 6.145
5 1917.9 6.095 4 1918.6 6.112

consist of right-handed and left-handed spirals traveling in
the azimuthal direction in opposite directions. The vertical
symmetry of these eigenfunctions allows the generation of
other dominant odd modes, which become important from a
very early stage of the evolution.

A slight variation in the aspect ratio cell produces a
change in the critical azimuthal mode. For the I'=10.5 cell
the m=1 mode is no longer dominant, and the m=0 mode,
whose structure is plotted in Fig. 1(b), is the selected mode at
the onset. In this case, modes with wave number different
from m=0 need a much longer time to be nonlinearly gen-
erated, since they cannot be generated by the m=0 mode and
must grow out of noise, but at a certain stage of evolution
even modes are excited with an amplitude larger than that of
odd modes.

These observations are in agreement with the linear sta-
bility results. As can be appreciated in Table I, which shows
that the critical values of the first three modes become un-
stable for the two cells we are considering, the critical Ray-
leigh numbers of low-order odd modes are smaller than those
of the low-order even modes in the I'=11 cell, while even
modes are dominant in the I'=10.5 cell. Furthermore, the
presence in the nonlinear solution of several azimuthal
modes of the same order for values of the control parameter
extremely close to the onset of convection indicates that the
critical Rayleigh numbers corresponding to different azi-
muthal modes lie within a very narrow range. This fact,
which agrees with experimental observations [18], is con-
firmed by results in Table I (i.e., the difference between the
critical Rayleigh numbers for the m=1 and 3 modes is only
0.03%) and is at the origin of the complex nonlinear dynam-
ics observed in this system.

B. Nonlinear evolution for slightly subcritical and supercritical
Rayleigh numbers in a I'=11 cylinder

To obtain the evolution of the patterns for subcritical
or slightly supercritical Rayleigh numbers (R=1914,1916,
1918), we have proceeded as in experiments [18]. Linear
transients were initially allowed to evolve at a larger Ray-
leigh number (R=1924,1934), and once the m=1 azimuthal
mode had reached saturation, the control parameter was re-
duced to the subcritical value. For this narrow range of Ray-
leigh numbers in the immediate neighborhood of the critical
value, simulations show that repeated bursts of convection
amplitude take place. When the amplitude of convection is
growing, sudden collapses that bring the system back to
small-amplitude states are produced. After that, the ampli-

tude of convection begins to grow again and the process
repeats aperiodically.

Variations in the convection amplitude can be observed at
the top of Fig. 2, where the time series of the Nusselt number
for R=1914 (e=-1.174 X 1073) is plotted in units of vertical
thermal diffusion time. To visualize the behavior during the
bursts of amplitude, contour plots of temperature in the mid-
plane of the cylinder at several time instants have been in-
cluded at the bottom of Fig. 2. After the linear transient, the
contribution of odd modes different from the critical one
produces a quite pronounced azimuthal focusing along one
diameter of the cell (r=198). However, this localized state
dies away and the system returns to a state of very small
amplitude focused along three diameters (r=239). Convec-
tion begins again, but for this particular value of the Ray-
leigh number, it dies away after three bursts of amplitude.

For all the subcritical values of the control parameter we
have tried, we always find that, after lengthy simulations,
convection eventually ceases to persist and the system de-

R=1914 TI=11

-3
4% 1‘0

Il Il Il I
160 180 20 220 240 260 280

—
Nu—1=0.1193x10 =2

Nu-1=0.1748x10 72

FIG. 2. (Color online) '=11, R=1914 (¢=—1.174 X 107%). Time
series (Nusselt number versus time) and contour plots of tempera-
ture at z=0.5d showing the evolution of the pattern for a slightly
subcritical Rayleigh number. Azimuthal focusing along one and
three diameters of the cell takes place. The localized states do not
persist and convection dies away.
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FIG. 3. (Color online) '=11, R=1918 (£¢=0.9132 X 107%). Time
series (Nusselt number versus time) and contour plots of tempera-
ture at z=0.5d showing the evolution of the pattern for a slightly
supercritical Rayleigh number. Bursts of convection amplitude take
place on the system. Convection confines radially in pulses during
the collapse stages and is reestablished along bands during the burst
stages.

