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A linear stability analysis of the buoyant-thermocapillary flow in open rectangular cavities with aspect ratios
in the range �=1.2 to 8 is carried out for Prandtl number Pr=10 and conditions of previous experiments. The
results are in very good agreement with most available experimental data. The energy transfer between the
basic and the perturbation flow reveals that buoyancy is not directly instrumental in the instabilities. For aspect
ratios less than about three a stationary three-dimensional cellular flow arises. The instability relies on the
lift-up mechanism operating in the shear layer below the free surface and it is aided by weak Marangoni forces.
For larger aspect ratios Marangoni effects play a more significant role. While plane hydrothermal waves may
appear a certain distance away from the hot wall for sufficiently large aspect ratios, the instability at interme-
diate aspect ratios is strongly influenced by the local nonparallel basic-flow structure.
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I. INTRODUCTION

Thermocapillary-driven flows are important in natural
phenomena as well as in technical applications. In particular,
the undesired creation of striations in crystals grown from
the melt �1� has stimulated many investigations into the fun-
damental nature of thermocapillary flows �2�. Thermocapil-
lary flows have been extensively studied for two fundamen-
tal finite-size geometries related to crystal growth:
Cylindrical liquid bridges as models for the floating-zone
technique and rectangular cavities as models for the open-
boat technique. In both systems differentially heated walls
drive a thermocapillary flow along the free surface. While
the mechanisms causing the transition from the steady axi-
symmetric to the three-dimensional and eventually time-
dependent flow in liquid bridges are well known, the onset of
the three-dimensional flow in the rectangular system is not as
fully understood. Reasons for this deficit are the change of
the character of the flow as the aspect ratio varies from unity
to infinity and the high numerical effort that is required to
solve the stability problem in finite-size geometries: The
critical Reynolds numbers in rectangular cavities are typi-
cally much higher than those in liquid bridges.

The present investigation is aimed at a numerical stability
analysis of the basic two-dimensional flow in rectangular
buoyant-thermocapillary cavities. In particular, we want to
clarify the instability mechanisms that lead to the steady and
time-dependent three-dimensional flows observed in recent
experiments �3–6� using fluids with Prandtl numbers of
about Pr=10. The main factors influencing the thermocapil-
lary cavity flow are the Prandtl number, the aspect ratios in
stream- and span-wise directions, buoyancy forces, and the
thermal boundary conditions.

Assuming a large or even infinite aspect ratio in span-wise
direction, it is the stream-wise aspect ratio � that determines
the character of the flow. For aspect ratios � of order unity

the flow is dominated by a single vortex. If, on the other
hand, the aspect ratio is very large ��→�� the gross feature
is a parallel shear flow. The instabilities of these basic steady
two-dimensional flows on an increase of the driving force are
thus expected to be quite different.

One of the first numerical investigations of the two-
dimensional thermocapillary flow in a rectangular cavity is
due to Zebib, Homsy, and Meiburg �7�. They clarified the
principle flow structure in a square cavity in the absence of
buoyancy, the scaling of the boundary layers, and the
leading-order free-surface deformations. Their results were
extended to higher Marangoni numbers by Carpenter and
Homsy �8� who pointed out the analogy to the lid-driven
square cavity. For Pr=1 Carpenter and Homsy �9� considered
the two-dimensional buoyant-thermocapillary flow. Keeping
the ratio of buoyant to thermocapillary forces at a constant
value, expressed by a constant dynamic Bond number Bd
=Gr /Re, the thermocapillary type of scaling was found to
always dominate the buoyant one if the driving temperature
difference is large enough.

On the other extreme, infinite thermocapillary layers have
been investigated. The basic flow in slots has been analyzed
by Sen and Davis �10� �see also �11��. The parallel flow
solution far away from the end zones with zero horizontal
mass flux relevant to shallow but finite cavities is called
return flow. The seminal work on three-dimensional insta-
bilities of infinite thermocapillary layers in the absence of
gravity is due to Smith and Davis �12�. They coined the term
hydrothermal waves for the pair of oscillatory modes which
propagate under the angles of ��c �depending on the Prandtl
number� with respect to the applied temperature gradient
when a critical Reynolds number is exceeded. The underly-
ing mechanisms were elucidated by Smith �13�. An analogy
between the two-dimensional instability in large-aspect-ratio
cavities and that of the return-flow solution in infinite layers
is possible for high Prandtl numbers, because the hydrother-
mal waves in the infinite layer are nearly two-dimensional
for Pr→� ��c is small�. However, the return flow in experi-
ments can become spatially unstable prior to the onset of
hydrothermal waves by virtue of the large perturbations rep-
resented by the heated walls. Depending on the Reynolds,
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Prandtl, and Grashof numbers a sequence of steady corotat-
ing vortices may penetrate the cavity from one of the heated
walls �14,15�. Depending on the spatial stability these two-
dimensional perturbations may decay or grow with the dis-
tance from the respective wall. Priede and Gerbeth �16� have
carried out a more general stability analysis of the return
flow solution to investigate the absolute and convective in-
stabilities. They have shown that the return flow can become
globally unstable with respect to two-dimensional corotating
vortices when the buoyancy forces are sufficiently large. For
Pr=13.9 corotating vortices represent the primary instability
pattern when the dynamic Bond number exceeds Bd�0.22.
Their results are in good agreement with the experimental
observations of Riley and Neitzel �17� in thin layers. Coro-
tating eddies embedded in the return flow have been found
experimentally before by Villers and Platten �18� for Pr
=4.24. Mercier and Normand �19� carried out a temporal
linear stability analysis for infinite thermocapillary layers,
focusing on the effects of buoyancy and surface heat loss. In
addition to the hydrothermal waves modified by buoyancy,
they also found a steady instability which consists of convec-
tion rolls whose axes are aligned parallel to the temperature
gradient.

A number of results have been obtained for intermediate
aspect ratios 2����. For low Prandtl numbers the results
are mainly numerical. Ben Hadid and Roux �20� clarified the
effect of the hot and cold wall boundaries on the steady
two-dimensional flow for small Prandtl numbers. Subsequent
investigations concentrated on the onset of time-dependence.
Ohnishi, Azuma, and Doi �21� discovered the existence of a
Hopf bifurcation in the two-dimensional thermocapillary
flow for Pr=0.015 and �=4. The effect of buoyancy on the
two-dimensional oscillatory instability was demonstrated by
Ben Hadid and Roux �22� and Mundrane and Zebib �23�. An
attempt was made by the latter authors toward an analysis of
the instability mechanisms by considering the energy bud-
gets for Pr=0 of the oscillating part of the two-dimensional
solution. Schimmel, Albensoeder, and Kuhlmann �24� have
carried out a linear-stability analysis of the two-dimensional
thermocapillary flow in the zero-Prandtl-number limit. They
established a one-to-one correspondence with the three-
dimensional instabilities in the lid-driven cavity �25� in the
range �� �0.4,2.8�.

The flow for higher Prandtl numbers Pr�1 is more rel-
evant to the present investigation. Peltier and Biringen �26�
simulated the pure thermocapillary flow for Pr=6.8 and
found a two-dimensional bifurcation to oscillations for as-
pect ratios larger than ��2.3. From their results one can
conclude that the lateral heated boundaries have a strong
stabilizing effect on the onset of two-dimensional oscilla-
tions. When the aspect ratio is increased, however, the sta-
bility boundary is reduced and approaches that of the infinite
layer which was investigated by Smith and Davis �12�. Their
results were confirmed and augmented by Xu and Zebib
�27�, who extended the analysis to three dimensions comput-
ing three-dimensional thermocapillary flows for several large
aspect ratios and Prandtl numbers up to 10 �for related cal-
culations see also �28,29��. Taking into account buoyancy
Shevtsova and Legros �30� and Shevtsova, Nepomnyashchy,
and Legros �31� computed the buoyant-thermocapillary flow

and investigated the corotating vortices for Pr=14.8 and �
=24.7 as well as the transition to time dependence under the
assumption that the flow remains two dimensional.

