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We experimentally investigate the propagation of chemical fronts in steady laminar cellular flows at large
Péclet numbers and large Damköhler numbers. Fronts are generated in an aqueous solution by an autocatalytic
oxydoreduction reaction. They propagate in a channel in which a chain of counter-rotative parallel vortices is
induced by electroconvection. We first accurately determine the form, the dynamics and the mean velocity of
these fronts in the whole Hele-Shaw regime of the flow. We then address the modeling of the evolution of their
mean velocity with the flow amplitude. The structure of the front wakes yields us to reject an effective
reaction-diffusion wave as a relevant model for large-scale front propagation. On the other hand, analysis of the
role of front heads brings us to introduce a kinematic model at the vortex scale for uncovering the front
dynamics. This model addresses the propagation of the front leading point in a chain of vortices whose field is
modeled by a two-dimensional solid rotation complemented by a boundary layer. Interestingly, it sensitively
relies on the effective trajectory followed by the front leading point. To account for this, a competition is
worked out among a one-parameter family of potential trajectories. The actual trajectory is then selected as the
fastest one with quite a good agreement with measurements and observations. In particular, the measured
effective front velocities are well recovered from the model, including their intrinsic dependence on the
boundary layer width. Accordingly, effective front propagation in a laminar steadily stirred medium is thus
understood from an optimization principle similar to the Fermat principle of ray propagation in heterogeneous
media.
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I. INTRODUCTION

Propagation of a front in a stirred medium encompasses a
large variety of topics ranging from chemistry �1,2�, combus-
tion �3�, epidemics �4�, to marine ecology �5,6� or ozone
depletion �7�. It thus stands as a canonical transport process
which involves both fundamental and industrial implications
in physics, chemistry, or environment and which has moti-
vated a number of works in applied mathematics �8,9�. Its
main originality consists in confronting, within the same sys-
tem, two different kinds of transport phenomena: a nonlinear
reaction-diffusion process, following which a metastable or
unstable state is progressively transformed into a stable state,
and an advective, passive transport process by vortex stirring
and mixing, following which concentration fields are pro-
gressively diffused and homogenized. Whereas the former
mechanism tends to produce steep gradients, the latter aims
at smoothing them. Altogether, they give rise to an effective
reactive transport by convoluted fronts which sets a compro-
mise between a sharp phase transformation and a large range
homogenization.

Needless to say, recovering the main features of the re-
sulting balance between such antagonist phenomena calls for
a fine modeling of their spatial and temporal mechanisms.
What makes this delicate task valuable is the significant
changes of shape and velocity displayed by propagative
fronts and the resulting important practical implications. In
particular, one of its most popular application refers to inter-
nal combustion engines in which the improvement of the

effective propagation of a reactive front by turbulent flows
currently serves to raise cycle frequencies and, therefore, the
resulting car velocities. Other implications that involve lami-
nar flows may address propagation in porous media or in
confined systems, possibly even including microfluidic
devices.

In contrast with turbulent propagation �3,10,11�, front
propagation in laminar flows involves a coherence and a
steadiness of the medium following which a long time, large
scale correlation between the flow pattern and the effective
front propagation can set in. In this context, a central ques-
tion refers to the existence of significant open streamlines. If
there is some, front propagation will likely benefit from flow
advection on these lines. On the opposite, in case of closed
streamlines and thus of cellular flows, front propagation will
be unable to use flow advection on a long range. Its effective
propagation will then correspond to a compromise between
enhanced propagation within vortices and slow transport
across vortex boundaries. From this balance, an abnormal
type of transport, in between advection and reaction-
diffusion, may be expected.

The present study addresses front propagation in steady
cellular flows. Its objectives are twofold: first, document this
issue experimentally, then develop an efficient modeling
built on observed features and suitable for extension to more
complex configurations.

Transport in cellular flows has been reported in literature
for a passive tracer. At large Péclet number and at large times
compared to the diffusive time scale, the tracer was found to
spread over a large number of cells. Its concentration then
displayed a diffusive profile that was set on a scale large
compared to the cell scale �12�. This profile was found to
satisfy an effective diffusion equation derived by renormal-*alain.pocheau@irphe.univ-mrs.fr
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ization of the advection-diffusion equation at a scale large
compared to the cell scale �13,14�. The resulting effective
diffusivity was then found to be proportional to both the
molecular diffusivity and the square root of the Péclet num-
ber �13,14�, in agreement with experiments �15�. There, the
difficulty in crossing cell boundaries by tracer diffusion was
handled by a dependence on the Péclet number. In our con-
figuration, a similar slowing down of front propagation in the
vicinity of cell frontiers is expected to reduce the effective
front velocity in a way that remains to be experimentally
determined and modeled.

We report here a detailed experimental study of propaga-
tion of a reaction front in a steady cellular flow �16�. The
experimental configuration has been designed so as to pro-
vide planar flows and thus the most appropriate conditions
for a two-dimensional modeling. Fronts are produced by an
autocatalytic reaction in an aqueous solution: the “chlorite-
iodide” reaction. They involve a propagation velocity with
respect to the fluid, the so-called laminar velocity, that we
shall label Vo. Cellular flows have been generated by mag-
netohydrodynamic means �12�, the solution being placed
above an array of magnets and crossed by an electric current.
Both the trajectories and the effective velocity Vf of the front
have been studied as a function of the flow intensity U in the
moderate flow velocity regime U /Vo=O�10� where the flow
is planar in the Hele-Shaw regime.

Observation of the front wake shows a discrete series of
sharp, disconnected fronts �Fig. 1�, which contrasts with the
thickened fronts expected in the fast advection regime
U /Vo�10 �see Fig. 2 for large Pe /��U /Vo�. This means
that the model of effective reaction-diffusion wave derived
for the latters �17–21� does not apply to the present regime.
Instead, observation of front propagation in a vortex reveals
definite trajectories of the front heads which call for a kine-
matic modeling. However, to account for the sensitivity of
the resulting front velocity to the front trajectory, a competi-
tion between a family of potential trajectories has to be
worked out. We implement it in a suitable one-parameter
family by selecting the fastest trajectory as the actual trajec-
tory. This provides quite a good agreement with both the

measurements of effective front velocities and the detailed
observations of front propagation in vortices.

Interestingly, the resulting front dynamics appears to de-
pend not only on the flow magnitude but also on its structure,
i.e., on the relative width of the boundary layer. This depen-
dence on subscale structures is corroborated by comparison
between experiments performed at different vortex aspect ra-
tios. Altogether, these results provide a relevant modeling of
front propagation in cellular flows at moderate amplitude.
The corresponding model is based on an optimization prin-
ciple similar to the least-time Fermat principle of light propa-
gation but applied here to a heterogeneous medium made by
vortices. Although worked out here on planar flows, its gen-
eral formulation allows extensions to more complex flows.

The paper is organized as follows. Section II reviews the
literature on front propagation in cellular flows. The experi-
mental setup is described in Sec. III and the experimental
results are reported in Sec. IV together with their analyses.
They lead us to build in Sec. V a model of front propagation
based on an optimization procedure among a suitable set of
trajectories. This model is worked out in Sec. VI and vali-
dated in Sec. VII by comparison with experimental observa-
tions and measurements. A discussion about this work and
the insights it gives on the mechanisms of front propagation
in cellular flows is given in Sec. VIII. It is followed by a
conclusion about this study.

II. FRONT PROPAGATION IN CELLULAR FLOWS:
REGIMES, MODELS, AND SIMULATIONS

We review here the current knowledge on fronts propa-
gating in a two-dimensional �2D� cellular flow. As our ex-
periment stands in a Hele-Shaw regime, this flow will corre-
spond in practice to the largest planar flow which composes
the actual Poiseuille flow, i.e., the 2D flow displayed at mid-
depth of the channel. We classify below the different re-
gimes. We then report on the models proposed to date and on
the relevant experimental observations.

For simplicity of the modeling, it is assumed that the evo-
lution of the chemical reaction can be represented by a single

FIG. 1. Colorless front propagating from left to right in the vortex chain of the 12 mm large channel. Images correspond to different
instants of propagation over a period T. From the upper image to the lower one: t=0, T /6, 2T /6, 3T /6, 4T /6, 5T /6, 6T /6. �a� Moderate
advection: U /Vo=9.0, Vf /Vo=5.4. �b� Larger advection: U /Vo=18.8, Vf /Vo=7.8.
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progress variable �, 0���1, linked to the concentration of
products. We label U the velocity field of the flow in the
barycentric fluid frame, � the progress variable of the reac-
tion in between the initial ��=0� and final ��=1� states, D
the molecular diffusivity of species, � their reaction time, and
f��� /� their reaction rate. The evolution of the progress vari-
able is then given by the advection-reaction-diffusion
equation,

�t� + U · �� = D�� +
f���

�
. �1�

Whereas function f�·� is positive, its shape depends on the
nature of the reactive phenomenon. When a strong activation
energy is involved, f�·� displays an Arrhenius-like nonlinear-
ity: f���=exp�−�a /��P���, where P�·� is a polynomial and �a

the activation barrier. When the activation energy is negli-
gible, f�·� then simply reduces to the polynomial P�·�. Usu-
ally, it is assumed that the initial state �=0 is, as the final
state �=1, a steady state: P�0�= P�1�=0. For the sake of
simplicity, we shall restrict attention below to the case of
convex f�·� �so-called Kolmogorov-Petrovskii-Piskunov
�KPP� nonlinearity �22��.

A. Laminar front: U=0

In the absence of flow, U=0, the planar front velocity is
known to crucially depend on the shape of function f�·�. In
the Arrhenius-like case, the reaction zone and the diffusion
zone negligibly overlap so that flux conservation at their
boundary simply succeeds in fixing the front velocity �23�. In
the polynomial case, i.e., �a=0, the reaction zone spreads all
over the diffusion zone, so that both processes must be
handled together. It then exists a continuous family of trav-
eling wave solutions with front velocities V larger than a
minimum Vm. This minimum corresponds to the linear
spreading velocity, i.e., to the velocity that would display the
front edge close to the fresh medium �=0 for a linearized
reaction rate f���� f��0��. However, for compact or steep
enough initial conditions, a single nonlinear traveling-wave
solution with a specific velocity Vo is selected beyond tran-
sients for dynamical reasons �22,24�.

For convex reaction rates f�·�, i.e., in the KPP case, the
selected front velocity Vo corresponds to the linear spreading
velocity Vm �22,24�:

Vo = 2f��0�1/2�D

�
�1/2

. �2�

As the front dynamics is set by the leading edge ��0 close
to the fresh medium, this case is referred to as a pulled dy-
namics �24�.

When the reaction rate f�·� is not convex, its nonlineari-
ties are essential for setting the selected front velocity. Then,
Vo lies in between the previous value and the value 2	FD /�
where F=max0���1 f��� /�� f��0�. For polynomial f�·�, its
definite value can be derived without explicitly solving for
the front solution �25�. The fact that Vo is larger than the
value �2� deduced from the sole analysis of the front edge
��0 close to the fresh medium means that the front velocity

is now set in the internal part of the front, in a region of finite
�. This case is then referred to as a pushed dynamics �24�.

The front thickness 	 corresponds to the characteristic
size of the variation zone in between the two asymptots �
=0, �=1. For dimensional reasons, it is of order 	D�. In
particular, defining it as the length required to connect the
front asymptots with the closest linear profile, we obtain, for
a symmetric profile, 	=���M�−1 where M denotes the front
middle point: ��M�=1 /2 and ���M�=0. This, together with
Eq. �1�, yields 	=Vo� / f�1 /2� and, in the KPP case �2�,

	 = 2
f��0�1/2

f�1/2�
�D��1/2. �3�

We shall refer hereafter to the relations �2� and �3� as the
KPP solution. Notice that, as the dynamics of � depends only
on the reaction rate, i.e., on the ratio f��� /�, an arbitrary
normalization can be applied to the production term f���. It
usually corresponds to the arbitrary specification, f��0�=1.
For the sake of simplicity, we shall adopt this convention in
the remainder.

B. Cellular flow: U�0

When the front propagates in a cellular flow, two addi-
tional characteristic variables are in order: a typical flow in-
tensity U and a typical vortex size L �see Fig. 3�b� with L
�Lx�Ly�. One is therefore left with two characteristic sizes,
	, L, and three characteristic times, �r=�, �a=L /U, �d
=L2 /D, and thus with three nondimensional parameters: the
Damköhler number Da=�a /�r=L /U 1 /�, the Péclet number
Pe=�d /�a=UL /D, and the relative vortex size �=L /	. Fol-
lowing Eq. �3�, these nondimensional parameters are linked
by the relationship

Pe Da =
�d

�r
= g�2, �4�

with g=4f��0�f�1 /2�−2. In addition, the relative vortex inten-
sity U /Vo writes, with g̃= �1 /4� f�1 /2� / f��0�,

U

Vo
=

1

2f��0�1/2
��d�r�1/2

�a
= g̃

Pe

�
. �5�

As the flow gradient is smooth in cellular flows, the maxi-
mal flow velocity can play the role of a typical flow intensity.
This is especially true in the Hele-Shaw regime in which the
present experiment will lay, since the geometry of the flow
streamlines is then independent of the flow intensity. For
these reasons, we shall refer hereafter to U as the maximal
velocity of the 2D flow U.

Different qualitative regimes may be identified depending
on the above parameters. They are analyzed in Appendix A
and reported in Fig. 2 on two equivalent diagrams, one in the
��, Da� coordinates and the other in the �Pe, Da� coordinates.
They correspond to thin fronts that keep the same structure
as laminar fronts or to thickened fronts whose thickness ex-
tends on several vortices. The former fronts refer to laminar
fronts, wrinkled fronts called “flamelets” or disconnected
fronts whose reaction zone is then distributed over several
vortices. The thickened fronts refer to the so-called thick
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flamelets that may extend to the whole medium in the well-
stirred regime.

C. Models and simulations

Whereas the small Péclet number regime has not attracted
much attention due to the weakness of the expected effects of
advection, various theoretical and numerical studies have
been devoted to understanding the front behavior in the large
Péclet number regime, for small or large Damköhler num-
bers Da and relative vortex size � �17–21�. Their goal has
been to express the relationship between the relative en-
hancement of front velocity Vf /Vo and the relevant adimen-
sional parameters �Pe, Da, �� of the system. We review their
main conclusions below.

1. Peš1, Da™1

This large Péclet, small Damköhler regime refers either to
the well-stirred regime or to the distributed reaction zone
regime �Fig. 2�b��. It corresponds to a strong advection re-
gime, �a
�r, for which advection at the vortex scale occurs
before reaction is completed. It has been analyzed by phe-
nomenological renormalization of the properties of the sys-
tem at a scale large compared to the vortex size �17–19�.
This approach turned out absorbing advection effects in an
enhancement of the effective diffusion at large scale, in a
way reminiscent of that undergone in a similar situation for a
passive scalar �13,14�.

