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The effects of elasticity on filament thinning and breakup are investigated in microchannel cross flow. When
a viscous solution is stretched by an external immiscible fluid, a low 100 ppm polymer concentration strongly
affects the breakup process, compared to the Newtonian case. Qualitatively, polymeric filaments show much
slower evolution, and their morphology features multiple connected drops. Measurements of filament thickness
show two main temporal regimes: flow- and capillary-driven. At early times both polymeric and Newtonian
fluids are flow-driven, and filament thinning is exponential. At later times, Newtonian filament thinning crosses
over to a capillary-driven regime, in which the decay is algebraic. By contrast, the polymeric fluid first crosses
over to a second type of flow-driven behavior, in which viscoelastic stresses inside the filament become
important and the decay is again exponential. Finally, the polymeric filament becomes capillary-driven at late
times with algebraic decay. We show that the exponential flow thinning behavior allows a measurement of the
extensional viscosities of both Newtonian and polymeric fluids.
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I. INTRODUCTION

The progressive breakup of an initially stable fluid thread
into small drops or bubbles is a rich phenomenon of great
interest �1�. For example, flow focusing in microfluidic de-
vices can continuously produce drops or bubbles whose sizes
are controlled by the relative flow rate of the two immiscible
fluids �2–7�. While most such work concerns Newtonian flu-
ids, many fluids of interest for laboratory-on-a-chip applica-
tions are likely to exhibit complex microstructure and non-
Newtonian behavior, such as viscoelasticity. Furthermore,
viscoelastic effects, which can be quantified by the elasticity
number El=�� / ��L2�, scale inversely with the square of the
device length scale �L� and are likely to be accentuated in
microfluidic devices. Here, � is the fluid relaxation time, � is
viscosity, and � is density. For polymeric drop breakup in
macroscopic flow, elasticity can give rise to breakup behav-
ior that is markedly different from that of Newtonian fluids
�8–11�. For example, a viscoelastic filament quiescent bath
�12� undergoes an initial viscous-capillary regime in which
the decrease in the filament diameter is linear, followed by a
slower thinning process in which capillary forces are bal-
anced by the fluid elastic stresses.

Recently, a numerical investigation in a flow-focusing de-
vice �13� showed qualitative differences with respect to
Newtonian fluids such as prolonged thinning of the fluid fila-
ment and delay of drop pinch-off. No measurements of thin-
ning rates or breakup times were presented. An experimental
investigation in a “T” shaped geometry using a low viscosity,
elastic fluid �14� also found prolonged thinning of the fluid
filament. The authors observed a linear decrease in filament
diameter followed by a “self-thinning” exponential regime,
which was argued to have a rate inversely proportional to the
fluid relaxation time ���. However, � was found to vary over

an order of magnitude with shear rate, though it should re-
main constant. While both investigations found similar quali-
tative trends, no quantitative connection has yet been made
to the extensional flow within the filament during thinning
and breakup.

In this paper, we compare the filament thinning and
breakup of Newtonian and viscoelastic fluids of equal shear
viscosity in a microchannel cross-slot geometry. Here, the
outer Newtonian fluid stretches the inner Newtonian or poly-
meric fluid into a thin filament until it eventually breaks up
into drops. This geometry allows for very fine control of the
flows over a broad range of shear rates. Measurements of
filament thickness show two temporal regimes: �i� a flow-
driven regime in which the filament thins exponentially and
�ii� a capillary-driven regime in which the filament thins al-
gebraically. Our analysis leads to a method of measuring the
steady extensional viscosities of both Newtonian and poly-
meric fluids.

II. METHODS

The experimental configuration is a cross-slot microchan-
nel, W=50 �m wide and L=30 �m deep, molded in poly-
�dimethylsiloxane� �PDMS, Dow Sylgard 184� using stan-
dard soft-lithography methods �15,16�. Channels are sealed
with a glass cover slip after exposure to an oxygen plasma.
In order to keep the microchannel wetting properties uni-
form, the glass cover slip is coated with a thin layer of
PDMS prior to the exposure. The assembled channels are
then baked for 12 h at 100 °C in order to obtain hydrophobic
walls wetted by the continuous outer liquid phase.