Several experimental investigation under the influence of
buoyancy have been carried for Prandtl numbers Pr�1.
Saedeleer, Garcimartin, Chavepeyer, Platten, and Lebon �32�
essentially confirmed the results of Ref. �18� on steady two-
dimensional corotating vortices. These were also found by
Riley and Neitzel �17� as well as by Schwabe et al. �33� for
an annular geometry. Both latter investigations �17,33� were
also concerned with the onset of three-dimensional time-
dependent convection. The influence of different thermal
boundary conditions on the high Prandtl number flow in
shallow layers was considered by Ezersky et al. �34�. The
dependence of the properties of hydrothermal waves in cavi-
ties on the global geometry, in particular on the span-wise
aspect ratio, has been investigated by Pelacho et al. �35�.

When the aspect ratio is reduced the buoyant-
thermocapillary traveling-wave instability is succeeded by a
steady three-dimensional instability of the steady two-
dimensional flow which leads to a rectangular cellular flow
pattern. One of the first reports of the three-dimensional in-
stabilities in such a system is due to Daviaud and Vince �3�
for Pr=10. The same steady three-dimensional patterns were
also found for Pr=6.78 by Gillon and Homsy �36�. These
experiments motivated two numerical-simulation runs of
Mundrane and Zebib �37�, who bracketed the stationary
three-dimensional instability in qualitative agreement with
Ref. �36�. The stationary three-dimensional patterns for Pr
=10 were also observed by other authors �4–6,38,39�, con-
firming and/or extending the previous experiments. Similar
results were also obtained by Braunsfurth and Homsy �40�
for Pr=4.4. They also found a secondary instability of the
steady cellular flow to time-dependence and discussed the
corresponding physical mechanism in terms of a competition
of the basic �two-dimensional� thermocapillary flow and an
opposing stream which is locally created by the superim-
posed three-dimensional cellular pattern.

It should be mentioned that some authors have also stud-
ied the related system of an annular cavity reporting similar
phenomena �see, e.g., Refs. �33,41–48��. This geometry en-
ables the elimination of the end walls in span-wise direction
in favor of periodic boundary conditions at the price of a
cylindrical geometry.

A satisfactory physical explanation of the observed sta-
tionary three-dimensional instability has not yet been given.
The analysis is also complicated by the presence of buoy-
ancy forces. Moreover, no linear-stability analysis has been
carried out to date for the finite-aspect-ratio system. The
main objective of this paper thus is to carry out a linear-
stability analysis for parameters corresponding to the experi-
ments of Refs. �3–6� and to unravel the detailed mechanisms
which are governing the process of the pattern formation.

The paper is organized as follows. In Sec. II we formulate
the problem, present the methods of investigation, and carry
out a comprehensive code validation. The results are pre-
sented in Sec. III. We discuss the instability mechanisms in
detail for the aspect ratios �=2.1, 4, and 8. The main find-
ings are summarized in the conclusions.
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II. METHODS OF INVESTIGATION

A. Formulation of the problem

We consider an open liquid-filled rectangular cavity of
height h and width d in a vertical gravity field as sketched in
Fig. 1. The cavity is heated from the side such that the lateral
walls are maintained at a constant temperature difference 	T.
The temperature difference causes a flow which is driven
both by buoyancy forces and by thermocapillary stresses act-
ing on the upper free surface.

For the numerical investigation of the flow we consider
the asymptotic limit of large mean surface tension 
0 in
which the capillary number Ca=�	T /
0→0 vanishes,
where �=−�
 /�T is the surface tension coefficient. In this
limit dynamic flow-induced free-surface deformations are
absent. The governing equations are further simplified by
employing a Boussinesq-type approximation in which tem-
perature variations are only taken into account in the buoy-
ancy term and in the free-surface stress.

For the dimensionless formulation of the governing equa-
tions we use the scales h, h2 /�, � /h, 
�2 /h2, and 	T for
length, time, velocity, pressure, and temperature, respec-
tively, where � is the kinematic viscosity and 
 the density of
the liquid. If we introduce the reduced temperature �= �T
−T0� /	T, where T0 is the mean temperature, the nondimen-
sional governing equations take the form

�U

�t
+ U · �U = − �P + �2U + Gr �ey , �1a�

� · U = 0, �1b�

��

�t
+ U · �� =

1

Pr
�2� . �1c�

Here ey is the unit vector in positive y direction. The dimen-
sionless groups are the Prandtl and Grashof numbers

Pr =
�

�
and Gr =

g�	Th3

�2 , �2�

where � is the thermal diffusivity, � the thermal expansion
coefficient, and g the acceleration of gravity. We assume that
the cavity is infinitely extended in the third �z� direction. The
geometry is then characterized by the aspect ratio of the
cross section

� =
d

h
. �3�

The governing equations �1� are to be solved subject to
the following boundary conditions. For the temperature field
we assume perfectly conducting side walls such that the tem-
peratures at the lateral walls can be considered fixed. The top
and bottom boundaries are considered adiabatic. These as-
sumptions lead to the thermal boundary conditions

��x = �
�

2
� = �

1

2
and

��

�y
�y = �

1

2
� = 0. �4�

The velocity field must satisfy no-slip boundary conditions
on both side walls and the bottom wall of the cavity. On the
nondeformable free surface thermocapillary stresses must be
balanced by viscous stresses. This leads to the boundary con-
ditions for the velocity field

U�x = �
�

2
� = U�y = −

1

2
� = 0

and

� �U	

�y
+ Re �	�


y=1/2
= 0, �5�

where the velocity components and the Nabla operator tan-
gential to the interface are defined as U	 = �U ,W�T and �	

= ��x ,�z�T, respectively. The strength of the thermocapillary
stresses is measured by a third dimensionless group. It de-
fines the thermocapillary Reynolds number

Re =
�	Th


�2 . �6�

B. Basic state and linear stability equations

Since the system under consideration is invariant under
translations in time and in z direction the governing equa-
tions and boundary conditions allow for a steady two-
dimensional flow. We call this state the basic flow. It is de-
noted by u0�x ,y�, p0�x ,y�, and �0�x ,y�.

The stability of this basic flow is investigated by a linear
stability analysis. To that end we decompose the total flow
field

�U

P

�
� = �u0�x,y�

p0�x,y�
�0�x,y�

� + �u�x,y,z,t�
p�x,y,z,t�
��x,y,z,t�

� . �7�

Inserting this ansatz into the governing equations and linear-
izing the equations with respect to the small perturbations u,
p, and � we obtain the linear stability equations

�u

�t
+ u0 · �u + u · �u0 = − �p + �2u + Gr � ey , �8a�

� · u = 0, �8b�

x

y
free surface

−1/2

1/2

−Γ/2
Γ/2

−Gr ey

cold wall hot wall

FIG. 1. Geometry of the thermocapillary-driven cavity using the
height h as the length scale.
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��

�t
+ u0 · �� + u · ��0 =

1

Pr
�2� . �8c�

The boundary conditions to be satisfied by the perturbations
are the same as those for the basic state, except that the
temperature perturbations must vanish on the lateral bound-
aries, ��x= �� /2�=0, because the imposed wall tempe-
ratures are already taken care of by the basic temperature
field �0.

C. Numerical methods

The general procedure to solve the stability problem is to
first calculate the basic state and then solve the linear stabil-
ity problem on the same grid, using the basic state as the
input. To carry out the corresponding numerical calculations
the code of Albensoeder et al. �25� for the isothermal lid-
driven cavity has been extended by adding the temperature
equation and by appropriately changing the boundary condi-
tions. Since the solution procedure is essentially the same as
for the lid-driven-cavity problem, we only give a brief de-
scription of the numerical procedure. For further details the
reader is referred to Ref. �25�.

1. Basic state

To compute the basic flow the primitive variables
�u0 , p0 ,�0� are discretized on a staggered grid using finite
volumes and grid stretching. The discrete nonlinear equa-
tions together with the boundary conditions can be written in
compact form as

N�u0;Re,Pr,Gr,�� · x = b , �9�

where x= �u0 , p0 ,�0�. This system of nonlinear equations is
solved using the Newton-Raphson method �49�. The solution
of the linear problems which arise during the Newton-
Raphson procedure is accomplished utilizing by the LAPACK

program library.
To resolve the high gradients which appear near the three-

phase contact lines the grid is compressed in x direction to-
ward both side walls and in y direction toward the free sur-
face. In both directions the length ratio between the largest
and the smallest cell is typically 0.1. We have usually em-
ployed 141�141 grid points. If not noted otherwise, a grid
with 71�71 points has been used for convergence checks.
The code validation and convergence tests will be provided
later in Sec. II E.