cays to the conduction state. In contrast, for slightly super-
critical values the system seems to remain indefinitely in
these types of repeated transients and small amplitude states.
For an example of the observed dynamics, Fig. 3 shows the
Nusselt number time dependence and the complex spatial
structure of the patterns at several time instants for R
=1918 (£=0.9132x 107%). The duration of the time series,
shown in the picture in units of vertical thermal diffusion
time, corresponds to about 28 h in real time. During the first
two bursts of amplitude (1=219,249) convection localizes in
bands. The kinetic energy bar chart showing the Fourier
spectra in the azimuthal direction for the solution at t=249
included in Fig. 4 reveals that at this stage of the nonlinear
evolution only the odd modes contribute to the solution, al-
though modes 5 and 7 have bigger amplitudes than the criti-
cal one, as reported in the experiments [18]. As the pattern
evolves, near the third burst of convection, even modes are
also excited. Then, convection confines radially in pulses
during the collapse stages, and is reestablished along local-
ized bands during the bursting periods. As can be appreciated
in the azimuthal Fourier spectra of the solution at =712
included in Fig. 4, the even modes are nearly of the same
order as the odd modes.

C. Nonlinear evolution for supercritical Rayleigh numbers
in a I'=11 cylinder

The nonlinear evolution observed by increasing the Ray-
leigh number to larger supercritical values of the control pa-

PHYSICAL REVIEW E 77, 036313 (2008)

0.03]

=249 =712

o
o

o
o
IS

kinetic energy
kinetic energy

o
o
=

0 5 10 15 20 0 5 10 15 20
Fourier mode Fourier mode

FIG. 4. (Color online) I'=11, R=1918 (£=0.9132 % 1073). Ki-
netic energy bar charts showing the Fourier spectra in the azimuthal
direction for the solutions at =249 and 712. During the first stage
of the nonlinear evolution, only the odd modes contribute to the
solution. In a late stage of the evolution, even modes are also
excited.

rameter is different. Unlike in the near-critical case, the sys-
tem does not exhibit the previous bursts and collapses in the
convection amplitude. The Nusselt number increases its
value progressively while blobs of disordered convection
form around the cell center.

We can visualize this behavior in Fig. 5, where the tem-
perature contour plots show the structure of the patterns at
different time instants during the early stage of nonlinear
evolution for R=1934 (£=9.263 X 107%). At the beginning,
convection focuses again along two diameters of the cell (¢
=102), but later a localized region of squares surrounded by
nearly quiescent fluid is established (r=112). This state does
not persist either, and is replaced by a disordered blob of
convection near the center of the cell (r=119,124).

The time series of the Nusselt number included in Fig. 6
shows the progressive increase of its value at a very slow
growth rate. The contour plots at time instants ranging from
t=132 to 731 reveal that the initially small patches of con-

Nu—1=0.1863x10 2 Nu-1=0.3163x10 2

Nu-1=0.9373x10 2

Nu-1=0.8593x10 72 Nu-1=0.7063x10 =

FIG. 5. (Color online) I'=11, R=1934 (¢=9.263 X 107%). Time
series (Nusselt number versus time) and contour plots of tempera-
ture at z=0.5d showing the evolution of the pattern during an early
stage of the nonlinear transient for a supercritical Rayleigh number.
A localized region of squares followed by a disordered blob of
convection near the center of the cell forms.

036313-5



MERCADER, ALONSO, AND BATISTE

R=1934 TI=11

20_10, H* * ¢ f | |
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time

Nu-1=0.2267x10 ! Nu-1=0.4020x10 !

Nu-1=0.7487x10 ! Nu-1=0.9729x10 !