The outer continuous phase is mineral oil containing 0.1%
by weight of surfactant �SPAN 80, Fluka�. Both Newtonian
and polymeric fluids are used for the inner �or “dispersed”�
phase. The Newtonian fluid is a 90%-glycerin aqueous solu-
tion. The polymeric fluid is made by adding 100 ppm of high
molecular weight polyacrylamide �PAA, MW=18�106, 15%
polydispersity�, which has a flexible backbone, to a Newton-
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ian 85%-glycerin aqueous solution with a measured shear
viscosity of �s,solv=0.2 Pa s; the water-glycerin mixture is
used as a solvent for the polymer. It is dilute, below the
overlap concentration of approximately 350 ppm. The inter-
facial tension between the continuous and dispersed phases
is �=10 mN /m. The fluids are characterized with a stress-
controlled rheometer at 25 °C. As shown in Fig. 1, the shear
viscosities of the oil and Newtonian fluids are nearly identi-
cal and independent of shear strain rate: �s�0.24 Pa s. Also
as shown, the viscoelastic polymeric fluid exhibits nearly
constant shear viscosity �power law index=0.97� and a first
normal stress difference N1, which increases quadratically
with shear strain rate.

We fit the polymeric fluid shear rheology data to the
widely used finite extensibility nonlinear elastic model with
Peterlin’s closure �FENE-P� �17–19�. In this model the fluid
total stress tensor � is assumed to be the sum of a contribu-
tion from the solvent and another resulting from the presence
of polymer molecules such that �=�solv+�poly. The solution
shear viscosity �s is then the sum of the solvent and poly-
meric parts �s=�s,solv+�s,poly. The FENE-P model is well-
adapted for dilute �and semidilute� high molecular weight
polymeric solutions and has been used previously to analyze
filament thinning of polymeric fluids in macroscopic experi-
ments �9�. A fluid described by the FENE-P model possesses
the same dynamical properties as a fluid described by the
much simpler Oldroyd-b model �18�, which assumes that
polymers can be modeled as Hookean springs. The main
difference is that the Oldroyd-b model allows for infinite
extension of polymer molecules, while the FENE-P model
uses a spring-force law in which the polymer molecules can
be stretched only by a finite amount in the flow field �17,18�.

A simultaneous fit �Fig. 1� of the polymeric fluid �s and
N1 data to the FENE-P model provides the fluid relaxation
time � and a dimensionless finite extensibility parameter b,
which are the only two adjustable parameters �18�. The best
fit results in �=0.45 s and b=4500. Further details on the
equations and methods used to fit the FENE-P model to the
shear rheology can be found elsewhere �20�.

The dispersed and continuous phases are injected into the
central and side arms of the cross-channel, respectively, us-

ing syringe pumps �Harvard Instruments�. Experiments are
performed for flow rate ratios, q=Qoil /Qaq, ranging from 10
to 200. In all cases, the aqueous flow rate is kept constant at
Qaq=0.01 l/min. This is low enough that the behavior is qua-
sistatic, such that the periodicity—but not the morphology—
depends on Qaq. For this range of parameters, the Reynolds
number is less than 0.01; therefore viscous forces are much
larger than inertial forces. The capillary number Ca ranges
from 1.25 to 50; therefore surface forces are larger than vis-
cous forces. Under these conditions an aqueous filament is
formed and stretched by the flow of the surrounding oil. The
thinning and breakup of the filament are imaged using an
inverted microscope and a fast video camera, with frame
rates between 1 and 10 kHz.

III. OBSERVATIONS

A. Qualitative

Sample frames from video data are shown in Fig. 2, for
both Newtonian and polymeric fluids, at a flow rate ratio of
q=60. The Newtonian case, shown in the left column, dis-
plays typical filament thinning and drop formation. The
aqueous phase is drawn into the cross-slot channel �a�, and
begins to elongate and collapse �b�–�d�, forming a primary
drop connected to a very thin filament; later �e� the filament
thins at a faster rate and breaks into a large primary drop and
small satellite droplets.