2. Linear stability

Since the basic flow is uniform in z direction, infinitely
small deviations from it can be written as normal modes

�u�x,y,z,t�
p�x,y,z,t�
��x,y,z,t�

� = �ũ�x,y�
p̃�x,y�

�̃�x,y�
�e
t+i��t+kz� + c.c. �10�

The normal mode is characterized by the wave number k in z
direction, the oscillation frequency �, the temporal growth
rate 
, all of which are real, and the complex structure func-

tions, indicated by a tilde, which depend on x and y. Insert-
ing this ansatz into the linearized equations, Eqs. �8b� and
�8c�, and into the corresponding boundary conditions results
in a generalized eigenvalue problem of the form

A�Re,Pr,Gr,�,k� · x̂ = �B�Pr� · x̂ , �11�

with the eigenvalues �=
+i��C and eigenvectors x̂
= �û , p̂ , �̂��C the components of which correspond to the
field variables at all grid points. Owing to the inflection sym-
metry z→−z of the equations the eigenvalues are either real
��=0� or they arise as complex conjugate pairs ���0�. The
latter represent right and left traveling waves.

We characterize the neutral stability boundaries of the ba-
sic flow by the neutral Reynolds numbers Ren�Pr,Gr,� ,k�.
To determine Ren the parameters Pr, Gr, �, and k are varied
such that the growth rate 
=0 vanishes. The index n indi-
cates that for a given combination of Pr, Gr, �, and k a set of
neutral modes exists. The critical Reynolds number Rec is
the smallest neutral Reynolds number for a given combina-
tion of Pr, Gr, and �, i.e., Rec=minn,k Ren�Pr,Gr,� ,k�. The
associated normal mode is called the critical mode.

To solve the generalized eigenvalue problem �11� the
linear-stability equations are discretized in the same way as
the basic-state equations. They are then solved by inverse
iteration as described in Ref. �25�. To find the critical mode
for fixed parameters Re, Pr, Gr, �, and k a sufficiently large
number of eigenvalues �i is calculated for initial guesses �i

�0�

randomly distributed in the complex plane. This is done for
wave numbers dense in the interval k� �0;30�. The eigen-
value with the largest growth rate is then taken as the initial
guess to search for the critical point 
�Re�=0 using New-
ton’s method.

D. Energy budgets

For a physical understanding of the instability mecha-
nisms an evaluation of the energy budgets of the critical
modes has proven useful �see, e.g., Ref. �50��. The rate of
change of the kinetic energy of the perturbation flow is given
by the Reynolds-Orr equation which is written in normalized
form as

1

Dkin

dEkin

dt
= − 1 + 


i=1

4 �
V

IidV + �
S

M1dS

+ �
S

M2dS + �
V

BdV , �12�

where V= �x �x� �−� /2,� /2�� �−1 /2,1 /2�� �0,2� /k�� is
the volume occupied by the fluid over one wavelength 2� /k
of the perturbation flow and S= �x �x�V and y=1 /2� is the
free surface over one wavelength. The integrands are

I1 = −
1

Dkin
u2�u0

�x
, �13a�

I2 = −
1

Dkin
uv

�u0

�y
, �13b�
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I3 = −
1

Dkin
vu

�v0

�x
, �13c�

I4 = −
1

Dkin
v2�v0

�y
, �13d�

M1 =
1

Dkin
w��w

�y
�

y=1/2
, �13e�

M2 =
1

Dkin
u��u

�y
�

y=1/2
, �13f�

B =
Gr

Dkin
v� . �13g�

All terms have been normalized by the rate of energy dissi-
pation which, for the present boundary conditions, can be
written as

Dkin = �
V

�2dV , �14�

where �=��u is the vorticity of the perturbation flow. The
terms Ii represent convective energy-transfer processes, Mi
indicates the work per time and surface area done by Ma-
rangoni forces, and B is the work per time and volume car-
ried out by the buoyancy forces.

In a similar way the transfer of thermal energy can be
specified. Note, however, that the thermal energy density,
defined as �2 /2, is just a positive measure for the
perturbation-temperature field and has nothing to do with the
thermal energy in the thermodynamic sense. The thermal en-
ergy balance is obtained by multiplying the temperature
equation �8c� by � and integration over the volume. We ob-
tain

Pr

Dth

d

dt
Eth = − 1 + 


i=1

2 �
V

Ji dV , �15�

where the integrands

J1 = −
Pr

Dth
�u

��0

�x
, �16a�

J2 = −
Pr

Dth
�v

��0

�y
�16b�

describe the production of thermal energy by convective
transport of the basic-state temperature field caused by the
perturbation flow. All terms have been normalized by the
thermal dissipation term

Dth =
1

Pr
�

V

����2dV . �17�

E. Code validation

The isothermal code has been validated extensively both
regarding the two-dimensional basic flow �51� as well as

regarding the linear stability analysis �25,50,52�. Additional
validations have been carried out for the present nonisother-
mal flow.

As a first step the computed two-dimensional steady flow
is validated for different parameter combination. Since we
always consider Re�0 we shall use the dynamic Bond num-
ber Bd=Gr /Re=
g�h2 /� to characterize the gravity level.
This parameter has the advantage of immediately giving the
importance of buoyancy relative to thermocapillarity. The
comparison with data previously published by Refs.
�8,9,26,27� is made in Table I. Our calculations are in good
agreement with the data from the literature, except for the
parameter set �Pr=30, Re=2�103�. This case represents the
highest Marangoni number considered, Ma=Re Pr=6�104.
All previous computations show a significant deviation from
the present converged data, particularly for the vortex
strength as expressed by the maximum stream function �max
or the vorticity �c in the center of the vortex. Since our
results agree with the previous references for all other �mod-
erate� Marangoni numbers and because we have clearly ob-
tained grid convergence for the high-Marangoni-number case
we attribute the deviations for Ma=6�104 to an insufficient
resolution of the older investigations.

The linear stability analysis is validated for several cases.
The first test case considered is a side-heated purely
buoyancy-driven cavity in which the free surface is replaced
by a rigid lid. In case of perfectly conducting boundary con-
ditions at the top and bottom walls the horizontal tempera-
ture profiles along these walls are identical and linear. For
adiabatic top and bottom walls the boundary condition �y�
=0 was imposed on these walls. Henkes and Le Quéré �53�
calculated the linear stability for a cavity with a square cross
section filled with a fluid of Pr=0.71. In the conducting case
they found a steady three-dimensional critical mode. The
critical Rayleigh and wave numbers Ra=Gr Pr and kc were
bracketed to Rac� �106;1.8�106� and kc� �5.7;10.5�, re-
spectively. In our present calculations we find the critical
Rayleigh number Rac= �1.273�0.050��106 and the critical
wave number kc=5.835�0.023. Both values match with the
intervals given by Ref. �53�. For the adiabatic case Ref. �53�
found a steady three-dimensional mode as well which be-
comes supercritical for Rac� �107;108� with kc� �7.8;62.8�.
In our calculations we find the critical parameters Rac
= �15.47�0.11��106 and kc=19.160�0.095. Again both
critical parameters fit the given intervals of Ref. �53�. For
both types of boundary conditions the structure of the critical
modes that we have calculated is qualitatively the same as
the small-amplitude modes computed by Henkes and Le
Quéré �53� and shown in their figures.

