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The aim of this paper is to contribute to the understanding of and to model the processes controlling the
amplitude of the wind of Rayleigh-Bénard convection. We analyze results from direct simulation of an L /H
=4 aspect-ratio domain with periodic sidewalls at Ra= �105 ,106 ,107 ,108� and at Pr=1 by decomposing inde-
pendent realizations into wind and fluctuations. It is shown that, deep inside the thermal boundary layer,
horizontal heat fluxes exceed the average vertical heat flux by a factor of 3 due to the interaction between the
wind and the mean temperature field. These large horizontal heat fluxes are responsible for spatial temperature
differences that drive the wind by creating pressure gradients. The wall fluxes and turbulent mixing in the bulk
provide damping. Using the direct numerical simulation results to parametrize the unclosed terms, a simple
model capturing the essential processes governing the wind structure is derived. The model consists of two
coupled differential equations for wind velocity and temperature amplitude. The equations indicate that the
formation of a wind structure is inevitable due to the positive feedback resulting from the interaction between
the wind and temperature field. Furthermore, the wind velocity is largely determined by the turbulence in the
bulk rather than by the wall-shear stress. The model reproduces the Ra dependence of wind Reynolds number
and temperature amplitude.
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I. INTRODUCTION

One of the characteristic features of Rayleigh-Bénard
convection is a large-scale circulation or wind, which is gen-
erated autonomously by the system and is of great impor-
tance for the effectiveness of the heat transfer �1�. Although
first observed in a large-aspect-ratio �=L /H cell �2�, the
wind has been studied mostly in smaller-aspect-ratio cells
�3–12�. The wind has complex dynamics, in that it changes
its direction erratically at time scales far exceeding the con-
vective turnover time �4,7�. In the case of cylindrical cells,
there are two separate ways for reversals to occur �13,14�.
First, the wind structure can change its orientation by rotat-
ing in the azimuthal direction, which leads to reversals if the
system rotates over 180°. The second mechanism for reori-
entation is by cessation, when the large-scale circulation
briefly halts and restarts with a different random orientation.
The wind dynamics change depending on the aspect ratio �
and the Rayleigh number Ra. In cylindrical �=1 /2 domains,
the wind structure �normally one roll throughout the entire
domain� breaks up into two counter-rotating rolls on top of
each other �15� around Ra=1010. At even higher Ra, roughly
around 1012, the wind substantially weakens �16–18�. For
large aspect-ratio domains, the wind structure tends to be
weaker relative to the fluctuations �18–22�.

Several models have been developed recently to explain
the complex long-term dynamics of the wind, in particular
the wind reversals and reorientations. The first model to ex-
plain wind reversals was by Sreenivasan et al. �7�, which is

based on the conceptual image of a double-well potential
representing the preference for an average clockwise or
counterclockwise motion. The turbulence is modeled by sto-
chastic fluctuations, which are responsible for sudden rever-
sals when strong enough to overcome the energy barrier
separating the two states. A different approach was taken by
Araujo et al. �23�, who derived a deterministic model de-
scribing the dynamics of a thermal on a circular trajectory in
a linearly unstably stratified fluid. The resulting equations are
similar to the Lorenz equations and exhibit chaotic flow re-
versals in a specific region of the Ra-Pr phase space. The
two-dimensional models described above can only reproduce
reversals by cessations, and do not facilitate reorientation by
rotations, which occur more often in cylindrical cells �13,14�.
Brown and Ahlers �24� recently presented a model that is
capable of predicting reorientations both by rotations and
cessations. This model is inspired by the Navier-Stokes equa-
tions and constitutes two stochastical differential equations,
one for the temperature amplitude and one for the azimuthal
orientation.

Despite these significant advances in the understanding
of the long-term wind dynamics, it is currently not clear
exactly how the wind is driven and how the turbulencej and
wall fluxes influence the wind amplitude. It is known that
the wind is sustained by the spatial differences in mean
temperature along the sidewalls �25�. However, it is not
clear what generates these temperature differences, and what
the relation between the temperature differences and the
wind velocity is. In this paper, we use direct numerical
simulation of a rectangular �=4 domain at Pr=1 and
Ra= �105 ,106 ,107 ,108� with periodic lateral boundary condi-
tions to provide insight into these questions. We derive a*m.vanreeuwijk@imperial.ac.uk
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model for the wind based on the Reynolds-averaged Navier-
Stokes equations, which consists of two coupled ordinary
differential equations for the average wind velocity and tem-
perature amplitude. This simple conceptual model provides
insight into the role of turbulence in the bulk on the wind
velocity and the neccessity for a wind structure to develop.
In the accompanying paper �26�, we will focus on the bound-
ary layers at the top and bottom walls and their interaction
with the wind, and propose new scaling relations for �u and
Cf.

The paper is organized as follows. The governing equa-
tions, averaging strategies and their relation to the system’s
symmetries are discussed in Sec. II A. The method of wind
extraction by symmetry-accounting ensemble averaging is
outlined in Sec. II B. As in domains with sidewalls, a wind
structure develops for unconfined domains �19,21,27–29�. As
the wind structure is not kept in place by sidewalls, it can be
located anywhere in the domain which complicates the ex-
traction of the wind structure. However, by identifying the
wind structure and proper alignment of different realizations
�by accounting for symmetries�, a wind structure can also be
unambiguously defined for unbounded domains �29�. Details
about the code and simulations are discussed in Sec. II C.
Some results for Nu and Re as functions of Ra are presented
in Sec. III. The wind and the temperature field following
from the symmetry-accounted averaging are presented in
Sec. IV. The decomposed profiles of kinetic energy are pre-
sented in Sec. IV B, eliciting the importance of the wind for
the dynamics of the flow. It turns out that the wind structure
has a significant influence on the redistribution of heat in the
system, as is discussed in Sec. IV C. Section IV D contains a
discussion of how the wind is maintained by a study of the
momentum and temperature budgets at several positions of
the flow, and a detailed feedback mechanism is sketched.
Then, the findings are synthesized in a simple conceptual
model in Sec. V, and conclusions are presented in Sec. VI.

II. BACKGROUND

A. Theory

Rayleigh-Bénard convection is generated when a layer of
fluid with thickness H between two parallel plates is sub-
jected to a positive temperature difference �� between top
and bottom plates. The positive temperature difference
causes the buoyant fluid to become unstable, causing convec-
tion and thereby enhancing the heat transport through the
layer. In the dynamics one can observe organized motion
such as plumes, jets, and wind �12�. For an incompressible
Boussinesq fluid with isobaric thermal expansion coefficient
�, viscosity �, and thermal diffusivity �, the governing equa-
tions are

�tui + � jujui = − 	−1�ip + �� j
2ui + �g�
i3, �1�

�t� + � juj� = �� j
2� , �2�

� juj = 0. �3�

Here 	 is the density, g the gravitational constant, ui the fluid
velocity, � the temperature, and p the pressure. No-slip ve-

locity and fixed temperature are enforced on the top and
bottom walls. The problem can be characterized by the
Prandtl number Pr=��−1 which represents the ratio of vis-
cosity and thermal diffusivity and the Rayleigh number Ra
=�g��H3����−1 which relates the buoyant and viscous
forces. The system reacts by convective motion characterized
by the Reynolds number Re=UH�−1 and by an enhanced
heat transfer through the Nusselt number Nu=�H�����−1,
which is the nondimensional heat flux through the top and
bottom walls. Here U is a characteristic velocity and � the
heat flux. Both Re and Nu are unknown a priori.