In the renormalization framework, either the asymptotic
coherence of the system behavior at large flow velocity �17�
or the dimensional relationship of the effective reaction-
diffusion velocity with the effective diffusivity �18,19� point
to a definite power-law variation of the front velocity Vo with
the flow amplitude U:

Vf/Vo 
 �U/Vo�1/4. �6�

Simulations based either on discrete-time maps �18,19� or on
a direct method for KPP �18–20�, Arrhenius �18,19�, or igni-

tion production rates �20� have confirmed this power-law de-
pendence for propagation in a two-dimensional flow U with
free boundary conditions �18–20�,

U = � ∧ ��z�; � = UL/� sin��x/L�sin��y/L� . �7�

However, as front propagation is driven by two indepen-
dent parameters among three, relation �6� is insufficient to
identify by itself the respective role of each parameter �Pe,
Da, ��. In particular, renormalization approaches did not ex-
plicitly address the dependence on � �17–19�, but further
analysis of the role of the Damköhler number Da made two
of them conclude to the following dependence on Pe and Da
�18,19�:

Pe � 1, Da 
 1:Vf/Vo 
 Pe1/4 Da0.

On the other hand, numerical simulations by Vladimirova
et al. evidenced a dependence on the relative vortex size �
�20�,

Pe � 1, Da 
 1:

� � 1:Vf/Vo 
 �3/4�U/Vo�1/4, �8�

� 
 1:Vf/Vo 
 �1/4�U/Vo�1/4, �9�

whose equivalent form

Pe � 1, Da 
 1:

� � 1:Vf/Vo 
 Pe1/2 Da1/4, �10�

� 
 1:Vf/Vo 
 Pe1/4 Da0 �11�

conflicts with Eq. �8� in the ��1 regime. The origin of this
discrepancy was identified in Ref. �20� as coming from a
different evaluation of the characteristic scale on which gra-
dients of concentration are built within a vortex.

FIG. 2. Diagram of the different regimes of front propagation depending on the non-dimensional numbers �Pe,Da,��. The vortex size L
is kept fixed but the front thickness 	 is allowed to vary with �=L /	. For reasons reported in Section II B, the different regimes are referred
to laminar front, flamelet, thick flamelet, distributed reaction zone and well stirred regime. The present experiment stands in the large Péclet,
large Damköhler and large relative vortex size regime, Pe�1,Da�1, � �1, in which flamelets and eïkonal dynamics are expected. �a�
Diagram coordinates �Da,��. Following �4�, the iso-Péclet lines are parabolas. �b� Diagram coordinates �Da,Pe�. Following �4�, the iso-� lines
are hyperbolas.
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2. Peš1, Daš1

This large Péclet, large Damköhler regime refers to the
flamelet regime �Fig. 2�b��. It corresponds to a weak advec-
tion regime, �r
�a, for which reaction is completed before a
fluid particle ends up a turn around a vortex. Following Eq.
�4�, the relative vortex size � is then necessarily large. This
legitimates an eïkonal approximation following which, in the
frame comoving with the flow, the front keeps the same inner
structure as a laminar flow. Up to weak curvature effects, it
thus advances with a normal front velocity in the frame of
the flow. This kinematics can be modeled by a field equation,
the G equation, for which the iso-G lines move with normal
velocity Vo in the frame comoving with the flow field U,

�tG + U · �G = Vo��G� .

In this so-called geometrical limit, the front then corresponds
to an iso-G line which evolves according to the Huygens
principle in this stirred medium.

The numerical simulations reported above in the small Da
regime have been extended to this large Da regime for the
same 2D cellular vortex flow �7� �18–21�. They revealed a
convex variation of Vf /Vo with respect to U /Vo that was
close to a power law with a 3 /4 exponent. However,
Vladimirova et al. evidenced no dependence on the relative
vortex size � �20�:

Pe � 1, Da � 1:

� � 1:Vf/Vo 
 �0�U/Vo�3/4 �12�


Pe3/8 Da−3/8, �13�

whereas the heuristical renormalization of the reaction-
diffusion equation by Abel et al. �18,19� found some,

Pe � 1, Da � 1:

� � 1:Vf/Vo 
 Pe1/4 Da−1/2, �14�


�1/4�U/Vo�3/4. �15�

This disagreement indicates that the identification of the
proper scales on which renormalization must be built is a
subtle task in this regime.

Turning attention to kinematics, Abel et al. �19� and Cen-
cini et al. �21� have then proposed a modeling of the dis-
placement of the front tip �Sec. V B� that provided the fol-
lowing relationship for its averaged velocity:

Vf

Vo
=

�

2

	�U/Vo�2 − 1

ln�U/Vo + 	�U/Vo�2 − 1�
. �16�

Here  is a numerical coefficient which averages the effect
of the two-dimensional nature of the flow. As noticed by
Vladimirova et al., the relationship �16� and the power-law
behavior �12� are too close to be distinguished �20�.

The relationship �16� was also considered by Vladimirova
et al. as the effective velocity of a front propagating along
the separatrixes �20�. On these particular trajectories, the ef-
fective value of  was strictly unity. However, the two-

dimensional nature of the issue was reflected in the fact that
the path to follow was twice longer as in the above model.
This was because the separatrix on the y axis had to be
followed to proceed propagation on the x axis in the next
vortex. Then, the predicted result was only half the effective
velocity observed in simulations.

D. Experiments

Experiments on front propagation in flows have mostly
addressed turbulent flows �26–28�, Poiseuille flows �29�, or
flows induced by Rayleigh-Taylor �30–33� or Marangoni in-
stability �34–36�. They thus referred to multiscale forced
flows or to self-generated flows coupled to the front dynam-
ics. In between, there remains important issues referring to
front propagation in coherent forced flows involving few
scales. They raise the difficulty of finely controlling the spa-
tial or temporal features of flows during front propagation.
Few experiments have been devoted to address them
�28,37,38�.

The most detailed experiment on front propagation in co-
herent flows has consisted in spatially modulating the ampli-
tude of a parallel flow by a periodic chain of cylindric bluff
bodies �37�. It has then succeeded in quantitatively determin-
ing the response of the front to the modulations. However,
being conducted in gaseous combustion, it involved gas ex-
pansion and thus a feedback of the front dynamics on the
flow features. This makes it difficult to extrapolate its results
to more athermic reactions. In addition, it addressed a shear
flow that contrasts with the cellular vortex flow that we wish
to study here.

Two other experiments have involved autocatalytic fronts
�28,38�. As the former experiment was intended to investi-
gate a turbulent regime in a Taylor-Vortex flow �28�, it in-
volved a wide range of flow intensity over which flow tran-
sitions and stretch effect of the front by the flow could arise.
On a smaller range of relative flow intensities, similar to that
studied here, it provided few data points that seem to indicate
an increase of effective front velocity with flow intensity
more than linear, in contrast with the results reported below.
A possible origin for this difference could be either a transi-
tion to time-dependent Taylor-Couette flow or a large scale
flow, both of them improving front propagation. As the latter
experiment was devoted to front propagation in an oscillat-
ing annular vortex chain �38�, it provided few measurements
of effective front velocity in a steady vortex chain. Its data
are, however, consistent with an effective front velocity in-
creasing with flow intensity less than linearly, in qualitative
agreement with our findings below. They also exhibit quan-
titative differences that probably refer to differences in
boundary conditions and in relative fluid depth.

III. EXPERIMENT

The experiment is designed so as to provide a controlled,
reproducible cellular flow organized on a one-dimensional
pattern. For this a chain of alternating vortices is generated
by electromagnetic means in a narrow depth channel so as to
remain in the Hele-Shaw regime. A propagating front is then
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induced by ignition of an autocalytic reaction. This results in
a model experiment of front propagation in a planar cellular
flow.

We label V�x ,y ,z� the actual flow and U�x ,y� the 2D flow
that corresponds to the maximal value of V on the channel
depth z. In the present Hele-Shaw regime, this flow will be
found at the middepth of the channel: U�x ,y�=V�x ,y ,d /2�.
In agreement with the definition adopted in models �Sec. II�,
we shall then denote U the maximal velocity of this flow
U�x ,y� on a vortex.

The relevant parameters of the experiment are D�2
�10−9 m2 s−1, Vo�2 mm min−1, L=20 mm, 3�U
�35 mm min−1 and, as shown in Sec. III E, �=7 s, 	
=1 mm. They yield the following ranges of nondimensional
parameters: 500�Pe�5800, 5�Da�60, and ��20. This
corresponds to the large Péclet, thin front, and weak advec-
tion regime, i.e., the flamelet regime, in which the front dis-
plays the same local structure as in the laminar case but a
complex global geometry �Fig. 2�.

A. Experimental configuration

The chemical solution is introduced in a long, narrow, and
thin rectangular channel whose length X, width Ly and depth
d are X=20cm, Ly =12mm or 6mm, d=3mm. �Fig. 3�. This
channel is built with horizontal top and bottom glass plates,
3 mm thick, which sandwich a rectangular plexiglass cell.
The lower horizontal glass plate involves a mirror face for
visualization from above. Except from Fig. 4�b�, all the im-
ages reported below will thus correspond to top views of the
channel.

A series of magnets, 20 mm long and 30 mm large, is
placed below the lower plate to allow electroconvection.
Their vertical magnetic field B is aligned along the depth
direction but displays alternating orientations �Fig. 3�a��.
This results in a chain of up and down magnetic fields which
are nearly homogeneous on each magnet but which involve
large gradients at the magnet boundaries. As the extent of the
magnetic field on the depth direction of the set-up is small,
about 4 to 5 mm, care had to be taken to use a fluid layer
thin enough to ensure a nearly homogenous Laplace force on
its depth. In practice, a fluid depth d of 3 mm was adopted.

As the solution is ionic, an electric current I of a few mA
can be generated by two electrodes placed at the extremities
of the channel and submitted to an applied voltage difference
of 15 V at most. This current gave rise to a density of
Laplace forces f� j∧B where j, the current density, was at
the dominant order uniform j� ILy

−1d−1ex. This force density
was mainly uniform in regions where both the current and
the magnetic fields were so, i.e., on the bulk of the magnets.
However, it involved large gradients at the magnet bound-
aries where the magnetic field reverses direction. This gave
rise there to large vorticity sources, �=�∧ f�−�j ·��B,
which resulted in the generation of a chain of contrarotative
electroconvective cells �Fig. 3�b��. Their width, 12 mm or
6 mm, and depth, 3 mm, were set by the channel size but
their length, 20 mm, was defined by the magnets.

B. Front observation and velocity measurement

The solution is observed from above with a charge-
coupled device �CCD� camera involving 1046�768 pixels.

This provided a minimal accuracy of 0.2 mm by pixel when
viewing the whole channel. Zooming on definite parts of the
experiment enabled to increase it up to a factor 10. The front
evolution was recorded on a MacIntosh computer. The front
velocity being slow, a nominal sampling rate of 25 images
per second was superfluous and memory consuming. A BTV
Pro software has then been used to decrease this rate to one
frame per second or below. In practice, the accuracy of ve-
locity measurements were always dictated by spatial mea-
surements rather than by time measurements. Owing to the
inner scale displayed by fronts, e.g., the curvature radius of
their tongues, the bound of accuracy came more from the
difficulty in sharply localizing an event, e.g., the beginning
of the contamination of a separatrix or of a vortex, than from
the optical accuracy. The net accuracy in velocity measure-
ments then varied from better than 0.1 mm mn−1 on effective
propagation in the channel �Sec. IV B� to 1 mm mn−1 on the
crossing of vortex separatrixes �Sec. IV D�.

C. Hydrodynamical regime

To determine the hydrodynamical regime, the fluid depth
d has to be compared to the nominal width � of the boundary
layers at the top and bottom plates: ����Ly� /2U�1/2, where
��1 mm2 s−1 denotes the water kinematic viscosity and
where �=O�1� stands for the mean nondimensional slope of
the velocity profile in the boundary layers �Appendix C�.
One then notices that, for flow velocities U below UHS
=2�2Ly� /d2, boundary layers invade the whole cell depth:
��d /2. The fluid is then in a Hele-Shaw regime that is
suitable to exhibit planar flows. We shall keep in this regime
in the whole experiment. As ��1 /2 here, this corresponds
to U�UHS=40 mm mn−1 for Ly =12 mm and U�UHS
=20 mm mn−1 for Ly =6 mm.

FIG. 3. Sketch of the experimental setup showing the fluid chan-
nel, 12 mm or 6 mm large and 3 mm thin, the magnets, 20 mm
large, the magnetic field B, the electric current I, and the resulting
electroconvective vortices. For the sake of clarity of the drawing,
the fluid depth is enlarged and four vortices over ten in the actual
chain are displayed. �a� Side view. �b� Top view. Lx=20 mm, Ly

=12 or 6 mm, d=3 mm.
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When vortices experience upper or lower rigid bounds,
secondary flows way result from the breaking of the balance
between centrifugial force and pressure gradient in the
boundary layer �Appendix C, Fig. 28�. In particular, in a
closed box involving a vortex, this is known to induce in-
ward spiral trajectories and secondary vortices that are remi-
niscent of Eckman pumping �39–42�. However, although this
mechanism is always at work, its intensity depends on the
ratio of the cell depth d to the natural width � of the bound-
ary layer. In particular, if d is too large compared to �, the
secondary flow sources are restricted to boundary layers so
narrow compared to the whole system that they negligibly
put the whole fluid into supplementary motion: the intensity
of secondary flows is then extremely small. On the opposite
case of very narrow d compared to �, the secondary sources
invade the whole medium. However, viscous effects are then
dramatically large so that, even strong, these sources cannot
give rise to noticeable flows. It is thus only for moderate cell
depths of the order of � that secondary sources and viscous
effects are respectively strong enough and small enough for
yielding a relevant flow.

In practice, the ratio d /� beyond which secondary flows
begin to be significant corresponds to boundary layers just
coming into contact: d /��2, i.e., to the limit of the Hele-
Shaw regime. As our experiment remained in this regime, its
vortex flows V could be considered as actually planar,
V ·ez=0.

In contrast with the boundary conditions assumed by the-
oretical models and simulations �17–20�, the flow vanishes
here at the channel boundaries. This, in particular, made the
planar flow intensity vary on the depth direction. However,
this gradient did not lead noticeable implications, presum-
ably because the important phenomena were settled in the
midplane where the flow intensity was the largest. Another
implication of rigid boundaries was the vanishing of the flow
at the lateral boundaries of the channel and the resulting
velocity gradients in their vicinity �Fig. 27�. We took them
into account to finely analyze and model the effects of flow
advection �Sec. VI�.