As another test case, we compare our linear stability result
with the three-dimensional open-cavity flow simulated nu-
merically by Mundrane and Zebib �37� for Pr=8.4, Bd
=5.76, and �=1.47. They used the span-wise aspect ratio
�=1.4 and employed free-slip boundary condition at z
= �� /2. These conditions represent restricted periodic
boundary conditions which are compatible with periodic
flows for which the span-wise velocity component w van-
ishes exactly on the boundaries at z= �� /2, but which are
not generally compatible with span-wise traveling waves.
For large simulation times one of their two simulations con-
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verged to a steady two-dimensional flow while the other one,
for a higher Marangoni number, yielded a steady three-
dimensional flow. It was concluded that a three-dimensional
flow instability must occur for some Marangoni number
within the rather wide range Mac� �2.93�103;1.95�105�.
For a comparison we carried out a linear stability analysis for
kc=4.488, i.e., for normal modes whose wavelength corre-
sponds to the span-wise aspect ratio �=�=1.4. Using this
wave number our linear stability analysis yielded a steady
critical mode which is, in fact, compatible to the free-slip
conditions used by Ref. �37�. Moreover, we obtained a criti-
cal Marangoni number of Mac=64 660�765�k=4.488�,
which is consistent with the previous simulations of Ref.
�37�. As for the previous comparison, the critical mode of
our linear stability analysis is found to be very similar to the
three-dimensional flow structure computed by Mundrane and
Zebib �37�.

We also compared our results with the calculations of Xu
and Zebib �27� who simulated the flow in open rectangular
thermocapillary-driven cavities in the absence of gravity
�Bd=0�. The end walls in z direction at z= �� /2 were mod-
eled by no-slip adiabatic boundaries. Reference �27� studied
the flow for the Prandtl-number and aspect-ratio combina-
tions �Pr,� ,��= �4.4,3 ,20�, �13.9,3,20�, and �13.9,15,15�.
The rather large values of � were intended to approximate
an infinite system in span-wise direction, as is considered in

the present linear stability analysis. In Table II we compare
our critical data for two- and three-dimensional instabilities
with those given by Ref. �27�. For �Pr,��= �4.4,3� and
�Pr,��= �13.9,15� a good to satisfactory agreement is
achieved. However, for the case �Pr,��= �13.9,3� the param-
eters differ substantially for both two- and three-dimensional
instabilities. To clarify this discrepancy we recalculated the
stability curves Rec��� for Pr=4.4, Pr=6.78, and Pr=10 as
shown in Figs. 1 and 2 of Ref. �27�. We find a good agree-
ment between their and our results, except for the the case
�Pr,��= �13.9,3�. Since our results can be considered grid
converged �see below�, we conclude that the results of Xu
and Zebib �27� for �Pr,��= �13.9,3� must be considered with
care.

Finally, our linear-stability results for large aspect ratios
can be compared with the linear-stability analysis of the re-
turn flow in an infinite horizontal thermocapillary layer �12�,
as was also done by Ref. �27�. Since the results of Smith and
Davis �12� lack some accuracy for extreme Prandtl numbers
�for Pr→0 and Pr→��, we use the corrected data provided
by Ref. �2�. For the large aspect ratio �=15 and Pr=13.9 the
surface temperature varies strongly near the heated walls ow-
ing to the thermal boundary layers on these walls. A com-
parison with the infinite layer is possible, because the surface
temperature varies nearly linearly over the remaining wide
and central area of the free surface. At the critical onset for

TABLE I. A comparison of typical basic-state data with previously published results for three different cases. The Nusselt number is
defined as Nu=−�−1/2

1/2 ���0 /�x�dy.

Grid/Author max � �c xc yc u�0,0.5� Nux=−0.5 Nux=0 Nux=0.5 �maxxm
u�y=0.5 xm

Re=10000, Pr=1, �=1, Bd=0

Carpenter and Homsy �8� 32.3 697 −0.08 0.12 −296 4.33 4.40 4.36 — —

Xu and Zebib �27� 32.1 701 −0.07 0.13 −305 4.36 — 4.36 — —

Peltier and Biringen �26� 32.4 729 — — −306 4.44 4.36 4.30 — —

71�71 32.177 704.97 −0.068 0.119 −304.55 4.365 4.356 4.365 −887.10 −0.496

115�115 32.192 697.58 −0.083 0.133 −304.36 4.364 4.357 4.364 −752.35 −0.495

141�141 32.213 703.41 −0.068 0.128 −304.32 4.364 4.359 4.364 −741.35 −0.496

211�211 32.215 702.35 −0.068 0.131 −304.27 4.363 4.361 4.363 −711.87 −0.496

Re=2000, Pr=30, �=1, Bd=0

Carpenter and Homsy �8� 4.26 148 — — −37.2 6.60 6.29 6.42 — —

Xu and Zebib �27� 3.38 125.4 −0.07 0.28 −29.8 6.61 — 6.61 — —

Peltier and Biringen �26� 3.64 130.6 — — −32.2 6.69 6.71 7.14 — —

71�71 2.9392 108.90 0.099 0.276 −24.681 6.303 6.271 6.303 −169.69 −0.496

115�115 2.8932 113.35 0.101 0.287 −24.223 6.262 6.250 6.262 −199.85 −0.498

141�141 2.8825 111.14 0.099 0.284 −24.116 6.250 6.242 6.250 −210.64 −0.498

211�211 2.8683 109.03 0.099 0.281 −23.982 6.234 6.230 6.234 −225.05 −0.499

Re=5000, Pr=1, �=1, Bd=10

Carpenter and Homsy �9� 16.45 248.5 — — −179 4.17 4.15 4.14 — —

71�71 16.296 244.36 −0.155 0.160 −175.73 4.548 4.545 4.548 −451.29 −0.492

115�115 16.338 240.79 −0.153 0.158 −175.90 4.546 4.545 4.546 −431.57 −0.493

141�141 16.345 244.85 −0.155 0.159 −175.93 4.546 4.545 4.546 −425.58 −0.492

211�211 16.356 230.55 −0.147 0.151 −175.97 4.545 4.545 4.545 −420.41 −0.492
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hydrothermal waves we find a free-surface temperature
gradient ���0 /�x�y=1/2=0.0313. If we denote values deduced
from the bulk exclusive of the boundary regions near the
heated walls with an asterisk, the associated critical param-
eters are Ma

c
*=Rec Pr��� /�x�y=1/2=300.5, k

c
*= �kc

2+�c
2�1/2

�2.80, and �
c
* /k

c
* Re

c
*�0.057, where �c is the approxi-

mated critical wave number in x direction. These critical data
compare very well with the results for the infinite layer
Ma

c
*�290, k

c
*�2.53, and �

c
* /k

c
* Re

c
*=0.0606 �2�. Also,

away from the heated walls the angle with respect to the x
axis at which the waves propagate is found to be �

c
*

� �22.0. This is consistent with the angle �
c
*�Pr=13.9�

� �17° which the hydrothermal waves in the infinite layer
make with the direction of the surface-temperature gradient
�2�. Xu and Zebib �27� obtained �

c
*� �15.

In the previous validations most critical parameters were
specified up to an error estimate. This error estimate is based
on the difference which the respective quantity on the actual
fine grid makes with the same quantity on a grid which is
half as fine. From the relatively small errors we conclude that
a good grid convergence is obtained. To demonstrate the grid
convergence in more detail the critical Reynolds numbers for
the buoyant-thermocapillary flow are plotted in Fig. 2 as
functions of the inverse of the number of grid points for
several aspect ratios �. In all cases considered the critical
Reynolds number is nearly a linear function of 1 /N2, i.e., the
convergence is quadratic. The relative difference between
Rec�N=141� and Rec�N=71� is less than 4% throughout. Ac-
tually, it is much better in most cases. To summarize, the
present linear stability results are in good agreement with the
literature data, except for a single case. Moreover, second-
order convergence is achieved.

III. RESULTS

Since the parameter space of the problem is large, we
shall confine ourselves to data for which experimental results
are available. In particular, we aim at a better understanding
of the pattern formation which has been observed in a ther-
mocapillary cavity by Daviaud and Vince �3� for Pr=10 and
�2 Bd=12.755. In fact, these parameters are within the range
of values for which we have shown our numerics to be con-
vergent and valid.