Since definitions for the processes occurring in Rayleigh-
Bénard convection are not unambiguous, a small glossary is
given here. We prefer to use the term wind structure, which
generalizes the terms wind and large-scale circulation, in that
it involves both the velocity and the temperature field. This
wind structure normally features convection rolls, which are
quasisteady roll-like structures. Thermals and plumes are the
unsteady structures erupting from the boundary layers and
propagating into the bulk. Spatial averages will be denoted
by � �V, � �A, and � �H for volume, plane, and height averag-
ing, respectively. The plane average is in the homogeneous
�x and y� directions. Time and ensemble averages will be
denoted by � �t and � �.

In what follows a domain of size L�L�H with L=�H
and � the aspect ratio will be considered. Periodic boundary
conditions are imposed on the sidewalls. Applying � �A to the
incompressibility constraint �3� and using impermeability at
the top and bottom walls yields the result that the plane-
averaged velocities �u�A= �v�A= �w�A=0. Taking the en-
semble average of the temperature Eq. �2� and the fixed tem-
perature boundary conditions gives after some manipulation
that

Nu =
H

���
��w���� − ��z���� , �4�

which states that the mean total heat flux is constant in the
vertical direction and directly related to Nu.

Interesting differences exist in the standard way of aver-
aging between experiments, simulations, and theory. We fo-
cus on laterally unbounded domains or domains with peri-

odic boundary condition and will use the overbar X̄ to denote
a generic averaging operator. Experiments normally employ
the time average �X�t and theory the ensemble average �X�.
In simulations of unbounded Rayleigh-Bénard convection it
is customary to use a plane average �X�A, because it can be
evaluated at every time instant. The underlying assumption is

that X̄ coincides with the ensemble average �X� and the time
average �X�t, but there are some subtleties that require atten-
tion here. It can be imagined that �X�A will approach �X� for
� sufficiently large, as a typical realization is expected to be
of size O�H�, by which the domain would contain roughly �2

of those realizations. The time average �X�t produces one
independent realization every O�t�� with t�=H /U the typical
time scale, and it can be expected that for averaging over
sufficiently long times it converges to the ensemble average
so that �X�t= �X�A= �X�. However, this presumes that the sys-
tem’s phase space is not partitioned, i.e., that the system will
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visit all its possible states within finite time. When this con-
dition is satisfied the system is ergodic, and this is one of the
primary assumptions underlying turbulence theory �30,31�
From the continuity equation, it follows that �ui�A=0, by
which all natural averages, i.e., long-time, ensemble, and
spatial averages, vanish as ū= v̄= w̄=0. Hence one would
conclude that Rayleigh-Bénard convection is comprised
purely of fluctuations, which is in conflict with the ubiqui-
tous large-scale circulation or wind.

The paradox of the existence of a mean wind and the
restriction of ū= v̄= w̄=0 can be resolved by taking into ac-
count the symmetries of the problem �29�. When there are
symmetries in the domain, there is a chance for symmetric
conjugate modes �such as clockwise and counterclockwise
mean flow in the cell� to cancel each other, given enough
time �through wind reversals� or realizations. By accounting
for symmetries before performing ensemble averaging, all
fields are properly �aligned� before the averaging takes place,
allowing the modes that would normally be canceled by their
symmetric conjugates to persist. The resulting average field
of velocity and temperature is the wind structure and in the
fluctuations are the actions of the plumes.

B. Symmetry-accounted ensemble averaging

The rationale of symmetry-accounted ensemble averaging
has been presented for general domains elsewhere �29�, and
we discuss here only the application to our case with peri-
odic sidewalls. The system has two symmetries: a discrete
rotational symmetry and a continuous translational invari-
ance. The most important symmetry to take into account here
is the translational invariance in x ,y. When considering an
ensemble of realizations �X�1� ,X�2� , . . . ,X�N��, it can be ex-
pected that a wind structure is present in all of them, al-
though its location will differ for each realization. When one
takes the average of this ensemble, the wind structure will be
averaged out so that nothing but fluctuations remain �Fig.
1�a��. However, due to the translational invariance, one can
translate a realization and obtain another valid solution to the
equations. By translating each realization X�
� over a distance
d�
� such that the wind structures become aligned, the aver-
aging out of the wind can be prevented, as is sketched in Fig.
1�b�.

The translational operator can be denoted by Sd with d
	�dx ,dy� representing the relative displacement. Operating
on a field X, the translational operation is simply SdX=X�x
−dx ,y−dy ,z�. Symmetry-accounted averaging, then, means
to translate each realization 
 before averaging as

X̃ = 


=1

N

Sd
�
�X�
� = 



=1

N

X�
��x − dx
�
�,y − dy

�
�,z� , �5�

where d�
� is chosen such that the wind structure does not
average out. An alternative way to look at symmetry-
accounted ensemble averaging is that it involves a prepro-
cessing step before performing the ensemble averaging. The
fluctuating field is defined as

X��
� = X�
��x − dx
�
�,y − dy

�
�,z� − X̃�x,y,z� , �6�

and it is straightforward to prove that X�˜	0. Hence, the
results can be interpreted in exactly the same way as those
from classical Reynolds decomposition.

The symmetry-accounted ensemble average X̃ is closely
related to the classical �ensemble, long-time, or spatial� av-

erage X̄, and we will point out some useful relations between

the two. Due to translation invariance all statistics X̄ are a
function of z only, whereas the symmetry-accounted average

X̃ retains the full three-dimensional structure. The first im-
portant relation is that the plane average of the symmetry-
accounted average is identical to the classical average,

�X̃�A = X̄ , �7�

which follows directly from substitution of the two diffe-

rent decompositions X= X̃�x ,y ,z�+X��x ,y ,z� and X= X̄�z�
+X��x ,y ,z� into the expression �X�A. The second useful re-
lation pertains to the variance, and is given by

�X̃X̃�A + �X�X�˜�A = X̄X̄ + X�X�, �8�

which can be obtained similarly. Expression �8� is particu-
larly useful for the analysis of the profiles of kinetic energy
�Sec. IV B� and for the decomposed vertical heat fluxes �Sec.
IV C�.

If the wind structure were known a priori, the displace-
ment d would be the only unknown per realization, and �5�
could be applied immediately. Unfortunately this is not the
case, as both the wind structure and d are unknown. There-

+

X(3)

X(1)

X(2)

�ui� = 0

+

S(1)
r X(1)

r

r

S(2)
r X(2)

S(3)
r X(3)

(a)

(b)

FIG. 1. Ensemble averaging in domains with periodic sidewalls.
�a� Classical averaging results in zero mean wind; �b� when realiza-
tions are translated if necessary, the wind structure is preserved.
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fore, an iterative technique is used, by which the wind struc-
ture and the displacements are determined simultaneously,
gradually improving the estimation for the wind structure in
successive iterations �32�. The only assumption needed for
this method is that—among the majority of the
realizations—only one persistent structure �mode� is present
inside the domain.