The polymeric case, shown in the right column of Fig. 2,
displays very different behavior. Initially �a�, we observe a
morphology that is similar to that of the Newtonian fluid,
i.e., viscoelasticity is negligible at first. As the thinning
progresses, the polymeric fluid develops a longer neck with a
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FIG. 1. �Color online� Fluid rheological characterization. �Left y
axis� Shear viscosity vs shear strain rate for all fluids; oil
=mineral oil; Newtonian=water-glycerin mixture; polymeric
=PAA in water-glycerin mixture. The shear viscosity is nearly con-
stant even for the polymeric solution �s�0.24 Pa s. �Right y axis�
First normal stress difference for the polymeric solution vs shear
strain rate. Dashed curves represent fits using the FENE-P model
with parameters �=0.45 s and b=4500.
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FIG. 2. Evolution of the thinning process for Newtonian �left
column� and polymeric fluids �right column� for a flow rate ratio
q=Qoil /Qaq=60, where Qoil /Qaq corresponds to the ratio of oil and
aqueous phase flow rates. Oil is the continuous �outer� phase while
the aqueous phase is either Newtonian or polymeric. �a� Initial re-
gime; �b� t / tb=0.15, where tb is breakup time; �c� t / tb=0.45; �d�
t / tb=0.95; and �e� after breakup. Values of tb for the Newtonian and
polymeric cases are 11.5 and 245 ms, respectively. Note the appear-
ance of satellite droplets in the Newtonian case and multiple beads
attached to the filament in the polymeric case ��d� and �e��. The
channel width and depth are 50 and 30 �m, respectively.
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drop attached to it �b�. This filament elongates while thinning
at a slower rate than in the Newtonian case �c�. Near the
breakup event, the polymeric fluid shows multiple beads
�“beads-on-a-string”� attached to the filament �d� �8,10,21�.
After breakup, there are many satellite drops �e�.

B. Quantitative

The filament thinning process is quantified by the de-
crease in diameter h�t� as a function of time. To accomplish
this, we fit a third-order polynomial equation to the interface
contour, which is restricted to the cross-slot region. The field
of view corresponding to the cross-slot region, in which h�t�
measurements are performed, is delimited by the solid line
rectangle shown in Fig. 3�a�. We assume that the interface is
symmetric across the centerline and only half of the contour
is fitted with the polynomial. We then locate the absolute
value of the minimum in the polynomial first derivative. The
filament diameter is measured at the point where the absolute
value of the minimum in the first derivative is located. There
are instances, however, where the minimum in absolute slope
may be located at the edge of the cross-slot region. Hence we
must check the dependence of h�t� on measurement location,
i.e., axial position z.

We test the dependence of h�t� on axial position z by
measuring h�t� in the cross-slot region and also 1, 2, 3, 4, and
5 channel widths downstream from the edge of the cross-slot

region �Fig. 3�a��. Results are presented in Fig. 3�b�; the
values of h�t� measured at different locations in the channel
are nearly the same except for an initial transient. It follows
that the values of the extensional strain rate 	̇ �Fig. 3�c��
measured at different locations are also very similar. Here,
we assume that 	̇=−�2 /h�dh /dt. We will check the validity
of this assumption next.

The extensional strain rate can be assumed to be
	̇=−�2 /h�dh /dt only if the filament thickness h is homoge-
neous in the axial coordinate z �22,23�. However, there is
some variation with z and an extra term in the extensional
strain rate that is proportional to �dh /dz� may arise. In order
to check whether this extra term can be neglected �or not�,
we consider an argument based on dimensional analysis: to
convert �v /h��dh /dz� to a strain rate requires an inverse time
scale, which must be given by a speed over a length. The
only speeds in the system are v and dh /dt. Here, v is the
average fluid velocity inside the filament, which is much
larger than dh /dt. The only lengths in the system are h and
the channel width, W; the former is smaller. Therefore the
biggest possible extra term in the extensional strain rate 	̇
would be a constant times �v /h��dh /dz�.

Following the argument above, we compare the space and
time derivatives �Fig. 4�. We express them nondimensionally
as dh /dz and �1 /v�dh /dt, where the prefactor �1 /v� makes
the time derivative dimensionless. We find that the space
derivative of the filament thickness is at least an order of
magnitude smaller than the dimensionless time derivative.
Hence the extensional strain rate can be safely assumed to be
	̇=−�2 /h�dh /dt.

To summarize, the results in Figs. 3 and 4 show that one
can, to a good approximation, study the thinning process by
treating the filament as if it is nearly uniform spatially, with
a thickness that depends only on time.