FIG. 6. (Color online) I'=11, R=1934 (£=9.263 X 10~3). Con-
tour plots of temperature at z=0.5d showing the evolution of the
pattern during the late stage of the nonlinear transient for a super-
critical Rayleigh number. Blobs around the center, which are sur-
rounded by regions without convection, slowly grow and slow
down until a large amplitude quasistationary state is reached.

vection, which are embedded in a region without convection,
increase in size slowly. A detailed inspection of the growing
phase of the blobs shows that the patterns typically consist of
several competing domains of rings of traveling waves
propagating essentially in the azimuthal direction, which sur-
round an area of nearly stationary convection. When the
blobs make contact with the walls, the traveling convective
rolls slow down, the curved fronts that separate the convec-
tion region from that of quiescent fluid turn into abrupt
straight fronts, and convection evolves filling slowly the con-
tainer. Although large amplitude convection consisting of
several domains of rolls with different orientations fills the
whole cell at 1=850, a completely stationary state has not
been reached yet at the end of the simulations.
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FIG. 7. (Color online) I'=11, R=1934. Contour plots of tem-
perature in z=0.5d and kinetic energy bar charts showing the Fou-
rier spectra in the azimuthal direction for the large amplitude sta-
tionary state reached for pure fluid convection (S=0).

The tendency of the patterns to develop quiescent areas
within the domain seems to be a distinguishing feature of
binary mixture convection [18], since when the separation
ratio is taken to be zero (pure fluid Rayleigh-Bénard convec-
tion) in simulations starting from the state shown in Fig. 6 at
t=731, the pattern evolves quickly toward stationary parallel
stripes of convection limited by square cells filling the whole
domain [36] (the final stationary state has been plotted in
Fig. 7). Moreover, if the separation ratio is reestablished at
its original value $=-0.09, simulations departing from the
pure fluid stationary state show that the system rapidly shifts
to a large amplitude localized state, which contains an ex-
tended region without convection. This quiescent region is
slowly filled up again.

Finally, the evolution of the contribution of each azi-
muthal Fourier mode during the nonlinear transient can be
visualized in Fig. 8, which includes the azimuthal Fourier
spectrum of the solution for three different time instants. For
t=132 odd modes are dominant, but at t=222 even modes
are also excited. As time evolves, we can appreciate a clear
shift of energy toward higher modes (r=731).

D. Nonlinear evolution in a I'=10.5 cylinder

A slight change in the aspect ratio of the cell produces
variations in the dynamics. As we have mentioned when de-
scribing the linear transients in Sec. III A, the critical azi-
muthal mode shifts from m=1 to m=0 when the aspect ratio

t=122

o
=

kinetic energy
kinetic energy

25

‘III.
0 10 15 20

Fourier mode

0 5

00 5 10_15 20 25 30 35 40
Fourier mode

t=222 t=731

kinetic energy

O0 5 10 15 20 25 30 35 40
Fourier mode

FIG. 8. (Color online) '=11, R=1934 (£=9.263 X 1073). Kinetic energy bar charts showing the Fourier spectra in the azimuthal direction
for the solutions at r=122, 222, and 731. Initially, only the odd modes contribute to the solution. As the pattern evolves, even modes are also
triggered and there is a displacement of energy toward higher number Fourier modes.
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FIG. 9. I'=10.5, R=1919 (£¢=8.345X 10™*). Time series (Nus-
selt number versus time) showing the amplitude of convection of
the pattern during the nonlinear evolution for a slightly supercritical
Rayleigh number. After a stage in which several bursts of convec-
tion amplitude take place, the system remains a long time in several
types of localized small amplitude states. A transition to a large
amplitude quasisteady pattern is not observed.

of the cylinder is reduced from I'=11 to 10.5. Not only is
the linear transient affected by the aspect ratio value, but
also the nonlinear evolution for the two Rayleigh numbers
we have explored, R=1919 (£¢=8.345X107%) and R=1925
(£=3.974X1073), presents some particular features.