To start the iterative process a reference field X0�x� is
needed, for which an arbitrarily picked realization is used—
the wind structure is present in every realization so the start-
ing point should not make a difference. Using a cross-
correlation function C�X ,Y�, every realization can be
compared to X0�x�, and the location of maximum correlation
is picked as the displacement vector:

d�
� ← max
r

C�SrX
�
�,X0� . �9�

There is some freedom in choosing how to calculate the
overall two-dimensional �in x and y� correlation field, as it
can be constructed from any combination of the three-
dimensional fields X� �ui ,� , p�. In this case we opted for
the instantaneous height-averaged temperature ���H which is
closely related to the wind structure as ���H�0 where w
�0, and vice versa. Denoting the reference field by
X0�x ,y�= ��0�H and a different realization by Y�x ,y�, the
cross-correlation function is given by

C�SrY,X0� =
� � Y��x − rx,y − ry�X0��x,y�dx dy

�X�Y
. �10�

Here, X0�=X0− �X0�A and Y�=Y − �Y�A are the deviations from
the mean, and �X and �Y are the standard deviations of X0
and Y. The displacement vector d is just the coordinate pair
�rx ,ry� for which the correlation is maximal. For computa-
tional efficiency, the correlation is determined via fast Fou-
rier transforms. After calculating d�
� for all realizations, a
new and improved estimation can be determined by

X̃n+1 =
1

N



=1

N

X�
��x − dx
�
�,y − dy

�
�,z� . �11�

Repeated application of �9� and �11� with X0 replaced by Xn

and until X̃n+1= X̃n= X̃ results in the wind structure, or
symmetry-accounted average, as well as the relative dis-
placements d�
�. It is emphasized that vertically averaged
fields are used only to determine the relative displacements
d�
�; the resulting wind structure is fully three dimensional.

C. Simulation details

Direct numerical simulation �DNS� is used to generate the
independent realizations for the symmetry-accounted averag-
ing. The code is based on finite volumes and has Eqs. �1�–�3�
discretized and implemented on a staggered grid. Central dif-
ferences are used for the spatial derivatives and time integra-
tion is by a second-order Adams-Bashforth scheme. The
code is fully parallelized and supports grid clustering in the
wall-normal direction. Special attention has been given to
conservation of variance by preserving the symmetry prop-
erties of the discrete advective and diffusive operators �33�.
Further details of the code can be found elsewhere �34�.

Resolution of all the length scales makes direct numerical
simulation a powerful research tool, as one has the complete
four-dimensional solution of the Navier-Stokes equations at
hand. However, DNS is limited to relatively low Re as the
computational demands quickly become prohibitive, scaling
approximately as Re3. Furthermore, both the thermal and hy-
drodynamic boundary layers, �� and �u, respectively, should
be fully resolved as undersampling will lead to overestima-
tion of Nu �21�.

Simulations have been performed at Pr=1 and Ra
= �105 ,106 ,107 ,108� for an aspect-ratio �=L /H=4 domain.
The grid resolution and other relevant information are given
in Table I. The Reynolds number Re has been obtained from
the peak of u�u� and Re�=u�H /�, with u�=��

d
dzk1/2 at the

wall. Here, k represents the turbulent kinetic energy, which
may not be the most ideal approximation of the shear veloc-
ity; normally the mean horizontal velocity is used. However,
from the “classical� �ensemble-average� point of view, there
is no mean wind so that the only available data are from
fluctuations.

The grid clustering in the near-wall region has been cho-
sen such that on average eight cells were present in the ther-
mal boundary layer. The kinetic boundary layer, which is
thicker than the thermal boundary layer at Pr=1, contained
about 16 cells on average. A snapshot of one of the simula-
tions at Ra=106 clearly shows the unstable sheetlike plumes
emerging from the boundary layers �Fig. 2�. Ten independent
simulations with slightly perturbed initial conditions have
been performed for all but the highest Ra, as the computa-
tional demands were too high. At Ra=108 on the 6402

�320 grid, one convective turnover time took 2500 h on one
SGI Origin 3800 processor and even with 128 processors this
is 20 wall-clock hours per turnover time.

III. CLASSICAL RESULTS

Instantaneous cross sections of the temperature field are
shown in Fig. 3 at Ra=108. The dynamic behavior can be

TABLE I. Simulation details.

Ra Grid �103��t / t� T / t� No. of simulations Nu Re Re�

1.15�105 1282�64 1.13 68 10 4.5 54 32

1.0�106 1922�128 0.57 20 10 8.3 157 70

1.0�107 2562�256 0.45 20 10 16.1 458 160

1.0�108 6402�320 0.11 5 1 31.1 1499 210
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viewed in the online animations �39�. The vertical �x-z� cross
section of the temperature field �Fig. 3�a�� clearly shows the
spatial segregation of hot areas where upward thermals
dominate and cool areas where the downward thermals
dominate. Figure 3 shows a horizontal x-y cross section of
the temperature field at the edge of the thermal boundary
layer. The boundary layer is a network of sheetlike plumes,
which is coarse where the average flow is downward and
dense where it is upward. The sheets are formed by impinge-
ment of cold plumes onto the plate, as the hot fluid in the
boundary layer is pushed away. These hot sheets move to-
ward the region with ascending flow, where they seem to
form an ever-contracting network of plumes. Where the net-
work is dense, the plumes detach and the average flow is
upward.

Figure 4�a� shows the behavior of Nu as a function of Ra.
This result is in good agreement with the relation Nu
=0.186Ra0.276, obtained by DNS with a similar domain and
boundary conditions �21�, and with the classical wide-aspect-
ratio experiments of Chu and Goldstein �35�. The scaling of
Re as a function of Ra �Fig. 4�b��, where Re is obtained from
the maximum of u�u�, has a best-fit scaling as Reu
=0.17Ra0.49. This is close to Re�Ra1/2, which corresponds to
a Reynolds number based on the free-fall velocity Uf

=��g��H. Note that the above scaling for Re is not pre-
sumed to describe asymptotic behavior, which cannot be ex-
pected in the range of Ra we consider. Instead it should be
treated as a best-fit relation or local exponent.

IV. WIND-DECOMPOSED RESULTS

A. The wind structure

In order to obtain the realizations for the symmetry-
accounting ensemble averaging, the complete three-
dimensional fields for ui ,� have been stored twice every
convective turnover time, thereby ensuring that the fields
are approximately independent. Furthermore, by performing
different simulations at identical Ra with different initial
conditions, a real ensemble averaging was carried out. The
realizations have been selected such that the wind structure
has fully developed �27,28,36�, so that the criterion for
symmetry-accounting ensemble averaging was satisfied.
Over all ten simulations this resulted in approximately 400
independent realizations, which were then processed using
symmetry-accounted ensemble averaging, described in Sec.
II B.