IV. RESULTS

A. Flow-driven regime

In Fig. 5�a�, we present sample results of measurements
of filament thickness h�t�, performed in the cross-slot region,

FIG. 3. �Color online� Position independence of the measure-
ment. �a� Filament thickness h�t� measured at different locations in
the microchannel. Measurements are performed in the cross-slot
region �solid line box� and at �dashed lines� 1, 2, 3, 4, and 5 channel
widths downstream from that point. �b� The filament thickness for
the polymeric fluid at q=60 measured at different positions. Data is
color coded according to �a�. �c� The computed extensional strain
rate 	̇ for the same cases shown in �b�. The data shows that the
measurements of h�t� are nearly independent of axial position, after
an initial transient.

FIG. 4. �Color online� Filament axial spatial gradient dh /dz and
normalized extensional strain rate �1 /v�dh /dt as a function of time
for a polymeric fluid filament. Here, v is the average velocity inside
the fluid filament. Measurements are performed for different flow
rate ratios q=10, 30, and 60. The data shows that dh /dz

 �1 /v�dh /dt so filament thickness spatial gradients may be ne-
glected when computing the extensional strain rate 	̇.
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as a function of time. We show data for both Newtonian and
polymeric fluids for three flow rate ratios, q=10, 30, and 60.
At short times, the Newtonian and polymeric fluids exhibit
identical initial thinning, which is indicative of their common
�s; but at longer times, the two diverge with the polymeric
filament lasting at least an order of magnitude longer before
breakup. We also note shorter breakup times as q is in-
creased. This trend is also found in other flow-focusing ex-
periments �2,24� and in a numerical investigation �25� using
Newtonian fluids.

The filament extensional strain rate 	̇=−�2 /h�dh /dt is
shown as a function of time for the same flow rate ratios q, in
Fig. 5�b�. For the Newtonian fluid, 	̇ is initially independent
of time; therefore, in this regime, h�t� decreases exponen-
tially with time. For the polymeric fluid, 	̇ is initially equal to
the same constant as for the Newtonian fluid; but it soon
departs and, after a transient interval, settles down to smaller
constant value, which indicates a second regime of slower
exponential thinning. For all fluids at the very latest times,
close to breakup, the final decrease of h�t� to zero gives an
apparent divergence of 	̇. We show in Sec. IV B that the data
just before breakup are consistent with a linear decrease in
filament diameter, h�t�� �t− tb� where tb is the breakup time.

To model the exponential decrease of filament diameter,
we assume that �1� filament thinning is driven mainly by the

outer fluid extensional flow in the cross-slot region and �2�
the shear flow that develops is relatively far downstream
from the cross-slot region and should have no implications
on the local stress balance. These are reasonable assumptions
since shear stresses tangential to the filament do not contrib-
ute to the thinning �or squeezing� of the filament; filament
thinning is driven by outer fluid �oil� viscous stresses normal
to the filament.

Starting from an assumption of stress balance inside and
outside the interface, and applying the definition of exten-
sional viscosity �19�, we obtain the condition �e	̇=�e,oil	̇oil,
which relates the strain rates and extensional viscosities of
the inner and outer phases. Here, the left and right sides are
the extensional viscosity multiplied by the extensional strain
rate for the aqueous filament and continuous oil phases, re-
spectively. As discussed above, the strain rate in the filament
is 	̇=−�2 /h�dh /dt. The strain rate for oil in the cross-slot
region is 	̇oil�Qoil / �W2L�, as verified by particle-tracking
methods �26�. Lastly, since the oil is Newtonian, its exten-
sional viscosity is �e,oil=3�s,oil, where �s,oil is the oil shear
rate viscosity �19,27�. Therefore also assuming that �e is
independent of time, the filament diameter thins exponen-
tially according to

h�t� = ho exp�− �3/2���s,oil/�e�	̇oilt� . �1�

where ho is an integration constant. This equation is valid for
the two flow-driven exponential regimes shown in Fig. 5. In
such flow-driven regimes, Eq. �1� may be used to deduce �e
from h�t� data.