A. Stability boundary

We consider the buoyant-thermocapillary cavity flow for
Pr=10 and �2 Bd=12.755. These parameters correspond to
the material and geometry parameters of the experiment of
Daviaud and Vince �3�. Also Sakurai et al. �4,5� and Bur-
guete et al. �6� performed experiments for similar parameters
�Table III�. The working fluid in all experiments listed in the
table was silicone oil with nominal kinematic viscosity of
��0.65 cSt. The capillary number can be estimated as Ca
�5�10−3	T /K �6�. With an expected critical temperature
difference of 	Tc=O�4 K� the capillary number at the onset
is about Ca�	Tc��2�10−2 or larger. This estimate justifies
our numerical model which assumes a flat and nondeform-
able surface corresponding to the limit Ca→0, at least for a
certain range of critical and supercritical conditions.

In all three sets of experiments mentioned above two
types of instabilities were observed: for small aspect ratios �
the supercritical three-dimensional flow was found to be
steady, whereas it turned out to be oscillatory for larger as-
pect ratios. The results of our linear stability analyses are
shown in Figs. 3 and 4 together with available experimental
data. To provide quantitative information we have also listed

TABLE II. Critical parameters for two- �a� and three-dimensional instabilities �b� obtained by the linear
stability analysis ��→�� in comparison with the results of Xu and Zebib �27�. Values for kc of Ref. �27�
have been graphically deduced from their graphs. The numerical resolution for the linear stability analysis is
241�90 for �=15. The specified error bounds are based on comparisons with data obtained on grids half as
fine, i.e., 121�45.

�a� Two-dimensional instability

Author � Pr Rec
2D �c

Present 3 4.4 2026.6�2.8 16.537�0.006

Xu and Zebib 3 4.4 1950 11.4

Present 3 13.9 1197.7�5.4 11.076�0.003

Xu and Zebib 3 13.9 770

�b� Three-dimensional instability

Author � � Pr Rec
3D kc �c

Present 3 � 4.4 844.9�3.3 1.618�0.010 8.010�0.002

Xu and Zebib 3 20 4.4 850 �1.57 —

Present 3 � 13.9 861�65 0.957�0.004 3.451�0.057

Xu and Zebib 3 20 13.9 1000 — —

Present 15 � 13.9 690.7�11.3 1.049�0.023 3.456�0.088

Xu and Zebib 15 15 13.9 700 �1.26 �3.14
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representative numerical linear-stability data in Table IV.
There is a qualitative agreement of numerical and experi-
mental results. In particular, the aspect ratio at which the
character of the instability changes from steady to time de-
pendent is about ��3 for both kinds of approaches. How-
ever, there are differences. Most notably, the experimental
critical Reynolds numbers are higher than the linear stability

boundary. Apart from the possibility that the three-
dimensional flow can only be observed when it has already
reached a finite amplitude, the most likely explanation for
this discrepancy is the heat-transfer condition at the free sur-
face.

In the absence of any reliable information on the heat
transfer at the free surface we have used adiabatic conditions.
Even though the question of the heat transfer cannot be re-
solved by the present investigation, the good agreement for
the critical wave numbers and the oscillation frequencies
shown in Fig. 4 provides strong evidence that the linear sta-
bility analysis has indeed caught the essential physical be-
havior of the experiments. A further investigation of the in-
stability mechanisms thus makes sense.

TABLE III. Properties of the fluids used in the experiments of
Refs. �3–6�.

Coefficient Unit
Daviaud

and Vince �3�
Sakurai

et al. �4,5�
Burguete
et al. �6�

� �1 /K� 0.00144 0.00135 0.00134

� /
0 �mm3 /s2 K� 110.6 118.0 105.3

� �mm2 /s� 0.65 0.65 0.65

d �mm� 10 10 10

Pr — 10 9.8 10.3

�2 Bd — 12.755 11.220 12.488

10−3 Rec

2

3

4

0 0.5 1.0 1.5 2.0 2.5 3.0
10−4 N−2

N
617181101115141∞

10−3 Rec

5.8

6.0

6.2

0 0.5 1.0 1.5 2.0 2.5 3.0
10−4 N−2

N
617181101115141∞

(b)

(a)

FIG. 2. Critical Reynolds numbers as functions of N−2, where
N=Nx=Ny. The symbols in �a� and �b� denote the aspect ratios �
=1.5 ���, �=2.1 ���, �=3 ���, �=3.5 ���, �=4 ���, and �=6
���.

0.2

0.4

0.6

0.8

1.0

1.2

10−4 Re

0
0 1 2 3 4 5 6 7

Γ

Ωc = 0

Ωc �= 0

FIG. 3. Critical Reynolds number as a function of the aspect
ratio �. The solid and the dashed lines indicate the critical curves
for the steady and the oscillatory instability, respectively. The
dashed-dotted line is the neutral curve for purely two-dimensional
perturbations with k=0. Symbols indicate the experimental data of
Ref. �3� ��, ��, Refs. �4,5� ���, and Ref. �6� ��, ��. The circles
��� are data of �5� indicating the onset of oscillations. Linear sta-
bility calculations with the slightly different values �2 Bd=11.22
and Pr=9.8 corresponding to Refs. �4,5� are shown as crosses ���.

20

15

10

5

0

k, Ω

0 1 2 3 4 5 6 7
Γ

FIG. 4. Critical wave numbers �solid and dashed line� and fre-
quencies �dotted and dashed-dotted line� as functions of �. The
solid line indicates the three-dimensional steady mode �c=0. The
dashed and the dotted lines denote the oscillatory mode. The
dashed-dotted line indicates the frequency of the two-dimensional
�k=0� oscillatory mode. Symbols denote the experimental data of
Ref. �3� ���, Ref. �4� ���, and Ref. �65� ���. Additional numerical
linear stability data for �2 Bd=11.22 are indicated by �.
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B. Mechanisms

For a detailed analysis of the steady and the oscillatory
instabilities we consider the representative aspect ratios �
=2.1, 4, and 8. In the framework of a linear stability analysis
it is not possible to determine which of the two energy bud-
gets, the mechanical or the thermal, is of greater importance
to the instability mechanism. But the structures of the veloc-
ity and temperature fields in comparison with the spatial
structures of the local energy-production terms can provide
evidence for the relative importance of the two balances for
the instability mode under consideration.

From Table V it is seen that the total energy production by
buoyancy forces �VBdV relative to the other mechanical pro-
duction terms is very small or even negative �for �=4 and
8�. Therefore, we can safely conclude that buoyancy is not a
direct cause of the instabilities detected. Marangoni forces
are important for all aspect ratios. This applies, in particular,
to the span-wise Marangoni production �SM1dS. It shows
that Marangoni forces drive a significant motion in the span-

wise �z� direction, perpendicular to the plane of motion of
the basic flow. We now have a closer look at the different
aspect ratios.

1. Stationary instability for �=2.1

In order to discuss the instability mechanism we must
keep in mind the main features of the basic state which is
shown in Fig. 5. The basic velocity field is characterized by
a single vortex which is strained elliptically. The basic tem-
perature field exhibits a nearly isothermal region in the vor-
tex core and thermal boundary layers near the cold and hot
walls. The Marangoni number Ma=Re Pr is sufficiently high
such that cold fluid is transported from the cold wall along
the insulating bottom of the cavity very close up to the hot
corner where it forms a cold finger. By a similar convective
transport a warm finger is created in front of the thermal
boundary layer on the cold wall.

For the aspect ratio �=2.1, which corresponds to the
minimum of the critical curve Rec���, the two mechanisms
associated with I2 and J1 are potentially important �Table V�.
Both production terms take their maximum value in identical
periodic planes z=const. Let us first consider the thermal
production rate J1. This term describes the amplification of
the temperature perturbation by horizontal convection in x
direction due to the perturbation flow. The perturbation flow
is shown as arrows in Fig. 6 in a plane z=const in which J1
as well as I2 take their maxima. In the plane shown the
perturbation flow is mainly directed toward the cold wall
�negative x direction�, but it also has a small component in
negative y direction. The component of the perturbation flow
which is perpendicular to the basic-state isotherms gives rise
to a perturbation temperature field �Fig. 6�a��. Associated
with this convective effect is the thermal-energy production
rate J1 �Fig. 6�b�� which is sharply peaked near the �left� cold
wall where the perturbation flow impinges on the thermal
boundary layer. The production rate J2 which is associated

TABLE IV. Representative linear stability data for Bond num-
bers and aspect ratios corresponding to the experimental conditions
�3�. The numerical resolution was 141�141 grid points. The error
is estimated by comparing the respective data with those obtained
for a resolution of 71�71 grid points, except for �=8: For �=8 the
critical data were computed on 221�221 grid points and the error
deduced from a calculation with 141�141 grid points.