The result of the averaging is shown in Fig. 5 for the
simulations at Ra=106. Instead of a one-dimensional tem-

FIG. 2. �Color online� Snapshot from one of the direct numeri-
cal simulations at Ra=106 and Pr=1. Shown is an isosurface of
temperature, colored by the kinetic energy.

(a)

(b)

FIG. 3. �Color online� Cross sections of the temperature field at
Ra=108 and Pr=1. �a� An x-z cross section. �b� An x-y cross section
at the edge of the bottom thermal boundary layer. See �39� for
movies.
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FIG. 4. �a� Ra-Nu scaling for present DNS simulations. �b�
Re-Ra scaling for present DNS for Re based on horizontal mean
squared fluctuations, along with a best-fit power law.
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perature profile �̄�z�, a fully three-dimensional temperature

field �̃�x ,y ,z� is obtained, of which an isosurface is shown,
clearly revealing the wind structure. These are the finger-
prints of the rolelike behavior of the wind structure. This is
even better visible when a slice is taken through the hydro-
dynamic boundary layer �Fig. 5�b��. The contour lines are of

relative temperature �̃r, which is the deviation from the

plane-averaged temperature ��̃�A�z�, defined as �̃r�x ,y ,z�
	�̃�x ,y ,z�− ��̃�A�z�. The relative temperature �̃r is closely
related to the height-averaged temperature ���H when ���V

=0, as ��̃r�H= ���H. The relative temperature �̃r is an indi-

cator for where the fluid is rising and falling, as can be seen
from the streamlines of the horizontal components u ,v. Fig-
ure 5�c� shows a side view of the average field after averag-
ing over the y direction. Again, the isocontours are of relative
temperature �̃r. Clearly visible in the figure is the projection
of the two rolls onto the side view. Note that the periodic
boundary conditions rule out the one-roll wind structures that
are common for small-aspect-ratio cells because of continu-
ity arguments.

In Fig. 6, the correlation of the height-averaged tempera-
ture ���H with the wind structure ��̃�H is shown as a func-
tion of time for the ten independent simulations at Ra=106.
As will be recalled, this is the matching criterion for the
symmetry-accounted average, so the correlation with ��̃�H is
an indication of how appropriate the method is, and also for
the strength of the wind structure. It can be seen that, on
average, the correlation C with the wind structure is quite
good, fluctuating between 0.5 and 0.85 for all simulations.

B. Plane-averaged profiles of kinetic energy

Plane-averaged profiles of the kinetic energy k�z�
= �ui�ui��A and its components are shown in Fig. 7. Only one
of the horizontal components is shown due to homogeneity.
The classical statistics �Figs. 7�a�, 7�c�, and 7�e�� differenti-
ate only between the horizontal and vertical fluctuations as
the average velocity ui=0. For this reason all variance of the
wind structure is transferred to the fluctuations. From Figs.
7�a�, 7�c�, and 7�e�, one gets an image in which near the
bottom wall variance of u�u� is created due to the action of
the plumes impinging on and being ejected from the bound-
ary layers. The interpretation from the symmetry-accounted
profiles �Figs. 7�b�, 7�d�, and 7�f�� is completely different.

Here one sees that the maxima in u�u�= �ũũ�A+ �u�u�˜�A are
primarily caused by the wind. The fluctuations, representing
the action of the plumes, are nearly uniformly distributed in
the bulk of the flow, and only a slight increase is visible near
the boundary layers. The profiles of Fig. 7 scale nearly per-
fectly with the squared free-fall velocity Uf

2=�g��H for all
three Ra numbers. Note that the plane-averaged momentum

flux �w�u�˜�A is not included in Figs. 7�a�–7�f�, as this term is
zero due to the symmetry of the wind structure.

C. How does the wind affect the heat transport?

Identifying the wind changes the decomposition of the
vertical heat flux. Using �7� and �8� and the fact that �w�A

(a)

(c)

(b)

FIG. 5. �Color online� Results after symmetry-accounted en-
semble averaging at Ra=106 and Pr=1. �a� 3D isosurface of tem-
perature, colored by the kinetic energy; �b� plane cut in the hydro-
dynamic boundary layer, isocontours of relative temperature �r,
and streamlines of the horizontal velocity components; �c� result
after averaging over the y direction �top to bottom in �b��.
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0 5 10 15 20 25 30 35
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FIG. 6. Correlation with the wind structure for the ten simula-
tions at Ra=106 and Pr=1 as a function of time.
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	0 throughout the domain, we can rewrite �4� as

Nu =
H

���
��w̃�̃�A − �w���˜�A − ��z��̃�A� . �12�

As Nu is constant, only the distribution of the three terms on
the right-hand side can change as a function of z. This is
shown for the simulation at Ra=106 in Fig. 8�a�. Diffusive
transport dominates in the boundary layer, where the heat is

transferred to the fluctuations w���˜ by entrainment and de-
trainment. In the bulk, about 30% of the heat is transported
by the wind. Here we note that a simple model using sheet
plume parameters also yields that 30% of the heat is trans-
ported by the mean flow at Ra=106 �37�.

Where the wind impinges on the wall, the boundary layer
will be compressed and the local Nu will increase. Similarly,
the local Nu will decrease in detachment zones. This effect is
demonstrated in Fig. 8�b� where Nu as a function of x for the
y-averaged wind structure �Fig. 5�c�� is shown for the top
and bottom walls. Note that the spatial variations in the wall
heat flux are generated entirely by the wind structure since

Nu�x ,y�=− H
���z�̃ at z= �H /2. It can be imagined that spa-

tial variations in Nu indicate significant horizontal heat
fluxes as well. Indeed, this is the case and this point will be
addressed below.

The average horizontal heat fluxes �ũi�̃�A and �ui���˜�A for
i= �1,2� are zero by definition due to the absence of forcing
in the horizontal directions. However, as can be seen in Fig.
9�a�, where the total convective heat flux �averaged over the

y direction� is shown in flux vectors �ũ�̃+u���˜ , w̃�̃

+w���˜�, the horizontal heat fluxes are significant, especially
very close to the walls. The heat transport is in the same

direction at the top and bottom plates, and is directed to the
relatively hot region where the flow is upward on average.

Due to the antisymmetry of ũ�̃ and u���˜ �Fig. 9�a��, their

plane average vanishes. Hence, �ũ�̃�A and �u���˜�A cannot be
used as indicators for the strength of the horizontal heat flux.
However, the spatial standard deviations �ũ�̃ and �u���

˜ are
good indicators, with �X defined as

�X = �
Š�X − �X�A�2

‹A. �13�

The spatial standard deviations �Fig. 9�b�� emphasize how
close to the wall this heat is transported: The peak of the
horizontal heat transfer lies deep inside the thermal boundary
layer. This peak originates purely from the interaction of the

mean wind and mean temperature field as ũ�̃. Horizontal
heat fluxes even exceed the average vertical heat fluxes.
These findings emphasize the importance of understanding
the boundary layer structure and its dynamics.

The error bars around the total heat flux denote the spatial

variations in the total vertical heat flux w̃�̃+w���˜−��z�̃.
An interesting aspect is that these variations are large near
the walls �due to the spatial variations in Nu; see Fig. 8�b��,
and decrease and go to a minimum at z=��, after which the
variance increases again due to the turbulent fluctuations.
This suggests that the thermal boundary acts as a redistribu-
tor of heat.