D. Chemical reaction

Front propagation is produced by an autocatalytic reaction
in aqueous solution, the chlorite-iodide reaction �43–50�. Its
detailed mechanisms may be reduced into the following
three equations reaction scheme �44,48�:

ClO2
− + 4I− + 4H+ → Cl− + 2I2 + 2H2O, �17�

5ClO2
− + 2I2 + 2H2O → 5Cl− + 4IO3

− + 4H+, �18�

IO3
− + 5I− + 6H+ → 3I2 + 3H2O. �19�

Here, iodide I− is oxydized in iodine I2 �17� which in turn is

reduced in iodate IO3
− �18�. As iodate also serves to oxydize

iodide �19�, the consumption of iodide is thus enhanced by
one of its product, iodine: the reaction is in this sense auto-
catalytic. It is then usually studied in an excess of chlorite so
as to focus attention on the nonlinear dynamics of iodide

consumption. Depending on the level of homogeneity,
through flow, and mixing in the medium, it is then known to
provide bistability, oscillations, or waves �43–50�.

Observation of a spatial wave is achieved by adding a
starch indicator which, in the presence of iodide and iodine,
gives rise to a blue starch-triiodide complex. Initially, the
medium is thus colored due to this complex. However, as the
wave passes through, the depletion in iodide and iodine
leaves a colorless medium whose frontier with the blue me-
dium localizes the front �Fig. 4�.

In practice, we prepared sodium chlorite and potassium
iodide solutions both at a concentration of 10−2 mole l−1.
These solutions were combined so as to yield the following

species concentration, �I−�=3�10−4 mole l−1, �ClO2
−�=3.75

�10−4 mole l−1 and the pH was stabilized at 5 using a buffer
solution. As the starch indicator was introduced, the solution
took a blue color in about half an hour. This indicated that
the reaction was uniformly proceeding in the medium,
thereby slowly producing iodine I2 and consuming iodide I−.
In absence of front initiation, this color could persist about
an hour in a stirred medium until leaving a colorless fluid
after total consumption of iodine. Meanwhile, the medium
was thus in a weakly unstable state, ��0, suitable for ex-
hibiting a reaction-diffusion wave, provided a sharp concen-
tration gradient was initiated somewhere.

Initiation of the reaction was achieved by contact of the
solution with a piece of steel at one end of the channel. The
resulting oxydation led a localized raise of iodine concentra-
tion following which the autocatalytic reaction speeded up.
As a result, a colorless domain extended through the medium
at the laminar front velocity Vo.

Transient effects prior to the establishment of a constant
front velocity were weak enough to stand below our reso-
lution. In particular, no variation of the front velocity could
be noticed as reaction proceeded in the fluid at rest. How-
ever, some spontaneous initiations could randomly occur at
the channel boundaries. They then gave rise to additional
fronts that prevented the front under study to reach the chan-
nel end. Their occurrence was rare enough, however, for al-
lowing the study of front propagation in the whole available
space.

FIG. 4. Laminar front in a channel: the colorless wave propa-
gates from left to right. �a� Top view of the front. Channel width
and depth are 12 mm and 3 mm. �b� Side view of the front enlarged
over a quarter depth. Channel depth is 10 mm.
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E. Front structure

Figure 4�a� shows a photograph taken from above of a
laminar front propagating in a fluid at rest. It thus displays a
picture of the front in the horizontal plane, the light intensity
being integrated on the depth direction. We analyze in Fig. 5
this signal on the central line y=Ly /2 parallel to the largest
side of the channel by plotting the normalized grey level
intensity �. As this line is normal to the front, the graph ��x�
enables us to access to the front inner structure. In particular,
measurement of 	=���M�−1 at the half-level point M where
��M�=1 /2 yields a thickness 	�1 mm. Although the level
� is related to the concentration of the complex starch triio-
dide instead of that of a single species, this determination of
	 is quite representative of the distance over which a signifi-
cant amount of reaction takes place, i.e., of the effective front
thickness.

However, as the variable � follows from optical integra-
tion over the channel depth d, it may result from a superpo-
sition of a range of thinner fronts slightly translated in direc-
tion x. This is confirmed by a side view of the laminar front
in a deeper channel �Fig. 4�b�� which shows evidence of a
thin front slightly curved on the depth direction. The origin
of this curvature can hardly refer to thermics, as no notice-
able raise of temperature due to the chemical reaction could
be evidenced, but rather comes from the density differences
between reactants and products which may induce an addi-
tional buoyancy-driven transport of species for large enough
channel depth d �30–33�. This effect should reduce in more
confined channels to finally become negligible below some
depth value. This is corroborated here in Fig. 6 by the de-
crease of the effective front thickness 	 with d until reaching
a constant value for d�3 mm and by the similar evolution
of the front velocity Vo. Analyses of laminar fronts in Figs.
4�a� and 5 as well as the remaining of our study have then
referred to this channel-depth-independent regime.

The front velocity Vo slightly varies with temperature at a
rate of 0.2 mm mn−1 per degree. However, no significant
raise of temperature was induced by the reaction and care has
been taken to perform experiments at a fixed temperature of
T=19.5 °C. Accordingly, the slight dependence of front ve-
locity with temperature had no opportunity to operate, as
confirmed by the steadiness of laminar fronts.

The order of magnitude of the front thickness 	�1 mm is
consistent with the KPP solution �2� and �3� for Vo
�2 mm mn−1 and D�2�10−9 m2 s−1 according to which
	=4f��0�f�1 /2�−1 D /Vo. Whereas f��0�=1, an estimate of
f�1 /2� can be obtained by considering a parabolic form for
f�·� satisfying f�0�= f�1�=0. One obtains f�1 /2�=1 /4 and
	�16D /Vo=0.96 mm. The related reaction time � then
writes from Eq. �2� �=4D /Vo

2�7 s.
The major cause of variation of front velocity was due to

the electric current induced in the solution. This current
modifies the ionic transport through the front and thus its
inner dynamics and the resulting velocity. In particular, the
resulting change of front velocity may be expected to depend
on the respective directions of the electric current and of
front propagation. This is confirmed in Fig. 7�a� where the
observed velocity at d=3 mm is plotted as a function of
current intensity I for a fixed direction of the electric current

I= Iex but for the same, ex, or the opposite, −ex, directions of
front propagation. It is then found that front velocity is in-
creased by the electric current, but four times more when the
front propagates in the direction of the current.

F. Front local velocity

In the present Hele-Shaw regime, the actual flow
V�x ,y ,z� involves a Poiseuille profile. Its variation in the
depth direction then raises the question of the local velocity
of a front part advected by this flow. The answer depends on
the level of confinement measured by the Péclet number �
=dVo /2D �29,51�. For low �, the normal front velocity cor-
responds to its laminar velocity plus the depth-averaged
value of the flow V projected on the direction of propagation
n; for large �, it is the laminar velocity plus the maximal
value U�x ,y� of the flow V projected on the direction n.

The value of �, 25 here, places the experiment in the wide
gap regime where the local normal front velocity Vn writes

Vn = Vo + U · n . �20�

G. Flow intensity

The expected flow intensity U is weak enough, U
�35 mm /mn, for keeping within the Hele-Shaw regime.
This means that the nonlinear advection term remains negli-
gible in the flow equation, so that raising the density of
Laplace forces with the electric current density linearly in-
creases the flow intensity while keeping its streamlines un-
changed. This allows the maximal flow velocity to be chosen
as a typical flow intensity representative of the whole flow
intensity �Sec. II B�.

To experimentally determine the maximal flow intensity
U, we use the front as a suitable tracer for evidencing the
quickest streamline at its first run from one separatrix to the
other. The condition for this is that the front fully invades the
whole boundary layer so as to ensure that it actually visits
the quickest streamline. Then the gradient of flow intensity is
expected to distort the front so as to provide evidence of the
quickest streamline as the trajectory of the tip of the resulting
front tongue �Fig. 8�. The above condition bounds the flow

FIG. 5. Plot of the normalized grey levels � of a front image
along the central line y=Ly /2 of the channel. They correspond to
the concentration of the starch-triiodide complex integrated on the
cell depth and thus of the locations where a significant amount of
reaction actually takes place.
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velocity to moderate values, U /Vo�10 �Figs. 8�a� and 8�b��,
beyond which the front visits only a part of the boundary
layer at its first rollup in a vortex �Fig. 8�c��.

In this moderate advection regime, the trajectory of the tip
of the front tongue appears to be located near—but not at—
the channel boundary and to display a nearly straight part
parallel to the boundary �Figs. 1�a�, 8�a�, and 8�b��. Flow
velocity is then directed in average on the mean direction of

propagation so that the resulting effective front velocity sim-
ply amounts to the sum of the flow intensity U and of the
laminar velocity Vo. Removing Vo from the measured veloc-
ity thus provides a relevant measurement of U �Fig. 7�b��. In
particular, following the trajectory model developed in Sec.
VI, the relative error in flow velocity made in assimilating
the front tip to the most advected front point, i.e., the quick-

est trajectory r̃��0.9 to the quickest streamline �̃�=0.78 in
Fig. 24�a�, keeps smaller than 10% in the moderate advection

regime: U�r̃�� /U��̃���0.9 in Fig. 19.
The linear variation of the flow intensity U with the cur-

rent intensity I is confirmed in Fig. 7�b� to a good accuracy.
To minimize data scattering and extend data determination to
larger flow intensities, we shall determine further on the
maximal flow intensity U from its best linear fit to the cur-
rent intensity I. This results in a constant relative error of
10% at most.

H. Eïkonal regime

In the present Hele-Shaw regime where the flow is planar
�Sec. III A�, it will be convenient to consider the propagation
of the front in the plane located at middepth, where the flow
amplitude is maximal. Then, in the present wide-gap regime
�Sec. III F�, each front part locally propagates in the local
fluid frame with a normal velocity which, up to curvature
corrections, is the laminar velocity Vo of a planar front.
Propagation is then analogous to that of a phase front in the
eïkonal approximation of optics, but in a steadily stirred me-
dium here.

IV. EXPERIMENTAL RESULTS AND ANALYSES

We report below spatiotemporal features of fronts that are
relevant to build a model of front propagation in a vortex
chain. We first describe the sequence of events occurring
during propagation and the resulting mean relative enhance-
ment of front velocity. We then address the burning time of
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vortices and sepatrices, the length of front wakes and the
thickness of flow boundary layers.

Unless explicitly stated, the experimental results will refer
to the 12 mm channel width. However, interesting variations
with the channel width will also be evidenced.

A. Qualitative features of front propagation

Observations and measurements have referred to fronts
initiated at the extremities of the vortex chain and in a steady
flow. Quickly after initiation, the front invades the whole
channel section. It is then rolled up by vortices but succeeds
in maintaining a sharp transition between the blue fresh me-
dium and the colorless burnt medium �Figs. 1, 14, 10, and
11�, as expected in the flamelet regime.

At large flow velocity compared to the laminar velocity,
several cells burn simultaneously. The front is then extended
on a wake that spreads from just contaminated cells to nearly
fully burnt cells �Figs. 1 and 14�. Interestingly, the front is
closed on itself in each cell and proceeds from the cell pe-
riphery that is fully burnt to the cell center that is fully fresh.
Viewed from the whole wake, it is therefore disconnected
and exhibits independent dynamics from one cell to the
other. In particular, as the disconnected parts of the front are
separated by fully burnt zones where the species concentra-
tion gradient vanish, no diffusion flux can couple them.
Moreover, as they belong to different cells, no advection flux
can connect them either. They thus behave independently one
from the other.

When contaminating a vortex cell, the front is first ad-
vected on efficient streamlines located near the channel
boundaries �Figs. 1, 14, 8, and 15�. They are however distant
from them by a short, but significant distance �Figs. 8 and
15�. The front then reaches the vortex separatrix, the other
channel boundary and the second vortex separatrix. This
makes it close on itself leaving a connected slightly elliptical
front advancing towards the vortex center until disappearing
�Figs. 10 and 11�. Meanwhile, the part of front left close to
the vortex separatrix enters the neighbor vortex and is ad-
vected towards the channel boundary. The same scenario as
above then resumes, giving rise to a periodic propagation
through the vortex chain with possibly several contaminated
vortices at a time �Figs. 1 and 14�.

Interestingly, the fine shape of the whole front depends on
the reduced flow intensity U /Vo, i.e., on the relative magni-
tude of advection compared to propagation. This is apparent
in Fig. 1 where, at similar phases of propagation, the front
penetration in vortices appears larger at a low reduced veloc-
ity �U /Vo=9.0� than at a twice larger value �U /Vo=18.8�.
Similar observations can be made on Figs. 14, 8, 11, and 15
with noticeable implications regarding the length of a front
wake �Figs. 1 and 14�.

Careful examination of the advected tongues shows that
the colorless zone left behind the front looks slightly less
bright than on other front parts and its transition to the dark
zone slightly less sharp �Fig. 1�. This must not be interpreted
as an evidence of a thick front, but instead as a result of the
optical integration over the cell depth, similar to that dis-
cussed on laminar fronts �Sec. III E�. In particular, as the
front is present only on a part of the fluid depth there �the
middle part�, the integrated intensity lies in between bright
and dark on these specific zones. This is consistent with the
existence of a planar flow involving a varying intensity on
the cell depth, as expected in the present Hele-Shaw regime
�Sec. III A�. On the foremost parts of the front, this gradient
then yields a differential advection which is responsible for a
partial occupation of the channel depth. However, further
propagation of the front to the top and bottom boundaries
makes it invade the whole channel in the wake, yielding a
sharper transition as seen from above.

B. Relative enhancement of front velocity

The effective velocity Vf of the front has been measured
as the mean velocity of its foremost point on the mean di-
rection of propagation ex and on the longest relevant front
path. As fronts reached a constant mean velocity since the
first contaminated vortex, this path actually extended over
the whole ten vortex chain. With an absolute uncertainty of
1 mm and 1 s on length and time and a maximum effective
velocity of 15 mm mn−1, this provided a relative uncertainty
�Vf /Vf less than 7�10−3.

The relationship Vf /Vo=��U /Vo� between the nondimen-
sional effective velocity Vf /Vo and the nondimensional flow
intensity U /Vo is displayed in Fig. 9 for the two channel
widths Ly =12 mm �Fig. 9�a�� and Ly =6 mm �Fig. 9�b��. In
each of them, cellular flow is found to enhance the effective

FIG. 8. Front images evidencing the flow boundary layer at various flow intensities: �a� U /Vo=2.3, �b� U /Vo=9, �c� U /Vo=20. In all
cases, boundary layer thickness is about half the cell depth.
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front velocity, in agreement with the additional transport
property brought about by advection: ���·��0. However,
this effect is found to weaken as the flow intensity is in-
creased: ���·��0. This is noticeable for the 12 mm width
since the slope of the function ��·� is found to decrease from
0.6 for U /Vo�3 to 0.12 for 13�U /Vo�20, i.e., by a factor
5 on the observed range �Fig. 9�a��. For the 6 mm width, the
smallest bound of the Hele-Shaw regime does not allow this
efficiency damping to be apparent until the largest data point
of the experimental range �Fig. 9�b��.

On the other hand, an important feature brought about by
the comparison between Figs. 9�a� and 9�b� is the depen-
dence of the velocity enhancement Vf /Vo on the channel
width Ly: the larger the channel width, the larger the velocity
enhancement. This, in particular, means that there is no uni-
versal relationship independent of the channel geometry
here. This contrasts with the picture brought about by renor-
malization approaches �17–19�. This also indicates that
boundary effects and thus the vortex structure play a signifi-
cant role that needs to be taken into account in modeling.