We note that the quantity 	̇oil is measured in the cross-slot
region, where the flow is extensional and where pinching
from the “mother drop” occurs. To this end, we have checked
that 	̇oil remains constant during the filament thinning and
breakup event; the average velocity of the oil in the cross-
slot region is constant.

The transition between the two exponential thinning re-
gimes can be elucidated by plotting the quantity �
= �	̇oil�e,oil� / 	̇, which has units of viscosity, as a function of
time �Fig. 5�c��. We find that � is nearly constant in regions
where 	̇ is constant. In such regions, the quantity � is the
same as the filament extensional viscosity �e.

The values of �e are computed for each steady exten-
sional strain-rate 	̇, which is proportional to q, as shown in
Fig. 5�c�. We find that �i� the initial value of �e is indepen-
dent of q and �ii� the steady-state value of �e increases as the
flow rate ratio q is increased.

B. Capillary-driven regime

The linear decrease of the filament thickness near the final
breakup can also be modeled by stress balance, now by in-
corporating surface tension effects. Specifically, the
Rayleigh-plateau instability eventually sets in so that capil-
lary forces cause beading and ultimately breakup. Equating
radial stress with the Laplace pressure gives �e	̇=� /h
�7,28,29�. Therefore the filament diameter thins linearly with
time according to

h�t� = − �1/2���/�e��t − tb� , �2�

FIG. 5. �Color online� Time-dependent filament thinning. �a�
Filament thickness h�t� for both Newtonian and polymeric fluids
for q=10, 30, and 60. �b� Filament extensional strain rate
	̇=−�2 /h�dh /dt for the same fluids. Both viscous and elastic re-
gimes are characterized by constant 	̇. The value of 	̇ is equal to
8 s−1 for a polymeric fluid at q=10. �c� The quantity �	̇oil�e,oil� / 	̇ is
the filament extensional viscosity �e where the flow is extensional,
i.e., 	̇=const. Here, 	̇oil and �e,oil are the oil extensional strain rate
and extensional viscosity, respectively. Initially, for all fluids, the
values of �e are similar since all fluids have nearly the same �s.
Later, the steady-state value of �e increases with larger values of q.
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where tb is the breakup time. In such capillary-driven re-
gimes, Eq. �2� may be used to deduce �e from h�t� data.
Equation �2� shows that, near the singularity, h�t� varies lin-
early with �t− tb� with slope � /2�e, which has been observed
numerically �30� in the Stokes regime, except that, in the
numerical work, shear rather than extensional viscosity is
used in the denominator. A linear regime has also been ob-
served numerically for polymeric solutions near the final
breakup �12,31�.

To demonstrate the consistency of our extensional viscos-
ity results in the flow- and capillary-driven regimes, we plot
data for h�t� vs �� /�e��t− tb� in Fig. 6. There, the value of �e

is taken from analysis of the flow-driven regime using Eq.
�1�. To within apparently random deviations, the h�t� data
vanish linearly with �� /�e��t− tb� with slope −1 /2, in accord
with Eq. �2�. Note, however, that the dynamic range is lim-
ited, since the imaging resolution is about 2 �m. Therefore
the capillary-driven regime is consistent with the flow-driven
regime, but the latter gives more accurate values of exten-
sional viscosity �e.

V. DISCUSSION

The extensional properties of polymeric fluids are impor-
tant for applications such as turbulent drag reduction and
splash suppression �19,32�. However, measurement of �e has
remained a difficult task �33�. We now show that high-
quality data on the values of steady extensional viscosity for
both polymeric and Newtonian fluids can be obtained using
our method.

Final results for �e based on Eq. �1� are plotted in Fig. 7
vs extensional strain rate. Here each point represents a dif-
ferent fixed flow-rate ratio, q. For the Newtonian fluid, �e is
independent of extensional strain rate and nearly equals 3�s
as expected �19,27�. This agreement serves as a second
check, complementary to Fig. 6. For the polymeric fluid at
early times, in the first flow-driven regime, the behavior is
the same as for the Newtonian fluid �not shown�. At later
times, in the second flow-driven regime, the extensional
strain rate of the filament is lower and �e is higher. This

“strain-rate thickening” behavior is due to the stretching of
the polymer molecules in the extensional flow of the thinning
filament and it has been observed in other macroscopic ex-
periments �22,34�.