The horizontal heat fluxes become larger as Ra increases,
as shown by the characteristic heat fluxes normalized by Nu
in Fig. 10. Shown are the characteristic heat flux due to the
interaction of mean wind and temperature �ũ�̃ and the tur-
bulent heat flux �u���

˜. Although the fluctuations �u���
˜ grow

in strength relative to Nu as Ra increases, their magnitude is
still quite small at Ra=107. In contrast, the heat flux due to
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FIG. 7. Plane-averaged profiles of kinetic energy. Shown are the classical profiles �a�,�c�,�e� and the symmetry-accounted profiles
�b�,�d�,�f�. Ra= �a,b� 1.15�105, �c�,�d� 1.0�106, and �e�,�f� 1.0�107.
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the wind �ũ�̃ is nearly a factor of 3 larger than the vertical
heat flux at Ra=107. The horizontal heat fluxes are central to
the mechanism driving the wind, as is discussed below and
in Sec. V.

D. A wind feedback cycle

In this section we study the momentum and heat balances
term by term �Table II�. As the wind structure is statistically
in a steady state, the balance is purely a function of space as
A+D+P+B+R=0. As in Fig. 5�c�, the budget terms have
been averaged over the y direction for convenience of pre-
sentation. Several checks were done to ensure that the
y-averaged momentum budgets are also representative for
the three-dimensional field.

In Fig. 11 four vertical sections are shown, at the location
of maximum upward motion �Fig. 11�a��, at 1/3 of the cycle
�Fig. 11�b��, at 2/3 of the cycle �Fig. 11�c��, and at the maxi-
mum downward motion �Fig. 11�d��. Note that this is only
half of the flow field; the other half does not provide new
information due to symmetry. In the description it is suffi-
cient to focus on the top wall only, as the top profiles from
Fig. 11�a� can be mapped onto the bottom profiles from Fig.
11�d� by elementary symmetry operations, and the same
holds for Figs. 11�b� and 11�c�. Focusing on the region where
the flow is upward �Fig. 11�a��, we see that the forces of the
horizontal momentum equation are nearly zero. In the verti-
cal momentum equation, the buoyancy term B is balanced by
the vertical pressure gradient P and the Reynolds stress R.
In this region, the average temperature is positive, resulting
in a positive buoyancy forcing B over nearly the entire ver-
tical. The vertical pressure gradient is negative with a nega-
tive peak near the top plate which reflects the resulting pres-
sure buildup due to the impinging plumes. The Reynolds

stresses R, dominated by the term −�zw�w�˜, are slightly
stronger on the top plate than on the bottom plate. This is an
indication that, on average, plume impingement is a more
violent process than plume detachment. In the budget for
temperature, the balance is primarily between diffusion D,
gradients in the turbulent heat flux R, with a small contribu-
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FIG. 8. Balance of heat fluxes at Ra=106 and Pr=1. �a� Wind-
decomposed heat fluxes. �b� Nu as a function of x and averaged
over y at the top and bottom walls.
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TABLE II. Budget terms for momentum and heat equation.

A D P B R

�tũi= −� jũjũi +�� j
2ũi −�ip̃ +�g�̃
i3 −� juj�ui�

˜

�t�̃= −� jũj�̃ +�� j
2�̃ −� juj���˜
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tion due to the local acceleration of the mean flow field A.
The forcing is stronger at the top plate, due to the impinge-
ment of the wind and the plumes. The local Nusselt number
Nut is maximal at this position �see also Fig. 8�b��. Note that
Nut is related to the integral of the thermal diffusive term D
on the top boundary layer. As the area under D at the top
wall is larger than the area under D at the bottom wall, it
follows that Nut�Nub, which is consistent with Fig. 8.

Following the flow along the top plate, the horizontal mo-
mentum budget of Fig. 11�b� shows a strong positive hori-
zontal pressure gradient P, which is balanced by diffusion D
close to the wall, and Reynolds stresses R and inertial terms
A a bit further away. The horizontal pressure gradient P is
positive over the upper two-thirds of the vertical. The inter-
esting small peak in R very near the wall will be discussed
in more detail in the accompanying paper �26�, which fo-
cuses on the boundary layers. In the vertical momentum
equations, the situation is similar to that of Fig. 11�a�, with
the exception that the buoyancy force has become less posi-
tive. For the temperature budget, Nut is lower at this point
�Fig. 8�b��, making thermal diffusion D weaker.

A bit further downstream �Fig. 11�c��, the horizontal mo-
mentum budgets indicate that the pressure gradient is still
positive but has decreased in strength. As the flow has started
to decelerate, the inertial force A gives a positive contribu-
tion. Close to the wall, the diffusion D is braking the fluid,

and a bit further away the fluctuations R. As far as the tem-
perature budget is concerned, Nut has decreased even more.
The budgets when the flow comes to a halt and starts its
descent are shown in Fig. 11�d�. In the vertical momentum
equation, the buoyant forcing has become negative over
nearly the entire vertical, which is balanced by the vertical
pressure gradient P and the Reynolds stress term R. As Nut
is at a minimum at this position, thermal diffusion is rela-
tively small here, and the advective part A has become neg-
ligible.

In conclusion, the mean momentum and temperature bud-
gets show that the wind is driven by pressure gradients.
These pressure gradients are generated as the result of spatial
buoyancy differences caused by spatial temperature differ-
ences. This finding is in line with the study by Burr et al.
�25�, despite the absence of sidewalls. The pressure gradient
can be estimated by integrating the vertical momentum equa-
tion, as will be shown in the next section.

Using Fig. 11 we can identify a detailed feedback mecha-
nism sustaining the wind. The buoyancy force creates a pres-
sure increase �decrease� on the top wall where the flow is
positively �negatively� buoyant. This generates horizontal
pressure gradients at the top and bottom walls that drive a
mean flow which transports a relatively large amount of heat
through the bottom layers �Sec. IV C�. The net transport of
heat toward the region with ascending flow causes spatial

FIG. 11. Momentum and temperature budgets as functions of z for Ra=106 and Pr=1. �a� Upward motion; �b� 1/3 of the way; �c� 2/3 of
the way; �d� downward motion. Note that only half of the wind structure is shown in the center picture �see Fig. 5�.
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temperature gradients �Fig. 9�. Finally, these spatial tempera-
ture differences induce spatial gradients in the buoyancy
which completes the feedback cycle. A schematic diagram of
this process is shown in Fig. 12.

V. A SIMPLE MODEL FOR THE WIND

A. A short derivation

Based on the feedback mechanism deduced in the previ-
ous section, a simple mathematical model can be con-
structed, by averaging the two-dimensional momentum and
temperature equations over appropriate regions of space. A
sketch of a typical wind structure is shown in Fig. 13, with
nine locations A− I which will be used to identify specific
areas. A generic averaging operator �·�, which averages over
both lines and areas, is defined as

�X�CI 	
1

H
�

CI

X dz ,

�X�ACIG 	
1

HLw
� �

ACIG

X dx dz ,

and so on. Here, Lw represents the size of a roll �Fig. 13�. As
there is a slight clash of variable names �with the height H�,
it should be understood that the locations A− I will be used
only as subscripts in the averaging operator.