The main difference in the case of the slightly supercriti-
cal value of the control parameter R=1919 is that the small
amplitude states reached by the system do not present the
regular pronounced bursts and collapses of convection am-
plitude exhibited in the I'=11 cell for R=1918. This fact can
be observed in the Nusselt number time series included in
Fig. 9. In the interval +<<600, not shown in the time series,
the dynamics is essentially dominated by the m=0 azimuthal
mode, which is the critical one. The time needed for other
modes to become excited is now much larger, since the axi-
symmetric mode does not generate nonlinearly higher
modes, so their growth is caused by the round-off errors of
computations. At t=~600 higher azimuthal modes begin to
grow. In the range 600<<t<<1000 a few growths and decays
of the amplitude of convection take place, in a way similar to
that described in Fig. 3, but for #> 1000 the abrupt variations
of amplitude disappear, and the system remains in several
types of low amplitude localized states. These states can be
confined in one or several diameters of the cell, or localized
along some radius of the cell. It should be pointed out that
the Nusselt time series shown in Fig. 9 is extremely long,
since 1000 thermal time units correspond approximately to
35 h of real time. During the approximately 65 h of this
series, the system does not evolve toward a large amplitude
state, although much longer times might be required.

The nonlinear evolution for a larger value of the Rayleigh
number, R=1925, which is summarized in Fig. 10, can be
divided into four stages. During the first stage, 0 <r<<600,
the dynamics is dominated by the m=0 mode. After that, in a
second stage of evolution, higher order modes are excited
and the system evolves toward an extremely confined state,
in which a very small convective region is surrounded by
essentially quiescent fluid. This nonstationary pattern, which
can be clearly visualized in the contour plot at =725 of Fig.
10, bears a strong resemblance to the highly localized states
observed in experiments [18]. Despite this pulsing patch of
convection being long lived, at about =800 the amplitude of
convection begins to grow and the Nusselt number steadily
increases its value. In this third stage of evolution, large am-
plitude convective rolls begin to fill up the cell slowly in a
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FIG. 10. (Color online) I'=10.5, R=1925 (£=3.974 X 1073).
Time series (Nusselt number versus time) and contour plots of tem-
perature at z=0.5d showing the evolution of the pattern after the
early stage of the nonlinear transient for a supercritical Rayleigh
number. The system remains a long time in small amplitude states,
in which convection is localized in an extremely small region of the
cell. However, at t=~800 the amplitude of convection begins to
grow steadily and convection rolls begin to fill up the cell. The
patterns evolve in a similar way to that of Fig. 6, but when the cell
is almost filled (#=1000), the quiescent region grows again, and the
system evolves toward a confined structure.

similar way to that described in Fig. 6 for the I'=11 cell at
R=1934. Nevertheless, fully developed convection never
fills up the cell completely, as can be appreciated in the pat-
tern shown in Fig. 10 at 1=996. Indeed, in a fourth stage of
evolution, a steady decrease in the Nusselt number is initi-
ated at +~ 1000, accounting for the fact that the quiescent
regions increase their area again at a certain point of the
evolution. This process of confinement can be visualized in
the temperature contour plots of the pattern at r=1129 and
1315 included in Fig. 10. The system remains in a state of
large amplitude erratic localized convection not reported in
the experiments.
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FIG. 11. Comparison of two time series of the Nusselt number
obtained with different grids; the upper plot is displaced upward by
0.005 units (Upper, 200 X 30 X 320; lower, 160X 30X 192). I'=11,
R=1934 (£=9.263 X 1073).

IV. CONCLUSIONS

In this paper we present numerical 3D simulations of con-
vection in binary fluids with a negative separation ratio con-
fined to a vertical cylinder in the neighborhood of the initial
oscillatory instability. We consider an S=-0.09 water-
ethanol mixture in cells of aspect ratio I'=11 and 10.5. The
choice of parameters in this paper is motivated by the experi-
ments performed by Lerman er al. [16-18] on S=-0.08
mixtures in cylindrical cells of aspect ratio I'=10.91,11.53.
To perform the simulations, we have developed a highly ef-
ficient time-evolution spectral code that solves the full con-
vection equations in primitive variables and cylindrical coor-
dinates. Despite this, and the increasing power of present
computers, it is worth emphasizing that 3D computations on
binary mixtures in moderate aspect ratio cells, such as the
ones we consider, remain extremely costly.