C. Vortex burning time

In the front wake �Figs. 1 and 14�, images display ellipti-
cal fronts that reduce in time until vanishing. As these con-
nected fronts are tangent to the flow streamlines, their propa-
gation is not enhanced by advection. It thus only results from
reaction-diffusion. To test this statement, we have measured
the velocity of these fronts, care being taken of the direction
of propagation n with respect to that of the electric current
density j. In particular, whereas a modification of front ve-
locity Vo is observed for front propagation parallel to current
j, no effect is expected for front propagating normal to it.
This is confirmed on a large range of current in Fig. 12
where the reduction speed of the ellipse axis parallel to the
channel width, i.e., satisfying j ·n=0, is found to be consis-
tent with the nominal laminar velocity Vo previously mea-
sured in the ex direction in absence of current �j ·n=0�. On
the other hand, measurements of front velocity on the middle
axis y=Ly /2 of the channel agree with the laminar velocity
found for fronts moving in the direction of the current �j ·n
�0� or in the counterdirection �j ·n�0�.

The burning of a vortex appears to involve two phases:
�1� A quick contamination of the inner vortex separatrix in

a vortex turnover time. This phase lasts a time of about t1
=2�Lx+Ly� /U and ends up with a closed elliptical front.

�2� the vanishing of the elliptical front. Since, at the end
of the first phase, the initial distance Ly /2 to the vortex cen-
ter is reduced by the distance Vot1 yet crossed by the front,
this phase lasts a time of about t2= �Ly /2−Vot1� /Vo

=Ly /2Vo− t1.
The total vortex burning time Tb= t1+ t2 thus reads Tb

�1 /2 Ly /Vo. It means that each vortex burns at the laminar
velocity, independently of the flow intensity. This is con-
firmed in Fig. 11 where the burning of a vortex is achieved at
two flow intensities: although advection and front shape dif-
fer, the vortex burning time is the same.

D. Separatrix burning time

Advance of the front along its mean direction of propaga-
tion is found to slow down at the vortex separatrix. This

indicates a difficulty in contaminating neighbor vortices
which eventually penalizes the net efficiency of front propa-
gation. To quantify this effect, we have measured the mean
velocity Vs of the front on the x axis during propagation from
the outer border of the elliptic front formed in the cell to the
entry in the neighboring cell.

Figure 13 reports the nondimensional velocities Vs /Vo
and �Vs−Vo� /Vf for various relative flow velocities U /Vo. It
is found that, whatever the flow velocity, the effective veloc-
ity Vs across a separatrix is significantly lower than the ef-
fective velocity Vf and equals to about the laminar velocity
Vo, up to experimental uncertainty: Vs�Vo. In particular,
whereas the relative uncertainty is large on Vs /Vo, it is small
on �Vs−Vo� /Vf. Accordingly, seen at the scale of the front
velocity Vf, Vs cannot actually be distinguished from Vo.
This means that separatrixes are crossed by reaction-
diffusion only.

E. Front wake

While the front advances at velocity Vf in the vortex
chain, the contaminated cells left behind continue to burn.
They then give rise to a wake extended on a number N of
incompletely burnt vortices. Given the total vortex burning
time Tb, this number reads N=VfTb /Lx�1 /2 Ly /Lx Vf /Vo. In
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FIG. 9. Effective front speed Vf in cellular flow in the Hele-
Shaw regime as a function of U in the units of the laminar velocity
Vo. Vortex sizes �Lx, Ly� are �20,12� mm in �a� and �20,6� mm in �b�
and the channel depth is 3 mm. The loose of efficiency of velocity
enhancement by vortex flow is noticable in �a�. In the more con-
fined channel �b� in which the Hele-Shaw regime is twice more
restricted, it is however only weakly apparent at the largest data
point. The slopes at low velocity amplitude �U /Vo�5� are 0.55 for
Ly =12mm and 0.37 for Ly =6mm. They are shown by full lines
�resp. dotted� lines corresponding to the actual �resp. other� vortex
width. The differences with vortex aspect ratios show the relevance
of sub-scales in the effective front velocity and the need for more
than one-scale modeling.
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particular, for the 12 mm channel width, this gives Lx /Ly
=5 /3 and N=3 /10 Vf /Vo.

Figure 14 shows three images taken at the same phase of
the cycle and for which the predicted values of N are 0.9,
1.6, 2.35. Accordingly, one thus expects a wake extended on
about a vortex, a vortex and a half, and two vortices and a
half. The qualitative agreement with the images of Fig. 14
validates this kinematic determination of the wake structure.

F. Thickness of the flow boundary layer

Following the velocity gradient of the vortex flow, the
front experiences a differential advection which imprints its
geometry. This in particular gives rise to tongues from which
one may guess inferring the main structure of the flow. This
inverse problem requires decoupling the respective contribu-
tions of the proper front velocity Vo and of the flow field U to
the front evolution so as to infer the location of the fastest
streamline of the flow. This analysis is conditioned by the
relative flow intensity U /Vo.

At large flow intensity compared to laminar front velocity,
e.g., U /Vo�20 �Figs. 14�c� and 8�b��, front advection in a
vortex is so large that the proper front propagation can be
neglected there. The front then behaves as a passive tracer
whose differential advection evidences the flow velocity gra-
dient. However, as the front enters the vortex boundary layer
from its outer frontier with a neighbor vortex, contamination
of the whole boundary layer requires propagation normal to
the flow streamlines. As this is much less efficient than ad-
vection here, the fastest streamline is unlikely reached over a
vortex turnover. Accordingly, the tongue thickness observed
near the boundary only bounds the boundary layer thickness
by below �Fig. 8�c��. At the opposite limit of weak flow
intensity, e.g., U /Vo=2.3 �Fig. 8�a��, the advection of the
front is sufficiently slow for allowing it to invade the whole
boundary layer before it arrives at the channel boundary.
Then, the tongue tip evidences the fastest streamline but the
tongue thickness goes over the boundary layer thickness. Fi-
nally, for flow intensity in between, e.g., U /Vo=9.0 �Fig.
8�b��, the tongue tip still fits into the boundary layer while
the tongue thickness gives about the boundary layer
thickness.

Figure 8 displays the tongues observed in these three
cases near the channel boundary. They provide the following
estimations for the boundary layer thickness �: ��1.8 mm
�U /Vo=2.3, Fig. 8�a��, ��1.5 mm �U /Vo=9.0, Fig. 8�b��,
��0.9 mm �U /Vo=20, Fig. 8�c��. This points to a boundary
layer thickness of about half the cell depth: ��d /2
=1.5 mm. Introducing the distance �=Ly /2−� of the bound-

ary layer to the cell center and its relative value ��
=� / �Ly /2� compared to the available distance Ly /2, these
estimations yield the following bounds: 4.2���5.1 mm
and 0.70����0.85.

In the present Hele-Shaw regime, viscous dissipation is
handled by boundary layers at the horizontal plates. It then
enables the averaged flow to accomodate the lateral bound-
ary conditions over a distance of half the cell depth, indepen-
dently of the flow intensity �Appendix C, Fig. 27�. This prop-
erty agrees with the above determination of the boundary
layer thickness.

In the following, we shall develop a model based on vor-
tices involving equal widths and lengths. To corroborate the
above determination of the boundary layer thickness in this
case, we have performed the same study as above in a 15
�15�3 mm square cell. At weak advection �U /Vo=1.6,
Fig. 15�, the front tip indicates the location of the fastest
streamline. This gives a boundary layer thickness about half
the cell depth, in agreement with the present Hele-Shaw
regime.

V. FRONT PROPAGATION MODELING

Measurements of the effective front velocity Vf in the
range 0�U /Vo�20 have revealed a reduction of the effi-
ciency of velocity enhancement by advection: ���·��0
where Vf /Vo=��U /U0� �Fig. 9�. This nonlinearity cannot be
attributed to a change of hydrodynamical regime since the
fluid remained in the Hele-Shaw regime. It must then be

FIG. 10. Elliptical shape of a closed front inside a vortex.

FIG. 11. Front propagation in a vortex. Comparison between
two relative flow intensities, U /Vo=3 and U /Vo=20, at the same
laminar flow velocity Vo=1.9 mm mn−1 and the same vortex size
�Lx ,Ly�= �20,12� mm. In both cases, the vortex burning time Tb is
the same, about the predicted time 1 /2 Ly /Vo=189 s.
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traced back to the interplay between propagation and advec-
tion.

As reported in Sec. II, a number of questions remain re-
garding this interplay and the nature of a relevant modeling
of front propagation in the present flamelet regime. In par-
ticular, whereas the different models proposed to date
�17–21� yield predictions that may be in quantitative agree-
ments with some numerical observations, they refer to dif-
ferent, if not physically incompatible, foundations. On the
other hand, previous experiments �28,37,38� are not suffi-
ciently complete to provide accurate tests of models or suit-
able grounds to develop modeling. Therefore, our objective
will be to question the nature of the effective front propaga-
tion observed in our experiment and identify the foundation
of a suitable model to be worked out in the next sections.

A. Alternatives raised by the nature of front
propagation

Although the local structure of the front remains the same
in a medium at rest or in a vortex chain, its nature and its

propagation mechanism may change when considered at a
large scale. The reason for this traces back to the fact that
averaging waves, spatially or temporally, may yield phenom-
ena of a seemingly different nature. This is well-known re-
garding the wave/particle duality since wave interferences
may yield a particle dynamics revealed by steepest descent
method, stationary phase approximation, or extremalization
of an action. Also, in heterogeneous media, wave interactions
are known to possibly induce localization.

These famous examples warn us about the subtlety in de-
termining the nature of the averaged front propagation and,
therefore, in building a relevant model for it. To clarify this
issue, we consider the mean concentration profile ���x , t�
obtained by filtering out the vortex scale Lx and below from
the field ��x ,y , t�. Beyond transient, it is expected to behave
as a traveling wave with velocity Vf: ���x , t�= ���x−Vft�.
Interestingly, three different alternatives arise regarding its
nature.

A first alternative consists in stating whether the averaged
profile refers to a wave, in the sense that all neighbor points
interact, or to the wake of a propagating particle, in the sense
that they do not, except at some leading points. An example
of the wave case is given by hydrodynamic surface waves
since neighbor points are coupled by the fluid motion be-
neath the surface. An example of the particle case is provided
by the propagation of a fall in a domino chain. Here, domi-
nos evolve by their own independently of their neighbors
�except at the very time they are pushed down� but neverthe-
less collectively give rise to a propagating wake that re-
sembles a wave profile. Therefore, in the wave case, the
mean burning rate at a point should thus depend not only on
its proper state but also on those of its neighbors; in contrast,
in the particle case, this rate would only depend on the state
of the point that is considered, independently of its neigh-
bors, except at a definite leading point: the foremost point of
the profile where contamination proceeds. Beyond the appar-
ent similitude between propagating disturbances in these two
cases, the different nature of their underlying couplings
yields a large difference on their modeling and on the way
their velocity is fixed: locally at the leading point in the
particle case, nonlocally as a global equilibrium in the wave
case. In particular, here, we stress that a field model is suit-
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FIG. 12. Dynamics of an elliptical front. Comparison between
the velocity of the front on the y-axis normal to the electrical cur-
rent j and the laminar velocity Vo in absence of current: both are
equal to the experimental uncertainties.
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FIG. 13. Effective velocity Vs across a separatrix for different
relative flow velocities U /Vo. The relative front velocities Vs /Vo

and �Vs−Vo� /Vf show that, to the accuracy of the measurements
and seen at the scale of the front velocity Vf, Vs is confused with Vo.
This means that separatrices can be considered as crossed by
reaction-diffusion only.

FIG. 14. Wake of the front for three different flow intensities.
The predicted number of vortices in the wake is N=3 /10 Vf /Uo.
Snapshots have been taken at the same phase of the rolling up of
vortices so as to allow a direct comparison of the wakes. �a�
U /Vo=3.5, Vf /Vo=2.9, N=0.9. �b� U /Vo=9.0, Vf /Vo=5.4, N=1.6.
�c� U /Vo=19, Vf /Vo=7.8, N=2.35. In agreement with the expected
values of N, a vortex �a�, a vortex and a half �b�, and two vortices
and a half �c� are noticed on the wakes.
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able to deal with reality on waves whereas it can at most
mimick it on wakes.

A second alternative refers to the role of scales in model-
ing, especially those played by the vortex scale L and below.
In particular, the fact that the scale L is filtered out from the
mean front profile does not prevent it from playing a signifi-
cant role in the determination of the mean front velocity. Is
this implicit coupling then restricted to the sole vortex scale
L or does it also extend to the subscales that characterize the
fine structure of the vortex flow? The answer determines the
level of subscale modeling required to determine the large
scale features of the front. In particular, it will decide here
whether the nature of the boundary conditions are negligible
or essential regarding the effective front propagation.

A third alternative refers to the selection of the traveling
wave solution ���x−Vft�: is it a unique solution or a solution
selected among a continuum?; does selection then operate on
specific locations of the actual profile and which ones? No-
tice that these questions already pertain to the laminar re-
gime, since a KPP solution is selected among a continuum of
solutions by the structure of the leading edge of the profile
��0 �pulled front� whereas other kinds of production rate
yield the selected solution to be monitored still by a definite
zone of the profile but at a finite value of � �pushed front�
�Sec. II A�.

The models based on renormalization �17–19� have an-
swered these alternatives this way �Sec. II C�. The mean
propagating front follows an effective reaction-diffusion dy-
namics. It thus corresponds to an effective reaction-diffusion
wave for which all points are coupled to their neighbors by
diffusion. Only the vortex scale L enters the renormalized
equation through coefficients that renormalize the diffusion
coefficient D or the reaction time � at a power of the Péclet
number Pe=UL /D. In particular, no dependence to the fine
structure of the flow, and thus to its boundary conditions, is
in order. In this framework, the mean front velocity then
stands as a nonlinear eigenvalue of the dynamical equation:
as for the laminar front, it should thus correspond to a selec-
tion among a continuum of eigenvalues whose nature de-
pends on the nonlinear features of the renormalized reaction
rate.

On the opposite, our experiment has revealed that, in the
regime studied, cells of the wake are not interacting since
they are burning from a periphery on which the value �=1 is
uniformly reached �Fig. 1�. In particular, the fact that the
uniform bright state �=1, ��=0, extends over a volume that
encloses the dark connected zones �=0 that remain to burn
�Fig. 1� implies the absence of concentration flux between
the latter zones. As there is no advective flux between them
either, the zones to burn are thus decoupled one from the
other. Their burning time is then set by both their own state
and the laminar velocity Vo, independently of the state of the
neighboring cells. In particular, the effective front velocity is
thus set not in the wake but at the foremost vortex cell of the
front by the ability of the foremost point of the front to
contaminate the neighboring cell.