� Bd Rec kc �c

1.50 5.669 5966�111 4.645�0.020 0

2.00 3.189 3633�8 3.543�0.010 0

2.50 2.041 4122�7 3.788�0.010 0

3.00 1.417 3783�120 1.436�0.013 13.86�0.12

3.50 1.041 3150�125 1.572�0.023 13.61�0.17

4.00 0.797 2510�138 1.768�0.010 12.04�0.23

6.00 0.354 1569�91 1.643�0.033 8.46�0.05

8.00 0.1993 1480�16 1.663�0.006 7.73�0.02

TABLE V. Energy terms integrated over one period of the criti-
cal mode for several aspect ratios �.

Aspect ratio �=2.10 �=4.00 �=8.00

Rec 3584.4 2510.2 1463.9

Bd 2.8923 0.7972 0.1993

�VI1dV 0.034 0.024 −0.010

�VI2dV 0.594 0.217 0.071

�VI3dV −0.071 0.000 0.000

�VI4dV 0.022 0.010 0.004

�SM1dS 0.236 0.541 0.617

�SM2dS 0.042 0.222 0.333

�VBdV 0.146 −0.011 −0.015

�VJ1dV 0.991 0.754 0.351

�VJ2dV 0.017 0.250 0.659

(b)

(a)

0.5

−0.5

FIG. 5. �Color online� Basic state streamlines �a� and tempera-
tures field �b� for �=2.1 at the critical Reynolds number Re=Rec

=3584.4 and kc=3.544.
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with the the vertical convection is not shown. As can be seen
from Figs. 6�a� and 7 the strong perturbation-temperature
maximum on the cold wall is advected by the basic flow
along the bottom of the cavity and up along the hot wall
where it reaches the free surface. One of the resulting small
hot free-surface spots is visible on the right-hand side of Fig.
7. However, owing to their small size, they do not appear to
drive a significant perturbation flow.

Considering the x-component u of the free surface flow,
we notice that the perturbation velocity u on the free surface
in the colder half of the cavity �left-hand side of Fig. 7� is in
opposition to the Marangoni stresses resulting from the
perturbation-temperature field, i.e., the perturbation surface
flow is directed away from the large cold surface spot. Thus,
the perturbation velocity u in x direction cannot be caused by
the Marangoni effect which is associated with the large free-
surface temperature-perturbation spots. This result is consis-
tent with the observation of Braunsfurth and Homsy �40� of
a nonintuitive reverse flow against the temperature gradient
�of the total flow� in their experiments for supercritical Rey-
nolds numbers.

We now turn to the mechanical energy budget. The major
fraction of about 60% of the kinetic-energy production is
contributed by I2. This term describes the amplification of
the horizontal perturbation flow u by the vertical advection
of horizontal momentum �u0� of the basic state. Since I2 is
peaked in the region of the maximum perturbation velocity
�Fig. 8�, the perturbation flow gains most of its energy from
the strong basic shear flow near the free surface, triggered by
the vertical component of the perturbation flow midway be-
tween the heated walls. This process leads to regions of very
high absolute values of the horizontal �streamwise� perturba-
tion velocity which are called streaks. While a streak �x com-
ponent of u� in negative x direction is created by the down-
ward y component of u �Fig. 6�, a streak in positive x
direction is created by the upward y component of u in an
�x ,y� plane shifted by half a wavelength. The positive and
negative streaks are connected by a turning flow in z direc-
tion. At midplane �y=0� the turning flow is visible in Fig. 9.
The opposite return flow in z direction occurs near the free
surface and is not visible in the plane y=0, but on the free
surface in Fig. 7.

The same mechanism of amplification of the perturbation
energy is operative in wall-bounded plane shear flows �54�,
where the process of streak formation is called lift up. It is a
linear process which leads to an algebraic transient growth of
the perturbation energy �55�. While the linear perturbations
ultimately decay in unbounded parallel shear flows, they per-
sist through an exponential instability in the present
thermocapillary-flow system. This qualitative difference is
due to the finite aspect ratio and aiding Marangoni forces
which close the instability loop.

x

z

10−6

−10−6

FIG. 7. �Color online� Surface temperature �color� and pertur-
bation velocity field �arrows� at the free surface y=0.5.

x

z

1.05 × 10−5

−1.05 × 10−5

FIG. 9. �Color online� Perturbation flow �arrows� and perturba-
tion temperature field �color� at the horizontal midplane of the cav-
ity y=0.

1.05 × 10−5

−1.05 × 10−5

(b)

(a)

−2.7

17.6

FIG. 6. �Color online� Critical perturbation flow field �arrows�
for �=2.1 in the common plane z=const in which both I1 and J2

take their maximum value. In addition, �a� shows the basic-state
isotherms �lines� and the critical perturbation temperature �color�
and �b� displays the thermal energy production J1 �color�.

2.65

−1.49

FIG. 8. �Color online� Kinetic energy production I2 �color� and
perturbation velocity �arrows� together with the basic-state stream-
lines in a plane z=const in which I2 takes its maximum.
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The streaks generated by the lift-up process act on the
basic temperature field and create relatively weak internal
temperature perturbations. In the plane shown in Fig. 6�a� the
perturbation flow creates a weak cold perturbation-
temperature spot in the interior by transporting cold fluid
from the cold finger to the center of the cavity. This process
also occurs near the free surface and gives rise to the large
cold free-surface spot visible in Fig. 7. An analogous mecha-
nism creates the large hot free-surface spots by convection
from the hot finger. The Marangoni effect in z direction due
to the large but weak free-surface spots assists the mechani-
cal instability by creating the required vertical perturbation
flow due to continuity in the region of strong shear.

The direct production rate of mechanical energy by the
span-wise Marangoni effect, represented by �SM1dS, con-
tributes only by roughly one quarter to the total kinetic-
energy production �Table V�. This is different from the
hydrothermal-wave mechanism in high-Prandtl-number ther-
mocapillary liquid bridges in which the Marangoni effect is
practically responsible for the total mechanical energy pro-
duction �see Fig. 16 of Ref. �56��.

We conclude that the stationary instability branch for �
�3 and Pr=10 is due to a combined inertial and thermocap-
illary effect. The major cause �60% of the kinetic energy
production� of the instability is provided by the lift-up pro-
cess taking place in the shear flow below the free surface and
creating streaks in �x direction. In fact, the Reynolds num-
ber defined as Reu0

ªmax��u0��h /� is �200 at criticality for
the stationary instability, underlining the importance of iner-
tia. The basic temperature field is mainly necessary to pro-
vide the driving of the basic shear flow. The presence of the
hot and cold fingers in the basic temperature field provide an
additional mechanism �25% of the kinetic energy produc-
tion� in support of the mechanical instability mechanism by
enabling span-wise thermocapillary forces which result from
a stream-wise advection of the basic temperature due to the
streaks.

2. Oscillatory instability for �=4

The basic state for �=4 is shown in Fig. 10. The flow
consist of a strong eddy attached to the hot right-hand-side
wall. Its counterclockwise circulation drags hot fluid from
the hot-wall boundary layer along the free surface and to-
ward the cold wall. Embedded in the return flow is a small

region of closed streamlines near the cold wall. Apart from
the thermal layer on the hot wall and the somewhat thicker
layer on the cold wall there exists also a sizable temperature
gradient in the vicinity of the hyperbolic stagnation point
which is formed by the strong eddy near the hot wall and the
weaker, embedded eddy near the cold wall.

The energy budgets �Table V� show that the perturbation
flow is primarily driven by Marangoni forces with a total of
approximately 76%. The dominating mechanical energy pro-
duction term is M1 which amounts to 54%. It arises due to
Marangoni stresses in z direction. An additional driving of
the perturbation flow, albeit much weaker, is caused by the
process I2 which builds on the horizontal shear �u0 /�y. The
importance of M1 relative to I2 is reversed here as compared
to aspect ratio �=2.1. Therefore, the present oscillatory in-
stability is primarily due to thermocapillary effects.