The model has two main variables, the mean wind veloc-
ity Uw and the mean temperature amplitude �w. The mean
wind velocity Uw is defined as

Uw 	 �ũ�ACFD =
2

HLw
� �

ACFD

ũ dx dz . �14�

The mean temperature �w is defined as

�w 	 ��̃�BCIH =
2

HLw
� �

BCIH

�̃ dx dz , �15�

which represents the wind-induced temperature amplitude.
Averaging the two-dimensional horizontal momentum

equation over the area ACFD and the temperature equation
over the area BCID results in

dUw

dt
= − 2

�w�u�˜�DF

H
−

�p̃�CF − �p̃�AD

Lw
− 2�

��zũ�AC

H
, �16�

d�w

dt
=

2�ũ�̃�BH

Lw
+

2�u���˜�BH

Lw
+ �

��z�̃�HI − ��z�̃�BC

H
.

�17�

A technical discussion about the steps leading to �16� and
�17� can be found in Appendix A.

In the horizontal momentum equation �16�, we see that
Uw is driven by a yet unspecified pressure gradient, and is
subject to a wall shear stress and a turbulent shear stress in
the bulk �see Fig. 14�a��. Both the wall shear stress and the
turbulent stress tend to decelerate the wind. In the heat equa-
tion �17�, the temperature amplitude �w is driven by the

large horizontal heat flux �ũ�̃�BH in the boundary layer,

which was identified in Sec. IV C. The term �u���˜�BH is a
horizontal turbulent heat flux, which tends to decrease tem-
perature differences by turbulent mixing. The last term in
�17� represents the heat flux through the bottom and top
walls. If �w is positive, the heat flux on the top wall will be

FIG. 12. Wind feedback mechanism.

B

H

CA

G

D

I

E F

Lw

H

FIG. 13. Sketch of the wind structure and nine locations
A− I.
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FIG. 14. �a� Dominant forces on the wind structure. A pressure
gradient drives the wind, while the wall-shear stress and turbulent
shear stress in the bulk provide friction. �b� Heat fluxes due to the

wind structure. The heat flux ũ�̃ creates spatial temperature differ-
ences, while the heat flux at the top and bottom walls and the
turbulent heat flux in the bulk destroy temperature differences.
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larger than the heat flux on the bottom wall. Hence, this term
effectively removes heat from the control volume. A sketch
of the heat fluxes is shown in Fig. 14�b�.

The average pressure gradient can be estimated with the
help of the vertical momentum equation. Averaging the ver-
tical momentum equation over CI, which is the streamline
connecting the bottom to the top wall, results in

d�w�CI

dt
= �g��̃�CI −

�p̃�I − �p̃�C

H
. �18�

Thus, the average vertical acceleration over CI depends on
the average temperature and the pressure difference between
the top and the bottom walls. Because of the point symmetry
around E �Fig. 13�, the pressure �p̃�I is equal to �p̃�A, which
means that �18� provides information about the mean pres-
sure gradient on the bottom wall. Invoking continuity and
approximating the pressure gradient as a linear function of z
�see Appendix A�, we obtain

�p̃�CF − �p̃�AD

Lw
�

H2

2Lw
2

dUw

dt
−

�gH

2Lw
�w. �19�

This is one of the central results of this paper, as �19� pro-
vides an explicit coupling between Uw and �w.

Substituting �19� into �16� yields the unclosed equations
governing the wind structure:

dUw

dt
=

2Lw
2

2Lw
2 + H2��gH

2Lw
�w − 2

�w�u�˜�DF

H
− 2�

��zũ�AC

H
� ,

�20�

d�w

dt
=

2�ũ�̃�BH

Lw
+

2�u���˜�BH

Lw
+ �

��z�̃�HI − ��z�̃�BC

H
.

�21�

B. Parametrization, turbulence closure,
and dimensionless formulation

The viscous momentum and diffusive heat fluxes at the
walls in �20� and �21� can be related to Uw, �w, and �� by

���zũ�AC �
1

2
Cf
Uw
Uw,

���z�̃�HI � �
− ��/2 − �w

��

,

���z�̃�BC � �
�w − ��/2

��

.

The wall shear stress ���zũ�AC is expressed simply in terms
of the friction factor Cf �38�. The temperature gradient at the

top wall ��z�̃�HI can be estimated from �−�� /2−�w� /��,
as variations in �� are negligible to first order. The tempera-
ture gradient at the bottom wall is approximated similarly.

The mean horizontal heat flux �ũ�̃�BH, which drives the flow
�Sec. IV C�, is approximated by

�ũ�̃�BH �
��Uw��

H
.

The horizontal heat flux occurs mainly in the thermal bound-
ary layers �Fig. 15�, where the temperature is approximately

�� /2 and the typical velocity is Uw. Hence, ũ�̃
�Uw�� /2, and accounting for the two boundary layer con-

tributions, the average horizontal heat flux �ũ�̃�BH is ap-
proximated as above.

The only terms that require closure at this point are the

turbulent momentum and heat flux, �w�u�˜�DF and �u���˜�BH,
respectively. The bulk is well mixed, as can be judged from
the nearly constant temperature and the linearly varying ve-
locity as a function of z in the bulk. Therefore, a simple
closure with the gradient-diffusion hypothesis is appropriate
for the turbulent fluxes:

�w�u�˜�DF = − �T�zũ � �T
2Uw

H
, �22�

�u���˜�BH � − �T��x�̃�BH = −
�T

PrT

2�w

Lw
, �23�

where �T and PrT=�T /�T are the eddy viscosity and turbulent
Prandtl number, respectively. To relate �T to mean flow prop-
erties, we use the Prandtl mixing length hypothesis, which
results in

�T = 
�2
�zu
 � 
H2 
Uw

H

= 

Uw
H . �24�

Here 
 is a free parameter which controls the mixing.
Using the approximations above, the equations for the

wind structure are given by

dUw

dt
=

2Lw
2

2Lw
2 + H2��gH

2Lw
�w −

4
 + Cf

H

Uw
Uw� , �25�

d�w

dt
=

2����

LwH
Uw −

4

Uw
H
Lw

2 PrT

�w − �
2

H��

�w. �26�

The introduction of dimensionless variables Ûw=Uw /Uf,

�̂w=�w /��, and t̂= tUf /H, where Uf is the free-fall veloc-
ity Uf =��gH��, results in

dÛw

dt̂
=

2L̂w
2

2L̂w
2 + 1

� 1

2L̂w

�̂w − �4
 + Cf�
Ûw
Ûw� , �27�

∗ =

�u�Θ�Θ

∆Θ
2
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λΘ
λu

−∆Θ
2

FIG. 15. Generation of the horizontal heat flux ũ�̃, which gen-
erates spatial temperature differences.
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d�̂w

dt̂
=

2�̂�

L̂w

Ûw −
4


L̂w
2 PrT


Ûw
�̂w −
2

�̂�RefPr
�̂w. �28�

Here, L̂w=Lw /H and �̂�=�� /H are the normalized roll size
and kinetic and thermal boundary layer thickness. Ref is the
Reynolds number based upon Uf.