This statement stresses that modeling front propagation in
the present large Damköhler number regime cannot be ob-
tained by effective coarse-grained equations from which the
mean front velocity and the mean front profile would follow

as selected eigenvalues and selected eigenvectors. Instead,
attention has to be focused on the local events that occur at
the foremost cell where contamination actually proceeds.

This difference with the modeling applied at small
Damköhler numbers is presumably related to the level of
fluctuations of the actual front with respect to its mean pro-
file. After having addressed this below, we analyze the con-
tamination process from cell to cell and we conclude about
the nature of the modeling that could be appropriate to the
present regime.

1. Scales and fluctuations

Observation of front propagation reveals three kinds of
scales �Fig. 16�:

�i� A global scale Lg=N Lx: it corresponds to the front
wake and states the distance over which a front is displayed
in the channel.

�ii� A local scale Ll=Lx: it corresponds to the vortex scale
which imprints the global front structure.

�iii� Subscales Ls�Lx: they correspond to the fine struc-
tures of the front inside a cell, for instance the front tongues.

The level of fluctuations at scale Lx can be evaluated by

comparing the y-averaged profile �̄�x , t� of ��x ,y , t� to the
traveling wave profile ���x , t� at scale Lg obtained for in-
stance by performing a gliding average over a period �Lx ,T
=Lx /Vf� �Appendix B�. For a small fluctuation level, sub-
scales may be thought to be weak enough for playing no
important role in the dynamics of the coarse-grained front.
This is the assumption underlying the renormalization proce-
dures �17–19� which actually concluded that the effective
front satisfies a renormalized reaction-diffusion equation in-
volving the sole scale L�Lx through the Péclet number Pe
=UL /D. On the opposite, for a large fluctuation level, sub-
scale fluctuations display an order of magnitude similar to
that of the coarse-grained front. One may then expect them
to significantly influence both the coarse-grained profile
���x , t� and the mean velocity Vf.

Figure 17 reports three examples of propagating fronts

with, for each, the profiles �̄�x , t� and �̂�x , t� of the

FIG. 15. Front propagation in a square cell of width L=1.5 cm
and depth d=3 mm at U /Vo=1.6. Advection is weak enough for
allowing the front to contaminate the whole boundary layer before
arriving at the cell boundary. Its tongue tip then nearly corresponds
to the fastest streamline. This evidences the boundary layer thick-
ness at about half the cell depth and the relative distance of the
fastest streamline to the vortex center, ��, in the range 0.70���
�0.85.
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y-averaged field and of the corresponding traveling wave.
The first two examples refer to fronts propagating in the
vortex chain for U /Vo=3.0 and 13.8. The third one corre-
sponds to a diffusive profile of a passive tracer observed in
the same vortex chain. It then appears that the fluctuation
rate is large in the propagating case �Figs. 17�a� and 17�b��
and weak in the diffusive case �Fig. 17�c��. This corroborates
the relevance of an effective diffusion equation to represent
the diffusion of a passive tracer in a convective roll chain
�13,14�, but lays doubt on the validity of an effective
reaction-diffusion equation �17–19� for modeling front
propagation in the present large Damköhler regime.

2. Contamination process of cells

To address the mechanism of vortex contamination by the
front, it is worth comparing the relevant length scales of the
different transport processes that occur during advection
along the vortex separatrix.

Advection along the separatrix from one channel bound-
ary to the other typically lasts a time Ly /U. Meanwhile, dif-
fusion spreads the front on a length ldif f �	DLy /U. Com-
pared to the front thickness 	�	D�, this diffusion length
appears ldif f /	�	Da larger. In our regime, 5�Da�60, this
makes it of the same order of magnitude than 	, so that one
cannot make a distinction between a pure diffusion zone and
a reaction-diffusion zone during this advective phase. This
statement contrasts with the strong advection regime Da
1,
ldif f 
	, in which the sole diffusion is more efficient than
reaction-diffusion to cross a separatrix �17–19�.

Similarly, the propagation length during advection along a
separatrix, lprop�VoLy /U�	D /�Ly /U also appears here
about the diffusion length ldif f since lprop / ldif f �	Da. This
corroborates the above conclusion following which reaction
and diffusion are intricated during the contamination of a
separatrix.

Following these analyses, the front therefore crosses the
separatrixes by a coupled reaction-diffusion mechanism with
no benefice from advection, i.e., by propagation at the lami-
nar velocity Vo. This recovers the conclusion of the experi-
ment analysis �Sec. IV D�.

3. Basis for a model of effective front propagation

Observations stress a distinction between a foremost zone
in which the front contaminates an additional vortex and a
wake within which yet contaminated vortices finish to burn
�Fig. 1�. The important thing is that the former zone sets the
effective velocity of the front by a specific mechanism, the
crossing of a vortex separatrix, which is no longer at work in
the latter zone where all separatrixes are already burnt. Al-
though the periodicity of the global phenomenon yields all
zones to evolve at the same period, the mechanisms that fix
the actual value of the effective front velocity, and thus of the
actual period, are thus to be sought in the detailed propaga-
tion of the most advanced part of the front. In turn, the ef-
fective front velocity sets the number of burning vortices and
thus the structure of the front wake �Sec. IV E�.

These remarks make the difference between the present
front propagation and an effective reaction-diffusion wave.

In particular, the existence of two independent relevant
scales, the local scale Ll=L at which the actual velocity is set
on the foremost part of the front and the global scale Lg on
which the wake extends, means that effective front propaga-
tion refers to more than a single scale function. This feature
is confirmed in Fig. 9 by the dependence of front velocity on
the vortex aspect ratio. It forbids the effective front propaga-
tion to be the solution of a differential equation involving a
single characteristic length scale lc. This especially includes
reaction-diffusion equations, possibly renormalized, which
actually exhibit a single scale: lc= �D��1/2.

It thus appears that, in the present two-scales propagation
phenomenon, advection effects cannot be reduced to a renor-
malization of effective coefficients of the laminar reaction-
diffusion equation. As a consequence, the effective front ve-
locity cannot be sought as the eigenvalue of a homogenous
differential system or as the result of a global mechanism.
Instead, it appears to be set in a bounded active region, the
foremost part of the front, to be modeled at a small scale
modeling. The following kinematic models are intended to
recover its main features.

B. One-trajectory models

A kinematic model of front propagation in the large
Damköhler regime has been introduced by Abel et al. �19�
and Cencini et al. �21�. The cellular flow, modeled by the
stream function �7�, is two dimensional and undergoes free
boundary conditions. The front is considered to propagate
along the bottom boundary to the vortex separatrix, then
move in its vicinity up to the top boundary and cross it to
enter the next vortex. The same kind of motion then resumes.

The objective of these authors consisted in determining
the kinematics on the mean direction of propagation ex and
thus in reducing the two-dimensional problem to a one-
dimensional kinematics. For this, the component of the front
velocity on direction ex has been taken as the sum of the
laminar front velocity Vo and of the flow component U ·ex
=U cos��y /L�sin��x /L�. Here, the ordinate y�t� of the front
position handles the two dimensionality of the issue. It is
nearly constant when the front stands close to the y=0 or y
=L separatrix but changes value from 0 to L when it propa-
gates from one to the other. It then appeared convenient to
consider the time-average  of the factor cos��y /L� on a
trajectory:

 =
1

T
�

0

T �cos��y�t�
L

��dt . �21�

This provided the kinematic equation on the x axis:

FIG. 16. Sketch of the different characteristic scales displayed
on a front: a global scale Lg extending over the front wake, a local
scale Ll equal to the cellular scale Lx, and subscales Ls correspond-
ing to the fine structures shown by the front.
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dx

dt
= Vo + U�sin��x

L
��

− � − �cos��y�t�
L

���U�sin��x

L
�� . �22�

Neglecting the last term of Eq. �22� then yields a one-
dimensional equation for front propagation �19,21�:

dx

dt
= Vo + U�sin��x

L
�� �23�

where the prefactor  accounts for the mean effect of the
variation of front position on the y axis.

As  depends on the trajectory, it a priori changes with
the reduced flow velocity U /Vo. In particular,  would be
strictly unity if the trajectory was along the separatrix y=0 or
y=L, but is actually less since front trajectories stand within
the vortices. However, assuming a weak dependence of  on
U /Vo, integration of Eq. �23� with constant  yields relation
�16�. This corresponds to fixing the trajectory and thus work-
ing within a one-trajectory model.

In Refs. �19,21�,  was not determined from modeling but
from numerical simulations at definite values of U /Vo: 
�0.89 �19� or �0.875 �21�. This provided in both cases a
good agreement between relation �16� and numerical simu-
lations. The difference between  and unity reflects both the
distance of the front trajectory to the y=0 or y=L separatrix
and the time spent in going from one separatrix to the other.

A particular case has been considered by Vladimirova et
al. with a front strictly following separatrixes �20�. Here, the
front used the separatrixes parallel to y to alternate between
those located at y=0 or y=L while advancing on the x direc-
tion. Then, on each straight part of this trajectory, either par-
allel to the x or y directions, the kinematics is given by Eq.
�23� with  strictly equal to unity, so that the mean front
velocity satisfies relation �16� with =1. In particular, the
time spent on each of them is the same, whatever their di-
rection. However, the path followed on the front trajectory is
twice as long than its projection on the x axis. Accordingly,
the predicted effective front velocity on this axis is only half
the velocity given by relation �16� for =1. This prediction
appears to strongly disagree with numerical results to about a
factor of 2. This indicates that the advance of the front on the
x axis during the propagation from one separatrix �e.g., y
=0� to the other �e.g., y=L� stands as an essential feature of
the issue.

These results emphasize the sensitivity of the effective
front velocity to the front trajectory and thus, to the flow
boundary conditions. This in particular forbids a relevant
comparison between the present experimental data �that are
obtained on rigid boundary conditions� and relation �16�
�that is derived for free boundary conditions�. On a deeper
ground, this calls for a model capable of accurately determin-
ing the path followed by the front and its implication on the
effective front velocity Vf.

C. Multitrajectory model

Following the above analysis, we thus propose to build a
local kinematic model for front propagation capable of han-

dling the sensitivity of front velocity to trajectories.
We thus consider the most advanced point M of the front

in the mean direction of propagation ex and assume that, in
the large Damköhler regime, its kinematics satisfies the
eïkonal approximation �20� �Sec. III F�. Its normal velocity
then reads: VM ·n=Vp+U ·n where Vp denotes the proper
normal front velocity with respect to the medium. Restricting
attention to a large relative vortex size �, we shall consider,
in agreement with observations, that the front curvature in M
is large compared to the front thickness. Then the proper
velocity Vp reduces to the laminar velocity Vo of a planar
front so that

VM · n = Vo + U · n . �24�

In contrast with previous models, we do not seek to pre-
scribe a definite trajectory for the front. Instead, we take
advantage of experimental observations to qualitatively
model its geometrical features, leaving free the correspond-
ing geometrical parameters p. We obtain this way a one-
parameter family of trajectories T�p� among which we shall
let a dynamical selection operate.

The selection path will naturally correspond to the fastest
one. This is legitimated by the fact that only the fastest path
can survive the dynamical competition among paths, the fate
of slower paths being to be eventually overwhelmed by front
propagation on the fastest path.

Calling T�p� the transit time of the foremost point M in a
vortex, the selected trajectory T�p̃� will thus obey a least-
time criterion:

dT

dp
�p̃� = 0;

d2T

dp2 �p̃� � 0. �25�

This is reminiscent of the Fermat principle in optics but ap-
plied here within an heterogeneous medium characterized by
the flow U.

Given the selected trajectory T�p̃�, the effective front ve-
locity will simply read

Vf =
L

T�p̃�
. �26�

The remainder of this article is devoted to work out this
model and to validate it from the experiment.

VI. OPTIMIZATION MODEL FOR FRONT PROPAGATION

For the sake of simplicity, we consider hereafter square
vortex cells. Extrapolation to the rectangular cells involved
in the experiment is performed in Appendix D.

A. Family of trajectory and flow modelization

The first step of the modeling consists in defining a rel-
evant family of trajectories for the leading point M of the
front defined as its most advanced point on the mean direc-
tion of propagation ex. Following Fig. 1, we consider two
phases of motion: the slow crossing of a vortex separatrix
and the quick advection towards the next separatrix.
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When crossing the separatrix, the leading point M can
hardly be situated along the y axis since the front is nearly
aligned on this direction. As shown in Fig. 13, it however
advances at the laminar velocity Vo on the mean direction ex,
in agreement with relation �24� since U ·n=0 there. Accord-
ingly, we shall model its trajectory as a straight segment S
located on the x axis and crossed at constant velocity Vo
�Fig. 18�a� �.

At the end of the above motion, the front takes advantage
of flow advection to quickly transport itself to the next sepa-
ratrix �Figs. 1 and 11�. It then follows a curved path that is
evidenced by the curved tongue it leaves behind. As the flow
velocity U is large compared to the proper front velocity Vo,
this motion mainly results from flow advection along the
flow streamlines. Leaving aside the fine geometrical details
of streamlines �Figs. 8 and 15�, we shall model them as
circles centered on the center of the square cell and assume
that the trajectory of the leading point M of the front corre-
sponds to one of the half-circles joining the straight paths S
�Fig. 18�a��. As the front tip rotates along this trajectory so as
to always display a normal n aligned with the trajectory tan-
gent � �Fig. 8 and 11�, one has U ·n=U. Following Eq. �24�,
we shall thus attribute to point M a velocity VM tangent to
the streamlines and whose intensity is Vo+U:
VM = �Vo+U��.

We obtain this way the trajectory sketched in Fig. 18�b�. It
is parametrized by the length of the straight path S taken to
cross the separatrix or, equivalently, by the radius r of the
circular trajectory. The trajectory of the leading point of the
front thus belongs to a family of trajectories T�r� among
which the optimal trajectory T�r̃� has to be selected.

As the flow streamlines are taken circular, incompressibil-
ity implies that the flow intensity remains constant on them:
U�U�r�. To clarify its variation with r, it is convenient to
consider the flow vertical vorticity �z. Its sources are located
at the magnet boundaries where the magnetic field suddenly
reverses direction �Fig. 3�. The vertical vorticity is then ad-
vected by the flow and diffused in the fluid until a steady
state is reached. As �U ·���z=U�r���z /��=0 on circular
streamlines, steadiness in the bulk is obtained when vorticity
no longer diffuses: ��z=0. In the Hele-Shaw regime, this
yields a constant vertical vorticity domain beyond a bound-
ary layer of the order of half the cell depth. This corresponds,
in the bulk, to a flow intensity varying linearly with the dis-
tance to the center, i.e., to a solid rotation: U�r���zr /2.

This flow structure is valid until entering the boundary
layers formed at the channel sides. Then, the flow intensity
decreases to zero on a boundary layer depth � that is ex-
pected to be small compared to the cell size L. To account for
this quick vanishing, we complete the above variation of
flow intensity with a power-law variation of U�r� with the
distance L /2−r to the boundary.