Our confidence in the numerics is mainly based, on one
hand, on tests made in other hydrodynamic and convection
problems in cylindrical geometry and, on the other, on our
experience using spectral codes for the simulation of binary
fluid convection with small Lewis numbers in geometries
different from the cylindrical one. Those systems also exhibit
narrow boundary layers that can give rise to computational
problems arising from lack of resolution. For instance, a poor
resolution can result in collapses of amplitude. But we do not
think that the collapses shown in the paper are numerical
artifacts, since, with the same resolution, in some occasions
convection amplitude collapses (this is the case shown in
Fig. 10) while in others the system is able to remain in large
amplitude states filling the cell (as in the case presented in
Fig. 6).

To partially prove convergence, we have made simula-
tions with two different grid resolutions. The two time
series of the Nusselt number shown in Fig. 11 have been
obtained with an intermediate grid 160X 30X 192 and with
a finer mesh 200X 30X 320 (the last resolution has been
used to obtain large amplitude states filling the whole
cell and localized states). They correspond to the critical
point after the linear growth in which the system decides
either to go on growing in amplitude or to collapse, depend-
ing on the parameter values. As can be observed, both time
series follow similar paths during the time of the integration
(but not exactly the same as is typical in a chaotic system).
Note that, although the Nusselt number is still growing,
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this is due to convection invading the cell, but the ampli-
tude of the convecting region is completely developed, with
its narrow concentration boundary layers between rolls. So
we think that the two tendencies observed in the system
when the states saturate after the linear growth—the ten-
dency to collapse and the tendency to grow in amplitude and
fill the cell—are well captured with the resolution we are
using.

The dynamics observed within a narrow range of Ray-
leigh numbers around the onset of convection is of unques-
tionable complexity, but general agreement between the re-
ported experimental observations and our numerical results
is obtained, although some differences have also been found.
The differences are probably due to non-Boussinesq effects,
which can be important in experiments [17], but are not
taken into account in our simulations.

The linear evolution is strongly influenced by the aspect
ratio of the cell: while odd azimuthal Fourier modes domi-
nate the dynamics in the I'=11 cell, even modes control the
early stages of evolution in the I'=10.5 case. However,
modes with wave number higher than the critical one tend to
grow at much faster rates and dominate the nonlinear regime,
as observed in the experiments [18]. During the nonlinear
evolution, the system goes through a variety of states. Al-
though the primary bifurcation is known to be subcritical, for
subcritical values of the Rayleigh number convection dies
away after some busting episodes. This absence of hysteresis
in a system that undergoes a subcritical bifurcation has also
been reported in experiments in rotating convection [37] and
in numerical simulations of binary fluid convection in finite
boxes [11]. A mechanism similar to the one described in this
last reference could be responsible for the behavior reported
here. For slightly supercritical Rayleigh numbers, the system
can exhibit small amplitude bursting behavior for a long time
(growths and collapses of convection amplitude take place),
in a way that bears a strong resemblance to the dispersive
chaotic states observed in large aspect ratio annular contain-
ers for small negative values of the separation ratio [5,14].
For supercritical values, on some occasions, the system
evolves to form large amplitude localized states, which can
combine stationary, traveling wave and quiescent regions.
On other occasions, however, convection can fill the whole
cell with domains of large amplitude nearly stationary rolls.

In contrast to pure fluid convection, cylindrical binary
fluid convection exhibits a clear tendency to form localized
and highly confined structures embedded in a background of
quiescent fluid. The diversity of confined patterns is startling.
On one hand, small amplitude states consisting of stripes of
convection aligned along one or more cell diameters or radii
are observed during the early transients for subcritical and
slightly supercritical values of the control parameter. Also in
this regime, when the system exhibits bursting behavior, con-
vection can take the form of tiny highly localized pulses that
are surrounded by a conductive state. On the other hand, for
larger values of the Rayleigh number, localized patterns can
consist of oscillatory regions of squares, disordered blobs of
oscillatory convection, competing domains of traveling
waves, and steady convection. States of confined convection
could be persistent as suggested by our simulations for &
=3.974X 1073 in a I'=10.5 cylinder, contrary to what has
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been observed experimentally. Finally, for slightly greater
Rayleigh numbers the system evolves slowly to a cell-filling
state of convection rolls. Although the time scale of our
simulations is bigger than the experimental one, we have not
reached a completely stationary state.
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