The wind model �27� and �28� comprises two nonlinear

coupled ordinary differential equations in Ûw and �̂w. The

model contains seven parameters L̂w, Cf, �̂�, 
, Ref, Pr, and

PrT. However, �̂�= �̂��Ra,Pr�, Cf =Cf�Ra,Pr�, and Ref
=Ra1/2Pr−1/2. Therefore, the model can be expressed by the

parameters Ra, Pr, L̂w, 
, and PrT complemented by the func-
tions for �u and Cf. Only PrT and 
 can be used to calibrate
the model, which will be done based on the simulations at
Ra=106 in the next section.

C. Results

In this section the model will be compared to the DNS
results. As a baseline test, the wind model �27� and �28�
should be able to predict the trends in wind speed Ûw and

temperature amplitude �̂w as a function of Ra. In this study,

we close L̂w, Cf, and �̂� empirically with our DNS results. In

particular, we use Pr=1, L̂w=2�2, Cf =A�Ra��, and �̂�

=A�Ra��. The best-fit coefficients for Cf and �̂� based on
the current simulations are A�=36, A�=2.33, ��=−0.30, and
��=−0.27.

The turbulence parameters 
 and PrT will be calibrated
using the turbulent fluxes and wind and temperature ampli-
tude for the simulation at Ra=106. By calculating �t and �T
with �22� and �23� it follows that PrT�0.85, in reasonable
agreement with the generally accepted PrT�0.9 for shear
flows �38�. The mixing parameter 
 can be calculated from
�24�, which results in 
�0.6. It is noted that 
 and PrT are
not parameters in the strict sense, as the DNS results indicate
they have a weak dependence on Ra.

The phase space of �27� and �28� at Ra=107 is shown in
Fig. 16. There are three fixed points in the domain, of which
the one at �0,0� is a saddle node. The two other fixed points

are attractors. Thus, if there is no wind initially, any small
perturbation caused by turbulent fluctuations will cause the

system to settle in a wind structure with either Ûw�0 or

Ûw�0. The tendency of Rayleigh-Bénard systems to estab-
lish a wind structure can thus be explained by the positive
feedback created by wind advecting large amounts of heat
and the resulting buoyancy differences which drive a mean
flow. The amplitude of the wind is the result of the interac-
tion between the destabilizing mechanism mentioned above
and the mixing due to turbulence which reduces gradients.
Note that the model cannot describe wind reversals
�7,23,24�, by the absence of dynamic fluctuations; both non-
zero fixed points are stable. The limitations of the model will
be discussed in more detail in the concluding remarks �Sec.
VI�.

As the system is invariant under Ûw→−Ûw, �̂w→−�̂w, it
suffices to study the positive fixed point of �27� and �28�,
which is located at

Ûw =
1

2

b3

b2
��1 + 4

a1

a2

b1b2

b3
2 − 1� , �29�

�̂w =
a2

a1
Ûw

2 , �30�

where

a1 =
1

2L̂w

, a2 = 4
 + Cf ,

b1 =
2�̂�

L̂w

, b2 =
4


L̂w
2 PrT

, b3 =
2

�̂�RefPr
.

Shown in Figs. 17�a� and 17�b� are the trends of Ûw and �̂w
as functions of Ra, compared with the DNS results �dia-

monds�. The model slightly underpredicts Ûw, but the tem-

perature amplitude �̂w is predicted well. More importantly,
the model seems to capture the decreasing trend of �w prop-

erly, as well as the very weak Ra dependence of Ûw. Given
its simplicity, the model is in fair agreement with the simu-
lations.

From �29�, it follows that, as Ra increases, Cf becomes
negligible relative to the mixing parameter 
. For the simu-
lation at Ra=107, Cf �0.17 while 4
=2.4. Hence, the fric-
tion term Cf +4
 is dominated by the turbulence in the bulk.
As Cf is a decreasing function of Ra, this effect becomes
stronger as Ra increases. This indicates that wall friction has
a negligible influence on the wind velocity for Ra sufficiently
high.

The asymptotic scaling of Ûw for Ra→� can be estab-

lished by studying the scaling of the coefficients of Ûw:

b3

b2
=

A�L̂w
2 PrT

2
A�

Ra−�1/2+���Pr−1/2,

FIG. 16. Phase space of wind model at Ra=107. The fixed
points are denoted by circles and the black line is the separatrix.
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4
a1

a2
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4
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A�
3

L̂w
4 PrT

Ra1+3��Pr.

Assuming that the scaling exponent for �̂� remains above
��=−1 /3, Ra1+3��→�, from which the asymptotic scaling

of Ûw is

Ûw � Ra��/2. �31�

The wind Reynolds number Rew=UfH�−1Uw /Uf

= ÛwRa1/2Pr−1/2, so that Rew�Ra�1+���/2. Based on the expo-
nent from the simulations ���=−0.27� it follows that Rew
�Ra0.37 in the asymptotic limit. As Re��Ra�1−���/3�Ra0.44

�where we used that ���Nu−1�, Rew�Ra0.37 suggests that
the wind becomes progressively weaker relative to the fluc-
tuations as Ra increases. Naturally one should not assign too
much value to the exact exponent, as it depends on the Ra

dependence of �̂�. Nevertheless, the flux term generating the

temperature differences ũ�̃ depends critically on �̂�. If �̂� is
a decreasing function of Ra, so will �w and Uw be.

VI. CONCLUDING REMARKS

The aim of this study has been to clarify the processes
responsible for the wind amplitude. Direct numerical simu-
lation was performed at Ra= �105 ,106 ,107 ,108� and Pr=1
for a �=4 aspect-ratio domain with periodic lateral boundary
conditions. For all but the highest Ra, ten independent simu-
lations were carried out, resulting in approximately 400 in-
dependent realizations per Ra. The wind structure was ex-
tracted by accounting for symmetries, i.e., using the
translational invariance of the system to align realizations

before averaging them. In this way, wind could be distin-
guished from fluctuations for a domain with periodic side-
walls. It was found that the characteristic peak in the kinetic-
energy profile by which the boundary layer thickness is
defined is nearly entirely due to the wind and the turbulent

fluctuations �u�u�˜�A are distributed uniformly outside the
thermal boundary layer. Deep inside the thermal boundary
layers, the wind structure is responsible for large horizontal
heat fluxes, transporting heat toward the region of upward

flow, through the terms ũ�̃ and ṽ�̃. These horizontal heat
fluxes are up to three times larger than the average Nusselt
number at Ra=107, although the total amount of heat trans-
ported through the boundary layer decreases with increasing
Ra. This wind-generated horizontal heat flux is central for
the formation of a wind structure as it generates spatial tem-
perature differences. As a result of the temperature differ-
ences, pressure gradients are generated which drive the wind.