It is important to point out that the values presented in
Fig. 7 are for steady extensional viscosity and not transient
extensional viscosity, which is usually reported in macro-
scopic experiments �22,34�. Here, values of �e are computed
for each steady extensional strain-rate 	̇, which is propor-
tional to q, as shown in Figs. 5�c� and 7.

In Fig. 1, the FENE-P model properly describes both the
�s and N1 versus shear rate with two adjustable parameters,
which are �=0.45 s and b=4500. An expression for �e can
be obtained from the FENE-P model for a range of exten-
sional strain rates �18,20� using the values of �, b, and �s,solv.
The FENE-P prediction for �e is plotted in Fig. 7. It exhibits
strain-rate thickening behavior, which saturates at high strain
rates by accounting for the finite extensibility of the polymer
molecules. However, by comparison with our data, the pre-
dicted strain-rate thickening sets in too soon and too
abruptly. A possible source of error in the model may be
polymer dispersivity ��15% in MW�, which can smear out
the sharp rise in �e �9�. It cannot, however, account for such
early transition to strain-rate thickening behavior since �
�MW

3/2.
Other sources of error may be the inherent limitations of

the FENE-P model such as the averaging of the force values
connecting the beads in the dumbbell model originally pro-
posed by Peterlin �17�. This averaging is known to lead to
unexpectedly large polymeric stresses compared to the non-
averaged FENE model �35�. Another limitation is that while
real polymeric fluids have a spectrum of �, the FENE-P
model, as used here, is described by a mean � obtained in a
shear flow, which is known to be low for use in extensional
flows. Therefore we should expect some type of failure of
predictions of �e based on the single mode FENE-P model.
This disagreement does not imply a weakness in the mea-
surement.
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FIG. 6. �Color online� Filament thickness versus time in the
capillary driven regime, where tb is the breakup time. At very late
times, the filament thins roughly linearly in time with a speed pro-
portional to � /�e for both Newtonian �open circles� and polymeric
�closed circles� fluids. The flow ratio �q� is color-coded in the leg-
end for both cases. The solid line represents slope=−1 /2.

FIG. 7. �Color online� Extensional viscosities of both Newton-
ian and polymeric fluids, derived from the filament thinning mea-
surements and Eq. �1�, as a function of the extensional strain rate
	̇=−2 /h�dh /dt�. The polymeric fluid extensional viscosity shows
strain-rate thickening behavior and increases with a power law ex-
ponent of approximately 1.0. The theoretical Trouton ratio of a
Newtonian fluid is 3.0 �solid line�. The FENE-P model prediction is
also shown, but is far from the measurements.
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VI. CONCLUSION

In conclusion, small amounts of flexible polymer can dra-
matically affect filament thinning and breakup in microchan-
nel extensional flow. We find both a flow-driven regime in
which the filament thins followed by a capillary-driven re-
gime responsible for filament breakup. For a Newtonian
fluid, the filament thins exponentially with time until onset of
capillary surface tension-induced breakup. For the polymeric
fluid with the same shear viscosity �nearly independent of
shear strain rate�, there is an intermediate regime in which
the filament thins exponentially at a much slower rate. Fur-
thermore, in the capillary regime a series of small droplets is
generated along the filament. These differences may be at-
tributed solely to extensional viscosity and its increase with
extensional strain rate, since this is the only rheological dif-
ference between the Newtonian and polymeric fluids. For
thinner filaments and faster thinning, the polymer molecules
stretch and cause an increase in extensional viscosity without
significant change in shear viscosity. Further, for polymeric
fluids, the crossover from flow-driven to capillary-driven re-
gime may depend on the elastocapillary number EC
=De /Ca=�� / �	̇L�, where De is the Deborah number. This

suggests that the crossover depends on the system length
scale L.

Measurements of the exponential rate of thinning can thus
be used to determine the steady extensional viscosity, an elu-
sive quantity to measure. For the Newtonian case, �e�3�s;
for the polymeric case, the values of �e increase with exten-
sional strain rate, but much more slowly than predicted by
the FENE-P model. This suggests the need for a better un-
derstanding of both the molecule-scale behavior of polymers
in extensional flows as well as its connection to macroscopic
rheology. Filament thinning in microchannels, and its varia-
tions with polymer molecular weight, may be a promising
approach.
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