The critical mode arises in the form of a pair of waves
traveling in �z direction. We discuss the mechanism by con-
sidering the temperature and flow perturbations of the critical
wave traveling in negative z direction. The temperature per-
turbation on the free surface is shown in Fig. 11. Within one
wavelength in z direction four surface-temperature extrema
arise. The two major temperature spots are located near the
hot right-hand-side wall. Since Marangoni forces dominate
the kinetic energy budget, we can safely assume that the four
surface-temperature extrema per period drive the
perturbation-flow field. Both cold surface spots arise near the
plane z=const in which I2 takes its maximum value �dashed
line in Fig. 11�. This plane is shown in Fig. 12. One can
identify two streams from the free surface which arise below

0.37

−0.74

FIG. 12. �Color online� Kinetic energy production I2 �color�
in the plane in which I2 takes its maximum value �dashed line in
Fig. 11�. This plane is close to the one at which the surface-
temperature perturbation has a minimum. Also shown are the basic
streamlines and the perturbation velocity field �arrows�.

0.5

−0.5
(b)

(a)

FIG. 10. �Color online� Basic state for �=4. Lines and colors
denote the streamlines and the temperature field, respectively.

x

z

5 × 10−6

−5 × 10−6

FIG. 11. �Color online� Perturbation flow �arrows� and
temperature-perturbation field �color and lines� on the free surface
for �=4 and Re=2510.2. The wave propagates in negative z direc-
tion �to the top in the figure�. The dashed line indicates the plane
shown in Fig. 12.
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the two cold spots due to continuity. From this figure we see
that the perturbation flow v down from the major cold sur-
face spot is associated with a component u in such a way that
the stream can extract some additional kinetic energy from
the basic flow. The associated contribution I2 is shown in
color �online� in Fig. 12. This process is similar as for �
=2.1. The cold free-surface spot near the cold wall is much
weaker and the corresponding downward stream cannot ex-
tract any significant kinetic energy from the basic velocity
field, because the stream is weak and the basic flow does not
exhibit strong shear in the colder �left� half of the cavity.

As both cold surface spots originate in approximately the
plane z=const a head-on collision in the same plane of the
respective downward streams would result in smaller-scale
perturbation-flow structures which would be damped. In fact,
the opposing streams escape a collision by turning in oppos-
ing z directions near the midplane �Fig. 13�. The two anti-
parallel oblique streams are directed toward the hyperbolic
stagnation point of the basic flow where they meet the basic-
state isotherms in an oblique way. As a result, strong internal
temperature extrema are created �Fig. 13� as the streams
transport warm fluid from the warm �right� side of the cavity
into the cold �left� side of the cavity and vice versa. The
associated production rate J1 by horizontal convection is
shown in Fig. 14 in a plane in which it takes its maximum. It
can be seen from Fig. 13 that the major production-rate ex-
trema of J1 �lines� are slightly offset in negative z direction
from the internal temperature extrema �color�. Like the ab-

sence of any mirror symmetry at constant z this is a charac-
teristic sign of a wave traveling in negative z direction.

Owing to the relatively large Prandtl number the hot and
cold spots generated near the hyperbolic stagnation point
�line� are advectively transported by the basic flow away
from the stagnation point in two opposing directions: directly
toward the free surface near the cold corner region and, in
the opposite direction, along the bottom of the cavity toward
the hot corner region. The major surface spots are then cre-
ated by conduction over a relatively small distance. This
mechanism is very similar to the hydrothermal wave mecha-
nism in high-Prandtl-number fluid layers �13�. However,
since the advective transport u0 ·�� is of crucial importance,
the particular form of the hydrothermal wave differs from the
plane waves in the return flow of an infinite layer �12�.

3. Oscillatory instability for �=8

The two-dimensional steady basic state for �=8 is shown
in Fig. 15 at the critical Reynolds number Rec=1463.9 �grid
141�141�. The critical wave number and frequency are
given in Table IV. The streamline pattern shows the well-
known structure of a sequence of corotating eddies embed-
ded in a global return flow �16–18,30,32,57�. According to
Priede and Gerbeth �16� and Riley and Neitzel �17� the first
instability in plane layers arises in the form of steady coro-
tating vortices if Bd�0.22. Only for Bd�0.22 the first in-
stability in infinite layers is due to hydrothermal waves. The
present condition Bd=0.20, corresponding to the parameters
of Ref. �3�, is slightly lower than the codimension-two point
and indicates that hydrothermal waves should be favored.
Accordingly, the strong perturbation of the ideal return-flow
solution caused by the rigid hot wall gives rise to corotating
rolls whose amplitude decays with the distance from the hot
wall. Apart from the boundary layers on the heated walls the
temperature field is essentially stratified from cold near the
bottom to hot at the free surface. However, horizontal varia-
tions of �0 exist which are characterized by a mean gradient
superposed by spatial oscillations reflecting the embedded
two-dimensional vortices.

From Table V we see that more than 90% of the kinetic
energy production is caused by the thermocapillary driving
forces. Hence, inertia effects are not important in the insta-
bility mechanism. The perturbation flow is just acting as a
link in the chain to sustain the temperature-perturbation field.
The temperature perturbation is fed by the convective action
of the perturbation-velocity field on the basic temperature
field. Both thermal production terms J1 and J2 are important,
the latter term representing the major contribution. The total
local thermal production rate J=J1+J2 is shown in Fig. 16 as
an isosurface �gray� for J=0.07. By comparing the intersec-
tion of the isosurface with the streamlines of the basic flow

2.16

−0.92

FIG. 14. �Color online� Thermal energy production J1 �color� in
a plane z=const in which J1 takes its maximum value. Lines and
vectors indicate the basic-flow streamlines and the perturbation-
velocity field, respectively.

x

z

3.5 × 10−5

−3.5 × 10−5

FIG. 13. �Color online� Temperature perturbation �color�, ther-
mal production �isolines�, and perturbation velocity vectors in a
horizontal cut at y=−0.1 through the global extrema of the pertur-
bation temperature field. The window is the same as in Fig. 11.

0.5

−0.5

FIG. 15. �Color online� Basic state for �=8 and Re=Rec

=1463.9. Lines and color indicate the streamlines and the tempera-
ture field, respectively.
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�background of Fig. 16� it can be seen that the thermal pro-
duction is peaked in the regions of the hyperbolic stagnation
points of the basic flow where relatively large basic tempera-
ture variations exist �Fig. 15�. In these regions the perturba-
tion flow is relatively strong �foreground of Fig. 16�, which
explains the structure of the thermal production. The local
maxima of the production rate are well pronounced near the
hot wall, whereas the production rate becomes smoother to-
ward the cold wall and the isolated isosurfaces shown merge
into a oblique varicose tube. The perturbation temperature
field is also shown in Fig. 16 in the plane y=0.07 in which
the absolute maximum occurs. The temperature perturbation
extrema lag behind the thermal production rate extrema in-
dicating that the wave propagates obliquely toward the hot
wall and in negative z direction. The angle of propagation
with respect to the temperature gradient is �c�50°.

In the same way as described for �=4 above, the internal
perturbation temperature extrema are transported by the ba-
sic flow to the free surface where they appear as weak hot
and cold spots. These are shown as isolines in Fig. 17. The
surface-temperature extrema �lines� lag behind the corre-
sponding temperature extrema in the bulk �color�. Even
though the surface-temperature extrema near the hot wall are
not as well aligned as the strong internal perturbation tem-
perature extrema, the alignment becomes better away from
the hot wall and a plane-hydrothermal-wave structure seems
to emerge. All the features found are qualitatively the same
as for hydrothermal waves in the return flow �12,13�. Merely,
the wave is strongly affected here by the underlying basic
flow structure. In particular, the processes in the hot near-
wall region, which are essentially the same as for �=4, con-
tribute substantially to the instability.