A simple model of two coupled nonlinear ordinary differ-
ential equations was derived, which captures the essential
processes governing the wind structure. The primary vari-
ables are the wind velocity Uw and the temperature ampli-
tude �w, while the Rayleigh number Ra, the Prandtl number
Pr, the wind roll size Lw, the friction factor Cf�Ra,Pr�, and
the thermal boundary layer thickness ���Ra,Pr� are physical
parameters. The turbulence in the bulk is described by a
mixing coefficient 
 and a turbulent Prandtl number PrT.
DNS results were used to calibrate 
 and PrT, and served as
inspiration for the parametrization. The model reproduces the
Ra dependence of Uw and �w from the DNS, and the follow-
ing conclusions follow from the wind model.

�a� A wind structure is inevitable, as the fixed point cor-
responding to the absence of wind is an unstable saddle. The
positive feedback responsible for this behavior is the inter-
action between the mean wind and the mean temperature, as
described above.

�b� The wind velocity is largely determined by the turbu-
lence in the bulk rather than by the wall shear stress. At
Ra=107, we find that Cf =0.17, while 4
=2.4, so that the
turbulence in the bulk dominates the total friction Cf +4
 in
�27�.

Although the model gives interesting insights, it has a
number of limitations. In the derivation it has been assumed
that the domain was unbounded in the lateral directions, i.e.,
no sidewalls. As a result, the effect of friction on the side-
walls has been omitted, which—once included—will en-
hance the friction experienced by the wind structure. Further-
more, the model was derived from the two-dimensional
Reynolds-averaged Navier-Stokes equations, which accounts
only for the mean effects of the turbulence, thereby exclud-
ing long-term dynamical behavior such as reversals and re-
orientations. However, no fundamental difficulties are ex-
pected to incorporate the missing physics described above.

In the accompanying paper �26�, we focus on the bound-
ary layers. Using the wind model developed in this paper, we
derive new scaling laws for �u and Cf. For the wind model,
this implies that �� is the only free parameter in the wind
model. Furthermore, we discuss in detail the issue of whether
or not the boundary layers should be regarded laminar or
turbulent.

10−1

10−2

10−3

1010109108107106105104

Ra

Û
w

10−1

10−2

10−3

1010109108107106105104

Ra

Θ
w

(b)

(a)

FIG. 17. Behavior of the model �Eqs. �29� and �30�, solid line�
compared to the DNS data �diamonds�. �a� Ûw and �b� �̂w as func-
tions of Ra.
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APPENDIX A: DERIVATION OF WIND MODEL

In this appendix we average the two-dimensional momen-
tum and temperature equations over specific control volumes
in order to develop a theoretical model for the wind. The
model has two variables, the wind velocity Uw and the tem-
perature amplitude �w, which are defined in Sec. V. To iden-
tify different regions, various locations are denoted by A− I
in Fig. 13. The wind roll size is denoted by Lw, and �·� is the
generic averaging operator defined in Sec. V.

1. Horizontal momentum equation

The two-dimensional horizontal momentum equation is
given by

�tũ = − �xũũ − �zw̃ũ − �xu�u�˜ − �zw�u�˜ − �xp̃ + ���x
2ũ + �z

2ũ� .

�A1�

This equation will be averaged over the area ACFD, which
results in

Due to the choice of the control volume, many terms are zero
�indicated by =0 above them�. Other terms can be neglected
�indicated by �0�. The three viscous terms are neglected as
they are very small compared to the wall friction term. The
average horizontal fluctuations on the interfaces CF and AD
will be approximately of the same strength, so that these
terms cancel out. Hence, the horizontal momentum equation
simplifies to

dUw

dt
= − 2

�w�u�˜�DF

H
−

�p̃�CF − �p̃�AD

Lw
− 2�

��zũ�AC

H
.

�A2�

2. Temperature equation

The temperature equation is given by

�t�̃ = − �xũ�̃ − �zw̃�̃ − �xu���˜ − �zw���˜ + ���x
2�̃ + �z

2�̃� .

�A3�

This equation is averaged over the area BCIH �Fig. 13�,
yielding

d�w

dt
= −

�ũ�̃�CI

=0

−�ũ�̃�BH

Lw/2
−

�w̃�̃�HI

=0

−�w̃�̃�BC

=0

H

−
�u���˜�CI

=0

−�u���˜�BH

Lw/2
−

�w���˜�HI

=0

− �w���˜�BC

=0

H

+ �
��x�̃�CI − ��x�̃�BH

Lw/2

�0

+ �
��z�̃�HI − ��z�̃�BC

H
.

Again, the choice of the control volume causes many terms
to be zero �indicated by =0�, while other terms can be ne-
glected �indicated by �0�. Here, the horizontal diffusive heat
fluxes can be neglected, because they are very small com-
pared to the vertical diffusive heat fluxes. The temperature
equation is reduced to

d�w

dt
=

2�ũ�̃�BH

Lw
+

2�u���˜�BH

Lw
+ �

��z�̃�HI − ��z�̃�BC

H
.

�A4�

3. Continuity

The continuity equation

�xũ + �zw̃ = 0 �A5�

is averaged over BCFE �Fig. 13�, which results in

�ũ�CF

=0

− �ũ�BE

Lw/2
+

�w̃�EF − �w̃�BC

=0

H/2
= 0.

Estimating �ũ�BE�Uw and �w̃�EF�Ww, with Ww the mean
vertical velocity, the continuity equation becomes

Uw

Lw
=

Ww

H
. �A6�

4. Vertical momentum equation

The unknown pressure gradient can be obtained by aver-
aging the vertical momentum equation over the streamline
CI �Fig. 13�. As spatial derivatives in the unbounded direc-
tions are zero �see Fig. 11�a��, the vertical momentum equa-
tion reduces to

�tw̃ = �g�̃ − �zw̃w̃ + �zw�w�˜ + �zp̃ + ��z
2w̃ . �A7�
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Averaging over CI gives

d�w�CI

dt
= �g��̃�CI −

�p̃�I − �p̃�C

H
−

�w̃w̃�I

=0

− �w̃w̃�C

=0

H

−
�w�w�˜�I

=0

− �w�w�˜�C

=0

H
+ �

��zw̃�I

=0

− ��zw̃�C

=0

H
.

It can be verified that �zw̃=0 at the bottom and top plates by
substituting the no-slip boundary condition u=0 in the con-
tinuity equation. Hence, the average vertical momentum
equation reduces to

d�w�CI

dt
= �g��̃�CI −

�p̃�I − �p̃�C

H
.

Due to symmetry, the pressure at A and I is identical. Hence,

substituting �p̃�I= �p̃�A, estimating �w�CI�Ww, ��̃�CI��w,
and using �A6�, we obtain that the typical pressure gradient
at the bottom plate is given by

�p̃�C − �p̃�A

Lw
=

H2

Lw
2

dUw

dt
−

�gH

Lw
�w.

In Fig. 11, we can see that the pressure gradient is approxi-
mately a linear function of z, from which the average pres-
sure gradient can be estimated as

�p̃�CF − �p̃�AD

Lw
�

H2

2Lw
2

dUw

dt
−

�gH

2Lw
�w. �A8�

Equations �A2�, �A4�, and �A8� constitute the unclosed wind
model.
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