Denoting with a prime the spatial variables rendered non-
dimensional by L /2, we then obtain with r�=2r /L the fol-
lowing flow structure:

U�r� = Ûr��1 − r��c, �27�

where c stands for an exponent that drives the structure of

the boundary layer and Û for a dimensionalization factor.

The maximum flow velocity Ū is obtained for r�= �1+c�−1 at
a relative location �� that we define as the beginning of the
boundary layer �Fig. 19�.

�� = 2�/L = �1 + c�−1, �28�

Ū = U���� = Û���1 − �����−1−1. �29�

Although this flow does not fit the straight boundaries, it
corresponds to a relevant modeling of viscous vortices in the
region where the trajectories T�r� actually belong. It thus
provides a flow model to a sufficient level of details for the
present purpose. It is parametrized by a single parameter, the
relative location �� of the flow boundary layer in the cell.

Although the parameter �� is a priori free here, it is ac-
tually prescribed in our experiment to a value fixed by the
geometry. This results from the fact that the hydrodynamical
regime is a Hele-Shaw regime in which the lateral boundary
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FIG. 17. Plot of the grey levels of front images as a function of
the longitudinal coordinate x. Pictures are taken from three different
experiments. �a� Propagating front at U /Vo=13.8, Vf /Vo�7.2. �b�
Propagating front at U /Vo=3.0, Vf /Vo=2.7. �c� Effective diffusion
of a passive tracer in a chain of twenty convective rolls. Solid lines

correspond to the average grey levels on the y direction, �̄�x , t�, and
dashed lines to the traveling wave profile ���x , t�.
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layer thickness � is fixed to the half cell depth: ��d /2 �Sec.
IV F�. This makes ��= �L /2−�� / �L /2� prescribed by the
vortex aspect ratio d /L:

�� � 1 − d/L . �30�

Within the Hele-Shaw regime in which our experiment
stands �Sec. III C�, the optimization model therefore relies on
no free parameter.

B. Fastest trajectory and effective velocity

The competition between trajectories regarding their
propagation time in a vortex is qualitatively illustrated in
Fig. 18�c� on three particular trajectories, at small, interme-
diate and large distance to the vortex center. Their total
length increases since the decrease of paths S is overcompen-
sated by the increase of the curved path C. On the other
hand, the flow intensity on them first increases with the dis-
tance to the vortex center but then decreases as the boundary
is approached. This finally results in a short but slow trajec-
tory at small r, a longer and quicker trajectory at intermedi-
ate r, and a still longer but slower trajectory at large r. This
obviously provides a least propagation time for some inter-
mediate trajectory that is accurately selected below.

The travel time T�r� through a cell reads

T�r� =
L − 2r

Vo
+

�r

U�r� + Vo
. �31�

Given the flow structure �27�, the least time criterion
dT /dr=0, d2T /dr2�0 �25� provides an implicit relationship
on the optimal trajectory r= r̃,

�dU

dr
�

r̃
= − � 2

�
�U�r̃�

Vo
�2

+ � 4

�
− 1�U�r̃�

Vo
+ � 2

�
− 1��Vo

r̃
.

�32�

Selection of the optimal trajectory T�r̃� can then be achieved
by plugging into this relation the explicit expressions of the
flow intensity �27� and of its gradient

�dU

dr
�

r̃
= Û�1 − r̃��c−1�1 −

r̃�

��
� 2

L
, �33�

where r̃�=2r̃ /L and ��=2� /L.
Even for the simple expression �27� of U�r�, the above

scheme yields no explicit expression for the location r̃ of the
optimal trajectory and thus, for the effective front velocity
Vf. Such a determination may nevertheless be obtained
within some approximations of the above relationships. In
particular, dropping out the two rightmost terms of relation
�32� yields an approximation of the intensity gradient that is
better than 10% even at small values of U�r̃� /Vo �Fig. 20�,

�dU

dr
�

r̃
= −

2

�
�U�r̃�

Vo
�2Vo

r̃
�1 + O� Vo

U�r̃�
�� . �34�

Comparison between this approximate relation and rela-
tion �33� then yields the following selection of the optimal
trajectory:

1 − r̃� = ��

2

�1 − ��� − �1 − r̃��
��r̃�

Vo

Û
���

. �35�

Following Eq. �34�, the gradient of the flow intensity is
negative on the optimal trajectory. This, according to Eq.
�33�, implies that the optimal trajectory is located in the
boundary layer ��� r̃��1 �Fig. 19�. Relation �35� then
shows that the optimal trajectory quickly goes closer to the

boundary as the velocity Û is increased. This allows approxi-
mating r̃� by 1 in the right-hand side of Eq. �35� to obtain at

the dominant order in the relative velocity Û /Vo,

1 − r̃� = ��

2
� 1

��
− 1�Vo

Û
���

+ o��Vo

Û
���� . �36�

The optimal trajectory being determined, relations �26�,
�27�, and �31� now provide the flow intensity on it and the
resulting effective front velocity,

FIG. 18. Front trajectory model. �a� Front trajectory T�r� within
a square cell. It is made of two straight paths S enclosing a circular
path C. �b� Front trajectory in the channel. The front velocity is Vo

on straight paths S since there is no flow advection on them. It is
Vo+U�r� on curved path C since the front normal is then tangent to
the trajectory which is also a streamline. �c� Sketch of the compe-
tition between trajectories. Three trajectories are considered at
small, intermediate, and large distance r to the vortex center. The
first trajectory is short but slow; the second is longer but quicker;
the last is longer and slower. The optimal trajectory thus stands in
between, around the intermediate trajectory.
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U�r̃�
Vo

= H� Û

Vo
���

− G , �37�

Vf

Vo
=

1 − G + H� Û

Vo
���

�

2
+ G − K��

2
+ G − 1�� Û

Vo
�−��

, �38�

with G=� /2�1 /��−1�, H=G1−��, and K=G��.

In terms of the maximal flow intensity Ū=U���� �29�, the
explicit expressions of the relative location of the optimal
trajectory and of the optimal effective front velocity finally
read

r̃� = 1 − �1 − ���� 2

�

Ū

Vo
�−��

, �39�

Vf

Vo
=

1 − �1 − ��� − �1 −
2

�
��� + � 2

�

Ū

Vo
���

1 − �1 − ����1 −
2

�
���� 2

�

Ū

Vo
�−��

. �40�

Besides the apparent complexity of this relationship, the
effective front velocity in a channel simply appears to de-

pend on a single variable, the relative flow velocity Ū /Vo,
and a single geometric parameter, the relative boundary layer
thickness ��. In particular, the geometrical nature of expo-
nent �� is enforced here by its independence on the flow

intensity Ū, as a result of the forcing of the boundary layer
thickness to half the cell depth in the present Hele-Shaw
regime �30�. Then, the asymptotic trend of the effective ve-

locity Vf with the flow intensity Ū appears to be a power law,

Ū/Vo � 1:Vf/Vo � �2Ū/�Vo���, �41�

whose exponent �� is not constant but dependent on the geo-
metric features �d ,L� of the medium in which the front
propagates �30�.

C. Sensitivity to front trajectory and model parameters

Beyond the determination of the fastest trajectory, it is
instructive to address the sharpness of its selection. This

comes about investigating, for a fixed Ū /Vo, the sensitivity
of the relative effective front velocity Vf /Vo displayed on a
given trajectory T�r� to the variations of its main parameters:
the relative location �� of the boundary layer and the relative
position r� of the trajectory.

At fixed values of Ū /Vo and ��, the variation of Vf /Vo
with the trajectory shows a sharp peak which culminates at
the fastest trajectory. An example of this is displayed in Fig.
21�a� for U /Vo=10 and ��=0.78. Here, a drift of only �r�
= +3�10−2 or −10−1 of the location of the trajectory from its
optimal position r̃� results in a drop of the effective velocity

of 25%. This large sensitivity may be understood as the con-
sequence of the proximity of the quickest trajectory
�r̃�=0.96, Vf /Vo=5.5� to the slowest trajectory
�r̃�=1, Vf /Vo=1�. It a posteriori justifies the need of a mul-
titrajectory model to finely select the fastest trajectory for
front propagation in this heterogeneous medium.

A visual consequence of the large sensitivity of front
propagation to the trajectory is given by the tongue made by
a front entering a vortex �Figs. 1, 14, 8, and 15�. In particu-
lar, its thin digit form contrasts with the straight shape of the
contaminated separatrix from which it has come about. This
results from the differential effect of the velocity gradient on
the trajectories of front points. In particular, those that are
slightly shifted from the optimal trajectory show a noticeably
reduced velocity �Fig. 21�, following which the resulting en-
velope is digit shaped.

Still at a fixed value of Ū /Vo, the effective front velocity
Vf /Vo involved on the optimal trajectory displays noticeable
variations with the thickness of the boundary layer �Fig.
21�b��. Here the value ��=1 corresponds to no boundary
layer and thus to free boundary conditions, as considered in
one-trajectory models �18–20�. However, increasing the
boundary layer thichness so that ��=0.75, as expected here
for Ly =12 mm, drops Vf /Vo by as much as 40%. This
stresses the importance of the subscales Ls of the flow �Fig.
16� on the efficiency of front propagation and thus the need
for handling realistic boundary conditions in modeling.

VII. VALIDATION OF THE OPTIMIZATION MODEL

We compare below the predictions of the multitrajectory
model to the experimental data. In particular, we focus atten-
tion on the variations of the reduced effective velocity Vf /Vo
and of the relative location r̃� of the fastest trajectory with

the reduced flow velocity Ū /Vo. For the sake of homogenity
of the notations in the literature, we shall return hereafter to

the notation U for the maximal flow velocity Ū.
Whereas the multitrajectory model has been worked out

in a square cell for the sake of simplicity, the present experi-
ments have been performed in rectangular cells. However,
the same kind of optimization can be easily worked out on
them, once the family of trajectories and the flow structure
are prescribed �Appendix D�. In particular, guided by front
observation and by symmetry considerations, we consider
the same kind of trajectories as those used in square cells, the
circular path being simply replaced by an elliptical path in
rectangular cells. The flow intensity on these streamlines is
deduced from that adopted in square cells by an affine and
volume-preserving transformation. This yields a selection of
the optimal trajectory �D10� and of the optimal effective
front velocity �D11� that is similar to that discussed in a
square cell, the relationships being simply parametrized by
the ellipse excentricity.

A. Effective front velocity for the measured values of the
boundary layer thickness

Observations of the tongues made by front propagation in
the vicinity of the cell boundary have revealed that the loca-
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tion of the fastest streamline is mostly independent of the
flow velocity and simply prescribed by the cell depth d in the
present Hele-Shaw regime: ��=1−d /Ly �Sec. IV F� �30�. In
particular, measurements give the following range for ��
�Sec. IV F�: 0.70����0.85 in the �Lx ,Ly ,d�
= �20,12,3� mm cell and 0.50����0.60 in the �Lx ,Ly ,d�
= �20,6 ,3� mm cell.

Figure 22�a� compares for the �Lx ,Ly ,d�= �20,12,3� mm
cell the experimental data on reduced effective front veloci-
ties and reduced flow intensities to the predictions of the
multitrajectory model. It appears that data lay well within the
channel delimited by the bounds given by the minimum
�0.70� and the maximum �0.85� values measured for ��. We
stress that, once �� is measured, there remains no adjustable
parameter for the model, so that the observed agreement is
valuable. It especially attests of the relevance of the multi-
trajectory model and of the selection by optimization. In par-
ticular, following Sec. VI C and Fig. 21�a�, the effective ve-
locity would drop down by 25% on a trajectory that would
be off-selection by only 3% to 10% in relative location r�. If
this had been the case, data would have missed the above
channel.

To further test the role of the boundary layer thickness,
i.e., of ��, in the selected effective velocity, we now address
front propagation in the twice thinner channel: �Lx ,Ly ,d�
= �20,6 ,3� mm. Then ��=1−d /Ly is expected to be 0.5, a
value noticeably different than before since it corresponds to
doubling the relative size of the boundary layer. Direct ob-
servations gave ��=0.55�0.05 in agreement with the ex-
pected value. Figure 22�b� here too provides data in agree-
ment with the predicted bounds derived for the extreme
values of ��. In view of the sensitivity of the selected effec-
tive velocity to the boundary layer thickness �Sec. VI C and
Fig. 21�b��, this corroborates the relevance of the optimiza-
tion multitrajectory model.

B. Optimal value for the boundary layer thickness

Although the optimization model agrees with experiment
with no adjustable parameter, it is instructive to consider the
optimal values of the parameters that would give the best fit
to data. This, in particular, will enable us to further judge the
relevance of the model by comparing the shape of the best
relationship it can propose to that displayed from measure-
ments.

The values of �� that yield the best agreement between the
data and models are �opt� =0.78L /2 in the large cell
�Ly =12 mm� and �opt� =0.56L /2 in the thin cell �Ly =6 mm�.
In both cases, Fig. 22 shows an excellent agreement with
data regarding both the general trend and the curvature of the
model curves. This supports the relevance of the model and
gives confidence in its validity at larger flow intensities.

C. Selection of the fastest trajectory

The fastest trajectory can be identified as that of the front
tip during its first advection towards the next boundary �Fig.
23�. Its location may then be accurately determined provided
it stands far enough from the boundary. In practice, this
bounds its determination to moderate values of the flow
intensity, U /Vo�10.

Figure 24 compares the experimental measurements made
in the large and thin cells to the prediction of the model for
the optimal value of parameter ��. Although they are limited
to moderate flow intensity, they reveal a good agreement
between modeling and experiment, at least regarding the
general trend. In particular, data and model agree on the rate
at which the optimal trajectory is closer to the boundary as
the flow intensity is increased. That this agreement is ob-
tained for two optimal boundary layer thicknesses ���0.78
and ���0.56 in large and thin cells here too corroborates the
relevance of the optimization model.

The fact that the fastest trajectory moves to the boundary
as the flow intensity is increased while the fastest streamlines
remains at the same location, finely illustrates the balance
that the front has to optimize. Trajectories are made by a
straight but slow path followed by a curved but quick path
�Fig. 18�. Both are coupled by the fact that one path shortens
as the other lengthens. What balance is the most efficient to
improve propagation as the flow intensity varies? The answer
given by the optimization model is that the slow straight path
must shorten in favor of the quick curved path as the flow
intensity is increased, in a way that is precisely identified in
relation �39� and Fig. 24.

VIII. DISCUSSION

The experimental study and the modeling reported above
provide several insights into the mechanism of front propa-
gation in stirred media, in particular regarding the nature of
the effective propagation seen at a scale large compared to
the vortex scale and the practical implications that may result
from its main features.

According to the homogenization theories proposed at
small Damköhler numbers, the effective front propagation
should be viewed as an effective reaction-diffusion wave
with coefficients renormalized by the flow intensity �17–19�.
In this picture, the major effect of the flow is to enhance the
diffusion properties and the reaction rate of the medium
without changing the nature of the front propagation seen at
a large scale. In particular, the effective front profile stands
as a solution of a reaction-diffusion equation in which the
vortex array no longer enters. In the frame comoving with
the effective front, it thus corresponds, as for laminar fronts,

� � � � � � � � � � � � � � � � � �

� � �

� � �

� � �

� � �

� � �

� � �

FIG. 19. One-parameter model for flow velocity in a square cell
�27� with c=0.28. The rigid rotation near the cell center ends up at
r�=��=0.78 at a boundary layer.
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to an equilibrium throughout the whole medium between an
advection flux, a diffusion flux, and a source term. This pro-
vides for either lengths or velocities a single characteristic
scale based on the renormalized values of the diffusion and
reaction coefficients. Up to prefactors linked to the form of
the effective reaction rate �Sec. II A�, these scales then de-
termine the wake length and the effective front velocity from
global properties of the medium.

In contrast, we find here that, at large Damköhler num-
bers, the various front parts that are embedded in the front
wake do not interact with their neighbors, since they are
separated by fully burnt zones �Figs. 1 and 14�. In particular,
as these zero-gradient zones prevent diffusive flux in be-
tween cells, they deny a reaction-diffusion modeling for the
effective front. As a confirmation, the concentration profiles
show large subscale fluctuations at the vortex scale superim-
posed to the large scale wake profile �Fig. 17�. This empha-
sizes the essential role of the vortex structure in the effective
front propagation. In particular, the effective front velocity is
set by the ability of the foremost part of the front to cross the
next vortex separatrix, independently of the status of the re-
maining front parts. It thus stands on local properties of the
medium.

Whereas in both cases the effective front seen at a large
scale corresponds to a propagative signal, the phenomena
that determine its form and its velocity largely differ. They
correspond in the former case to an equilibrium between
fluxes all over the medium and, in the latter case, to the
independent dynamics of disconnected parts of the front. The
nature of front propagation is then nonlocal in the former
case and local in the latter case. Loosely speaking, it thus
corresponds to a wave in the former case and to a particle
followed by its wake in the latter case. Interestingly, front
propagation depends much more sensitively on the fine
structure of the flow in the latter local dynamics than in the
former nonlocal dynamics.

Taking into account this analysis, we have developed a
suitable modeling for describing the dynamics of the fore-
most front part. It corresponds to a particle moving at its
proper velocity Vo and advected by the flow beyond some
distance to the vortex separatrix �Fig. 18�. This is similar to
propagation in heterogeneous media, the heterogeneity being
given here by flow advection. To remove the indeterminacy

in the streamline followed by the particle, we have looked
for the fastest trajectory among a family. This corresponds to
a least-time criterion reminiscent of the Fermat principle in
homogeneous media but applied here to heterogeneous
situations.

As this criterion relies on optimization, it is thus sensitive
to the details of the flow structure, especially its boundary
conditions. In particular, front dynamics appears to depend
on an hydrodynamic scale, the boundary layer thickness.
However, in the present Hele-Shaw regime of the experi-
ment, this scale is fixed to a geometric scale, the channel
width, so that the model no longer involves any free param-
eter. It nevertheless provides, for two different aspect ratios,
an excellent agreement between predictions and measure-
ments regarding front velocity �Fig. 22�, front trajectory �Fig.
24�, and front wake �Fig. 14�. This has been confirmed by the
closeness of the measured boundary layer thickness �Fig. 8�
to both its optimal value within the model �Fig. 22� and the
half cell depth value expected in the present Hele-Shaw
regime.

The dependence of the measured effective front velocity
on the boundary layer thickness points out the specificity of
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FIG. 20. Relative accuracy of the flow gradient approximation
�34�. The ratio of the velocity gradient approximated by relation
�34� to its exact determination �33� is plotted as a function of the
relative flow intensity U�r̃� /Vo. The approximation is uniformly
better than 10%.
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FIG. 21. Relative front velocity Vf /Vo given by the optimization
model. �a� Evolution of the relative front velocity with the trajec-

tory r�, the remaining parameters and variables �� and Ū /Vo being
fixed at ��=0.78 and U /Vo=10. The largest velocity is the optimal
front velocity. It is reached on the optimal trajectory r̃�. �b� Evolu-
tion of the optimal front velocity with the relative location �� of the
boundary layer at fixed U /Vo=10. A change of �� from 1 �no
boundary layer� to 0.75 �boundary layer thickness equal to a quarter
of the distance to the cell center� makes the relative front velocity
drop from 40%. This stresses the importance of the subscales Ls of
the flow in the front propagation efficiency.
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the optimization model as compared to the renormalization
models or the kinematics models. In particular, at large flow
velocity, it yields a power-law dependence of Vf on U �41�
with an exponent �� dependent on the channel aspect ratio
�30� �Fig. 22�, ��=3 /4 for �Ly ,d�= �12,3� mm and ��=1 /2
for �Ly ,d�= �6,3� mm. In contrast, other models predict a
fixed exponent, �=1 /4 for the renormalization models
�17–19� and �=3 /4 for the kinematics models �19–21�, in-
dependently of the channel geometry.

Another advantage of the optimization model is to pro-
vide a complete solution to the effective front propagation
that contrasts with the uncertainty or the uncompleteness in-
duced in previous kinematic models from the absence of
trajectory selection �19,21� or from the arbitrary choice of a
definite trajectory �20�. Considering a path located on sepa-
ratrixes, Vladimirova et al. �20� found a lower bound for the
effective front velocity that was only half the value observed
in simulations. On the other hand, computing from simula-
tions the mean reduction of flow intensity related to the dis-
tance of the actual trajectory to the cell boundaries, Abel et
al. �19� and Cencini et al. �21� found a good agreement
between model and simulations regarding the effective front
velocity. However, this reduction coefficient or, equivalently,

the mean position of the front trajectory, remained indeter-
minate from the modeling only. In comparison, the present
optimization model offers a definite answer parametrized by
the flow structure and the flow intensity.

The sensitivity of front propagation to flow structure
stressed by the optimization principle raises two main issues.
One concerns practical implications of front propagation in
stirred media; the other addresses the robustness of the re-
sults and of the modeling reported here.

Regarding the former issue, front propagation appears ex-
tremely efficient in evidencing the fastest streamlines of
flows, at least on a main part of the medium. This, in par-
ticular, is a specific property of fronts over passive scalars
since the flow structure can hardly be distinguished from
diffusive profiles. Applying it to microfluidic issues where
flows are usually in a laminar Hele-Shaw regime would en-
able the flow structure to be easily deduced from the shape of
propagating fronts. In particular, appropriate use of the least-
time criterion should enable one to solve, in a way similar as
that achieved here, the inverse problem of identifying the
fastest flow streamline from the front trajectory.

Increasing the flow velocity in our experiment would
make boundary layers separate and the flow escape the Hele-
Shaw regime. Then, secondary flow would be generated, ren-
dering the flow nonplanar and three dimensional �Appendix
C�. In particular, one may even expect the separatrix to
break, thereby leading neighbor cells to be connected by a
flow streamline. As this flow transition would induce large
implications on the front velocity, front propagation would
stand here too as a very efficient way to detect it.

To infer the nature of front propagation in these more
complex three-dimensional flows, it is instructive to return to
the nondimensional numbers that set the basis of the front
modeling �Sec. II B, Fig. 2�. As neither the Péclet number
nor the Damköhler number change order of magnitude, the
regime of front propagation should remain the same. Accord-
ingly, the same kind of propagation mechanisms should be in
order. In particular, front propagation should still be driven
by the foremost part of the front, the actual trajectory being
the quickest of all. The main difference with the propagation
in planar flows would then simply stand in a larger geometri-
cal complexity that could be handled in a way similar as in
two dimensions here. Dedicated experiments are required to
confirm this expectation or evidence a fundamental change
in the propagation mechanism.

IX. CONCLUSION

We have investigated experimentally the propagation of a
reactive front in a steady planar cellular flow. This has been
achieved by using autocatalytic chemical fronts in aqueous
solutions stirred by electromagnetic means. The experimen-
tal regime stood in the Hele-Shaw regime within which the
flow remains planar and in the flamelet regime in which the
front remains thin despite stirring. In particular, as the front
thickness was thinner than the vortex scales, the inner struc-
ture of vortices was finely visited by the front and could thus
influence propagation.

The form and the velocity of fronts within vortices, in
between vortices, and in the front wake have been docu-
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FIG. 22. Reduced effective velocity Vf /Vo as a function of re-
duced flow intensity U /Vo. Points correspond to data and lines to
the effective velocities predicted by the model at different values of
the parameter ��. Without any adjustable parameter, data fit well
with the predicted values for �� belonging to its measurement
range. The best fit of the model to data shows an excellent agree-
ment on the whole range of velocity. �a� Cell size �Lx ,Ly ,d�
= �20,12,3� mm. Measurements of the boundary layer thickness
gave 0.70L /2����0.85L /2. The best fit to data yields ��
=0.78L /2. �b� Cell size �Lx ,Ly ,d�= �20,6 ,3� mm. Measurements of
the boundary layer thickness gave 0.50L /2����0.60L /2. The
best fit to data yields ��=0.56L /2.
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mented in the whole range of velocity within which the flow
remains planar. Analysis of the regime of front propagation
led us to reject a renormalized reaction-diffusion model for
the effective front and turn attention to a more local, kine-
matic, modeling in which the dynamics of the foremost part
of the front determines the velocity of the whole front wake.
However, accurate determination of the effective velocity
called for a fine identification of the actual trajectory fol-
lowed by the leading point of the front. This has been
achieved by selecting the fastest trajectory among a family
suitably designed from observation.

The model involves a single parameter, the boundary
layer thickness, and a single solution, the quickest trajectory.
It provides a velocity depending not only on the relative flow
amplitude but also on the flow geometry and the boundary
conditions via the relative boundary layer location. However,
in the Hele-Shaw regime pertaining to this experiment, the
boundary layer thickness is prescribed by the cell depth as
confirmed by direct observation. The model then no longer
involves any free parameter. It is, however, found to compare
very well to measurements, the effective velocity and the
front trajectory being recovered with excellent agreement.

This optimization model corresponds to a least-time cri-
terion analogous to the Fermat principle for light ray propa-
gation but applied here to an heterogeneous medium made
up by stirring vortices. Interestingly, it points to a sensitivity
of the front trajectory and velocity to the flow structure, a
property that could be useful for instance in microfluidic
devices.

Although this study has taken place in planar flows, it has
succeeded in pointing out a model of front propagation in
structured flows whose physical basis, the least time crite-
rion, is independent of the level of complexity of the flows or
of the underlying medium. Accordingly, the resulting optimi-
zation model that expresses this criterion may be expected to
also work, in suitable forms to clarify, in more complex
flows �nonplanar or time-dependent� where it could have
been more difficult to point out from the outset. Additional
experiments are required to confirm this statement and state
the range of validity of the least-time modeling to more com-
plex but still structured flows.

APPENDIX A: FRONT PROPAGATION REGIMES

We analyze the different qualitative regimes that arise for
front propagation in cellular flow. For the sake of clarity,
attention is laid first on relative vortex size � and then on
Péclet number Pe, the implications regarding the Damköhler
number Da being deduced from relations �4� and �5�. As a

similar kind of analysis has been achieved in the combustion
literature on fronts propagating in multiscale flows �52�, we
shall refer to the combustion terminology to depict the dif-
ferent regimes below.

1. Relative vortex size �

Small relative vortex size �
1 corresponds to vortices
small enough for possibly modifying the transport properties
inside the front structure. We shall call this regime the thin
vortex regime �Fig. 2�a��. Depending on the flow intensity, it
may result in an enhanced effective diffusion and thus, in an
enlarged effective front thickness. Following this, we shall
also call it thick front regime, even if the front will only be
thickened at large flow intensity.

On the opposite, large relative vortex size ��1 refers to
vortices large enough for being viewed as uniform at the
scale of the front thickness. Their advection effect can there-
fore be handled by a Gallilean frame change, so that the local
front structure is expected to be unchanged. This is referred
to as the thick vortex regime or the thin front regime �Fig.
2�a��.

2. Péclet number Pe

a. Pe™1.

In the small Péclet number regime, Pe
1, advection is
too weak to make the advective transport more efficient than

FIG. 23. Fastest trajectory evidenced from the front tongue dis-
played when entering a cell: �a� U /Vo�3; �b� U /Vo�16.
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FIG. 24. Relative locations of the fastest trajectory. Full circles
correspond to measurements from the tongues displayed by propa-
gating fronts. Curves correspond to the predicted values from the
optimization model �39� for values of �� fitting the data the best
�Fig. 22�. �a� Cell sizes �Lx ,Ly ,d�= �20,12,3� mm. �b� Cell sizes
�Lx ,Ly ,d�= �20,6 ,3� mm.
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the diffusive transport on the scale of a vortex, �a��d.
However, for a small relative size of vortices, �
1, dif-

fusion on the vortex scale can be achieved before reaction is
completed, �r��d �4�, so that the transport process within
the flame front can be modified. In particular, for �
Pe, i.e.,
Da
g Pe �4�, vortex intensity is large compared to laminar
front velocity, U /Vo�1 �5�, so that effective diffusion is
enhanced at the vortex scale. This results in a thickened front
called thick flamelet �Fig. 2�b��. On the opposite, for Pe
�,
vortex intensity is small compared to laminar front velocity
so that reaction dominates effective diffusion: the laminar
front is recovered.

For a large relative vortex size, ��1, the following hier-
archy holds: �r
�d
�a, Eqs. �4� and �5�. This shows that
diffusion at the vortex scale is preempted by reaction so that
the laminar front is here also recovered. Notice that, follow-
ing Eq. �4�, this necessarily requires Da�1.

b. Peš1, Da™1.

In the large Péclet number regime, Pe�1, the advective
transport is more efficient than the diffusive transport at the
vortex scale: �a
�d. This corresponds to usual experimental
situations.

Small Damköhler numbers, Da
1, then refer to situa-
tions where advection at the vortex scale can take place be-
fore the corresponding medium has completed the reaction:
�a
�r. Advection is then a transport phenomenon more ef-
ficient than reaction. In particular, mixing of species occur
over a large number Da−1 of vortices before reaction can be
significant.

In a thin vortex regime, �
1, mixing is enhanced by
diffusion, �d
�r, and is thus efficient in the whole vortices.
One then expect a slow evolution of species concentration at
the vortex scale L and thus an effective front with a thickness
large compared to the vortex scale. We shall refer to this
regime as the well-stirred regime �Fig. 2�b��. Note that it
necessarily corresponds to strong advection, U /Vo�1.

In a thick vortex regime, ��1, advection transports the
front on the fastest streamlines on a large number of vortices
while diffusion fails to transport it far in the interior of vor-
tices, �d��r. This results in a front extended on the periph-
ery of many vortices and which exhibits a long wake. We
shall refer to this as the distributed reaction zone regime
�Fig. 2�b��.

c. Peš1, Daš1.

Still in the large Péclet number regime, Pe�1, large
Damköhler numbers Da�1 refer to advective flows slow
enough for keeping reaction the quickest phenomenon: �r

�a. In particular, a fluid particle advected in a vortex fully
reacts before having completed a turnover. This ensures that
steep gradients of �, i.e. a front, persist inside vortices de-
spite advection. On the other hand, following Eq. �4�, the
relative vortex size is necessarily large, ��1, so that the
front structure keeps locally unchanged at a scale small com-
pared to the vortex size. However, at a larger scale, the front
is engulfed in vortices and wrinkled, so that its effective
velocity Vf in the mean direction of propagation is enhanced.

This kind of front, made by juxtaposition of front parts simi-
lar to a laminar front, is referred to as a flamelet in combus-
tion. In particular, the front normal velocity is the same as in
laminar conditions, provided that the weak corrections
brought about by curvature are neglected. Then front propa-
gation may be modeled as in geometrical optics by an
eïkonal evolution with a constant normal velocity Vo. We
shall refer to this regime as the flamelet regime �Fig. 2�b��.

APPENDIX B: DISCRETE AND CONTINUOUS
INVARIANCE

To express the discrete and continuous invariances that
are attached to effective propagation in the periodic vortex

chain in a permanent regime, we introduce the average �̄ of
��x ,y , t� in the y direction,

�̄�x,t� = �
−Ly/2

Ly/2

��x,y,t�
dy

Ly
. �B1�

The periodicity of propagation in a permanent regime al-
lows the definition of an effective velocity Vf =Lx /T, based
on the vortex scale Lx and on the mean propagation time T
through a vortex. Its existence reflects a discrete space-time

invariance for the averaged profile �̄,

∀�x,t�, ∀ n, ∃ �Lx,T�; �̄�x + nLx,t + nT� = �̄�x,t�
�B2�

However, this discrete invariance does not extend to a con-
tinuous invariance, owing to the small scale structure
brought about by the propagation inside a vortex.

To average out these subscales, we consider the spa-

tiotemporal gliding average �̂ of �̄ along the characteristics
x�t�=xo+Vft of the mean motion and over a period �Lx ,T�,

�̂�x,t� = �
−Lx/2

Lx/2

�̄�x + u,t +
u

Vf
�du

Lx
. �B3�

Discrete invariance of �̄ implies that the integral �B3� re-
mains unchanged if integration is performed over a range
�−Lx /2+ ũ ,Lx /2+ ũ� that is translated from the range

�−Lx /2,Lx /2� by an arbitrary shift ũ. This means that �̂�x , t�
does not depend on the actual location of the range on which
integration is performed but only on its length Lx. This trans-
lational invariance can be transformed into a continuous in-

variance of �̂ by interpreting the arbitrary translation mode
ũ=Vft̃ as a combined shift �Vft̃ , t̃� on space and time:

∀�x,t�, ∀ t̃, ∃ Vf ; �̂�x + Vft̃,t + t̃� = �̂�x,t� . �B4�

The averaged profile �̂ then stands as a traveling wave whose
nature, an actual wave or the wake of a propagating particle,
is discussed in Sec. V A.

APPENDIX C: THE HELE-SHAW REGIME

The Hele-Shaw regime stands in narrow gap geometries
at sufficiently low flow velocities. It corresponds to boundary
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layers invading the whole fluid and thus, to a fully viscous
regime. At larger velocities, it leaves place to a coexistence
between viscid and inviscid domains which may yield spe-
cific hydrodynamic flows. Our goal here consists in deter-
mining the velocity threshold that bounds the Hele-Shaw re-
gime in our experimental configuration and the
hydrodynamic features that may come about beyond. We
shall draw attention on a cell enclosing a steady vortex
whose axis is parallel to the cell depth �Fig. 25�.

We start from above the Hele-Shaw regime by consider-
ing, at large flow velocities, the coexistence between viscous
boundary layers at the top and bottom plates and an inviscid
zone in between �Fig. 26�. We place the origin at the bottom
boundary and we label � the boundary layer thickness, d the
cell depth, and V�x ,y ,z� the flow. We note � the volumic
mass of the fluid, � its dynamic viscosity and � its kinematic
viscosity.

In the inviscid zone, flow advection on the curved vortex
streamlines generates a centrifugal force that is balanced by a
radial pressure gradient

� 
 z � d/2; ��V · ��V 
 �P 

�P

�r
er. �C1�

In the boundary layers that arise at the channel sides �Fig.
27�, this pressure gradient persists but the centrifugal force
weakens and eventually vanishes at the boundaries, together
with the flow intensity. Force equilibrium then only involves
a viscous force and the remaining pressure gradient. The
former is proportional to the flow in the present narrow gap
configuration and the latter is mainly radial,

0 � z 
 �; � P = ��V 
 �
�2V

�z2 . �C2�

As the primary flow is mainly orthoradial, it cannot compen-
sate the radial component of the pressure gradient, so that a
secondary radial flow is mandatory. Incompressibility then
imposes a vertical back flow, and thus, an additional vortex
in each of the half cell depth, in a way analogous to the
generation of secondary flows on Eckman layers �Fig. 28�
�42�.

The occurence of an inviscid zone in between the bound-
ary layers therefore implies not only a change of the flow
profile but also a change of the flow structure which no
longer remains planar. In particular, an advective transport
process now takes place in the direction of the vortex center.
Although its intensity is weak compared to the primary flow,
it might be of paramount importance in the present problem,
since it provides to the front the opportunity of quickly con-
taminating the whole vortex. To avoid handling different
flow regimes, the present study has been performed so as to
remain in the Hele-Shaw regime where no inviscid zone is in
order.

The criterion which states the end of the Hele-Shaw re-
gime is the occurrence of an inviscid zone when the two
boundary layers fail to overlap. It corresponds to a boundary
layer thickness � just equal to half the cell depth d: ��d /2.

To determine the corresponding velocity bound, we evaluate
the boundary layer thickness � from the vorticity dynamics
projected on the depth direction ez,

�V · ���z = �� · ��Vz + ���z. �C3�

In the boundary layer, vortex stretching is weak, espe-
cially because the vertical flow is a secondary flow. Vorticity
dynamics then mainly results from an equilibrium between
vorticity advection and vorticity diffusion. Evaluation of
both these terms may be performed using the characteristic
scales of variations on the three space directions. These are
Lx /2, Ly /2 on the x and y directions. However, the parabolic
profile on the z direction yields a characteristic scale which is
� /2 at the boundaries but which diverges to infinity at the
parabola summit �Fig. 29�. We thus prefer evaluating this
scale by considering the mean slope l over the domain under
study �e.g., �V�x ,y ,z� /�z=U�x ,y� / l, where U�x ,y� is the
amplitude of the variations of V over the channel depth�.
Drawing attention to a domain extending over the last part of
the boundary layer, i.e., ���z��, we then obtain a scale l
=� /� with �=1−�� /�: �

�x 
 1
Lx/2

, �
�y 
 1

Ly/2
, �

�z 
 �
� . In particu-

lar, considering the second half of the boundary layer for
appropriately determining its transition to the inertial zone
yields ��=� /2 and �=1 /2.

Applying these scalings gives, with Ly �Lx,

�V · ���z 

V

Ly/2
�z, �C4�

���z 
 �
�2�z

�z2 
 �
�2

�2 �z, �C5�

and, finally, with �V ·���z����z,

V 

�2

2

Ly�

�2 . �C6�

This velocity, consistent with the Karman scaling of the
Eckman pumping problem, corresponds to that required to
develop a boundary layer thickness � in a semi-infinite me-
dium above a plate. Applying it for �=d /2 provides an esti-
mation of the velocity bound UHS beyond which the bound-
ary layers would detach one from the other, making the fluid
escape the Hele-Shaw regime

UHS 
 2�2Ly�

d2 . �C7�

For the present experiment where d=3 mm, �
�1 mm2 s−1, and ��1 /2, we obtain a limit to the Hele-
Shaw regime at about UHS�20 mm mn−1 for Ly =6 mm and
UHS�40 mm mn−1 for Ly =12 mm. The experiment always
remained in this regime where the flow field can be consid-
ered as planar. This was confirmed by the absence of spiral
transport of the front towards the vortex centers.

APPENDIX D: EXTENSION OF THE OPTIMIZATION
MODEL TO RECTANGULAR CELLS

For the sake of simplicity, the optimization model has
been worked out in Sec. VI on a square cell. We wish to
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extend it here to the rectangular cells involved in our experi-
ment.

The first step consists in modeling the streamline geom-
etry and the stream function in rectangular cells and in de-
fining a family of trajectories for the front. For this, we shall
take advantage of a simple geometrical, area-preserving,
transformation linking squares to rectangles to extrapolate
the flows and the trajectories modeled in square cells to those
standing in rectangular cells. The next step will address the
determination of the transit time T of the leading point of the
front through a cell and the selection of the fastest trajectory.
This will provide relationships similar to those obtained in
square cells but parametrized by the rectangle aspect ratio.

For the sake of simplicity of the notations, the dimensions
�Lx ,Ly� of rectangular cell are denoted �2a ,2b� and two
lengths are introduced, l= �ab�1/2 and l�= �a2 /2+b2 /2�1/2.
Notice that, in a square cell, the lengths l and l� would all be
equal to half the square side L, l= l�=L /2.

1. Flow and trajectories

Rectangles of half dimensions �a ,b� and squares of half
dimensions �l , l� simply differ by an anisotropic dilation, i.e.,
by the affine transformation,

�x,y� → �x̆, y̆� = A�x,y� = l� x

a
,
y

b
� , �D1�

where �x ,y� �respectively, �x̆ , y̆�� denote the rectangle �re-
spectively square� coordinates. Interestingly, the affine trans-
formation A�. , . � is area preserving. It thus actually map the
incompressible flow in a rectangle onto an incompressible
flow in a square. Taking, as in Sec. VI, circular streamlines
for modeling flows in a square then yields elliptical stream-
lines in a rectangle whose equation is

x2

a2 +
y2

b2 = �2, �D2�

the label � being equivalent to the reduced radius r�=r / l of
circular streamlines with r2= x̆2+ y̆2.

In the same spirit as in Sec. VI, trajectories are modeled
by a straight path on the x direction starting from a separa-
trix, followed by an elliptical streamline and ending with a
second straight path at the next separatrix �Fig. 30�. The front
advances with the laminar velocity Vo on straight paths and
with the flow velocity plus the laminar velocity on the ellip-
tical path.

We call ���� the stream function of the flow in the rect-

angular cell and �̆�r� the stream function of the flow in the
corresponding square cell. The variations of either stream

functions ����, �̆�r� in between related trajectories corre-
sponds to the elementary area scanned by the flow in its
current tube per unit time. As areas are preserved by A�. , . �,
both variations are then the same: d�=d�̆. Using the mod-
eling �27� of the flow in a square and the relationship �
=r�=r / l, we obtain

d�

d�
= l

d�̆

dr
= − lÛ��1 − ��c, �D3�

with c= l /�−1, � being the relative distance of the boundary
layer to the cell center in the square cell �Sec. VI A, Fig. 19�.
This provides, in rectangular cells and in frame �ex ,ey�, the
following flow on elliptical streamlines

FIG. 25. Geometry of a cell enclosing a vortex.

FIG. 26. Sketch of a cellular flow in the vertical plane. Two
boundary layers of width � enclose an inviscid layer. In the Hele-
Shaw regime, the boundary layers are so extended that they leave
no room for an inviscid layer.

FIG. 27. Sketch of the flow components in the Hele-Shaw re-
gime. Both vertical and horizontal boundary layers extend over half
the cell depth.

FIG. 28. Sketch of the secondary flows generated from a pri-
mary vortex flow by unbalanced radial pressure gradient in the
boundary layers of a container.
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U =
1

l2

d�

d�
�− a sin �

b cos �
� �D4�

with � defined by x=�a cos���, y=�b sin���.

2. Transit time, optimization, and selection

The advection time Ta of the leading point of the front on
the half-ellipse E��� of a trajectory T��� reads

Ta��� = �
E���

ds

U��,�� + Vo
. �D5�

Here s denotes the curvilinear abcissa and U�� ,�� the flow

intensity at the location �� ,��, U�� ,��= Û��1−��cl��� / l,
where l���= �a2sin2 �+b2cos2 ��1/2. Introducing the average

Ũ of the flow intensity on the streamline � yields U�� ,��
= Ũ���l��� / �l with

�l = �
0

�

l���
d�

�
= e−1/2Jl , �D6�

where e denotes the ellipse excentricity e=a /b and
J=�0

��1+ �e2−1�sin2����1/2d� /�. Then

Ta��� = �
0

� �l���

Ũ���l���/�l + Vo

d� . �D7�

A close approximation for Ta may be obtained by fixing
�=� /4 in the integrand of Eq. �D7�. As l�� /4�= l�, this
gives for the total transit time T��� on streamline �,

T��� =
2a

Vo
�1 − �� +

��l�

GŨ��� + Vo

, �D8�

where G=e1/2J−1 l� / l.

The optimal trajectory �̃ is selected from Eq. �D8� by the
least-time criterion �dT /d���̃=0. As in a square cell �Fig. 20,
Sec. VI B�, it reads to a good approximation,

�dŨ

d�
�

�̃

� −
e

J

2

�
� Ũ��̃�

Vo
�2

Vo

�̃
.

As Ũ=e−1/2J��1−��cÛ, this gives

1 − �̃ = �e−1/2�

2
� 1

��
− 1�Vo

Û
���

, �D9�

with ��=� / l. The effective front velocity then follows from
Vf =2a /T��̃�.

Using the maximal flow velocity Ū= Ũ���� to express the
flow intensity, we obtain

�̃ = 1 − �1 − ���� f
2

�

Ū

Vo
�−��

, �D10�

Vf

Vo
=

1 − �1 − ��� − �1 − g
2

�
��� + � f

2

�

Ū

Vo
���

1 − �1 − ����1 − g
2

�
���� f

2

�

Ū

Vo
�−��

, �D11�

with f =e /J and g=a / l�.
Taking a=b turns out returning to a square cell. As ex-

pected, relations �D10� and �D11� then reduce to those ini-
tially derived in square cells �39� and �40� since l= l�=a
=L /2, ��=2� /L, e=J=1, and f =g=1.

In practice, for the rectangular cells considered here, we
have for �Lx ,Ly�= �20,12� mm, e=5 /3, J=1.354, f =1.23, g
=1.21, and, for �Lx ,Ly�= �20,6� mm, e=10 /3, J=2.327, f
=1.43, and g=1.35.

FIG. 29. Profile of the flow velocity V�x ,y ,z� in the vertical
plane �a� and in the horizontal plane �b�. The maximal flow ampli-
tude is normalized to unity. The slope of the profile in the vertical
plane is 2 /� at the boundary and 0 at the end of the boundary layer.
Its mean slope in the second half of the boundary layer, 1 /2�, is
then more relevant to express the equilibrium between vorticity
advection and vorticity diffusion. It corresponds to a characteristic
scale 2� for evaluating the transition to an inviscid zone.

FIG. 30. Front trajectory within a rectangular cell. Trajectories
T��� are made of two straight paths S and an elliptical path param-
etrized by � in between.
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