IV. DISCUSSION AND CONCLUSION

A. Stationary instability

The stationary instability found for �=2.1 is consistent
with the previous nonlinear simulations of Mundrane and
Zebib �37�. A detailed analysis of the energy-production
terms reveals that the instability mechanism can be traced
back to a process which is mainly mechanical. According to
our analysis, the stationary instability is characterized by
streaks in the shear layer of the free surface which are trig-

gered by a small vertical component of the perturbation ve-
locity. By horizontal advection of temperature from the hot
and cold fingers of the basic state the streaks produce free-
surface-temperature extrema which drive a span-wise Ma-
rangoni flow supporting the streak formation. The thermal
energy budget is insignificant, because the thermal energy
created by the convective action of the streaks on the cold-
wall thermal boundary layer is essentially dissipated and the
convection of thermal energy by the basic flow merely leads
to weak and small surface temperature perturbations near the
hot wall. It is obvious that this mechanical mechanism is at
work also for similar aspect ratios along the neutral curve of
the stationary mode.

The similarity of the present stationary instability in the
thermocapillary system with the stationary instability in the
two-sided lid-driven cavity with antiparallel wall motion,
which is purely mechanical, is noteworthy. In the driven cav-
ity a similar basic flow in the form of a strained vortex is
created �for �=1.5, e.g., see Fig. 9 of Ref. �50��. In both
systems the predominant mechanism of amplification is iden-
tical and the critical modes arise in the form of cellular vor-
tices �see also �58��. The return flow from the streaks in the
lid-driven cavity is solely due to continuity and the finite size
of the cavity. In the thermocapillary cavity the same mecha-
nism holds, but it is assisted by mild Marangoni forces. The
key feature of the basic flow in both cases is the straining of
the basic vortex into an elliptic one. Since both instabilities
share many properties with the instability of dipolarly
strained, unbounded vortices �59�, they appear to be closely
related to the elliptic instability �60,61�. A similar mecha-
nism, besides centrifugal effects, is also operative in low-
Prandtl-number thermocapillary half-zones �62�.

For infinite layers Mercier and Normand �19� found that a
sufficient buoyancy level is required for the onset of station-
ary rolls. They speculated, moreover, that the thermal bound-
ary conditions of a conducting bottom wall and a heat trans-
fer at the free surface were decisive for a comparison with
the experimental results of Ref. �3�, even though it was not
possible to simultaneously fit the values of the Biot and
Bond numbers to the experimental ones. The present work
has shown, however, that the experimental results can be
well reproduced if one assumes insulating top �zero Biot
number� and bottom boundary conditions. Moreover, the
mechanism that we find is independent of gravity. This latter
result is qualitatively different from the results in plane lay-
ers in which stationary instabilities are usually associated
with Prandtl numbers larger than 1 and a vertical temperature

x

y

z

FIG. 16. �Color� Perturbation temperature in the plane y=0.07
�color� and isosurface �gray� of the total local thermal energy pro-
duction J=J1+J2 at J=0.07. The background shows the basic
streamlines and the foreground displays the perturbation velocity
field in that plane z=const.

x

z

9.25 × 10−5

−9.25 × 10−5

FIG. 17. �Color� Surface-temperature �isolines� and surface ve-
locity �arrows� in comparison to the internal temperature field at
y=0.07 �color�.
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profile which is at least piecewise destabilizing in the sense
of the Marangoni �12,63� or the Rayleigh-Bénard instability
�64�. The buoyancy-driven instability in form of stream-wise
rolls found by Mercier and Normand �19� in plane layers
must thus have a different cause.

B. Oscillatory instabilities

The oscillatory instabilities for aspect ratio �=4 and
�=8 are dominated by Marangoni effects. They turn out
to be more efficient in producing kinetic energy than the
inertial coupling terms. Qualitatively, the mechanisms are the
same as for hydrothermal waves in the return flow of plane
thermocapillary layers. However, the particular structure of
the waves is strongly influenced by the underlying nonparal-
lel basic flow. This applies, in particular, to small aspect
ratios �e.g., to �=4�. The results for �=8 demonstrate how
plane hydrothermal waves may emerge in the limit �→�.
Nevertheless, the hydrothermal-wave structure remains
strongly affected by the basic return flow in a region of at
least 	x�2 from the hot wall.

The direction of propagation of the hydrothermal wave
sufficiently far from the side walls is quite sensitive to
the parameters. For the present insulating boundary condi-
tions we find an angle with respect to the temperature gradi-
ent of �c�50°. This angle of wave propagation is smaller
than the value ��80° observed by Daviaud and Vince �3�.
On the other hand, it is much larger than the critical angle
�layer�Pr=10�=21.4° for a hydrothermal wave at Bd=0 in an
infinite thermocapillary layer �2,12�. For the slightly larger
Prandtl number of Pr=13.9 and for Bd=0.2 Priede and Ger-
beth �16� confirmed the angle of 22° for plane layers even in
the presence of gravity, in agreement with the experimental
result of Riley and Neitzel �17�. By a three-dimensional nu-
merical simulation in a large-aspect-ratio cavity for Pr
=13.9 and zero gravity, Xu and Zebib �27� found an angle of
propagation of �15°, which is even less than the value for
plane thermocapillary layers �c

layer�Pr=13.9��17. It must be
taken into account, however, that the value of 15° was ob-
tained for a nonlinear solution in the form of a wave travel-
ing in stream-wise and standing in span-wise direction. On
the other hand, our result for Pr=10 is in good agreement
with the result �c=46.6° of Mercier and Normand �19� for
infinite thermocapillary-buoyant layers with a slight heat loss
characterized by a Biot number of Bi=1. The experimental
result of Burguete et al. �6� for Pr=10.3, aspect ratio
�=9.1 �h=1.1 mm, Lx=10 mm�, and a similar Bond number
Bd=0.15 is ��30°, which is also significantly higher than
the pure thermocapillary case. Pelacho, Garcimartín, and
Burguete �35� pointed out that the rather different angle of
propagation of ��80° found by Ref. �3� in comparison to
their own experimental result may have been influenced by
the three-dimensional geometry of the cavity. For a stream-
wise length of Lx=100 mm, a layer depth of 1.5 mm, and
Pr=10, Ref. �35� found that the angle of propagation of the
wave is slightly larger than �=50° for a span-wise length of
Ly =40 mm and that � decays to about 40° when increasing
Ly to Ly =100 mm.

We thus conclude that the angle of propagation is sensi-
tive both to the geometrical constraints and the thermal

boundary conditions. The dependence on the aspect ratio
might be related to the fact that, once the wave number kc in
z direction is given, the angle which the emerging structure
of the critical flow makes with the temperature gradient can-
not align freely, because it is restricted by the periodicity in z
and the structure of the basic flow which is roughly periodic
in x direction due to the embedded corotating vortices. The
underlying basic-flow structure is important in so far as it
determines the location of the energy production extrema
near the hyperbolic stagnation points. As can be seen from
Fig. 16 the present critical mode for �=8 provides a grid of
4�2 production extrema due to the four hyperbolic points in
x direction and the double periodicity of J in z direction. In
fact, the wave number of the corresponding plane hydrother-
mal wave kHW=kc /sin ��2.2 which does not deviate much
from the theoretical value kc

layer�2.53 for plane layers.

C. Conclusions

We have studied in detail the flow instabilities in
thermocapillary-buoyant cavities of Pr=10 for adiabatic top
and bottom boundary conditions and for periodic boundary
conditions in the span-wise direction. The free surface was
assumed to be undeformable �Ca→0� and the Bond number
was selected according to the experimental conditions of
Refs. �3,5,6�. For representative aspect ratios we have ana-
lyzed the instability mechanisms by evaluating the various
integrals of the Reynolds-Orr equation and their integrands.
While similar results can be expected for slightly different
parameters, other instabilities may arise upon large param-
eter variations. For instance, centrifugal instabilities are
dominating for small Prandtl numbers �24�.

Similar stationary and oscillatory instabilities have been
predicted numerically for annular systems containing fluids
of moderately large Prandtl numbers. Peng et al. �48� argued
that the stationary instability detected in deep thermocapil-
lary annular pools of Pr=6.7 with ��4 is due to buoyancy,
because the local Rayleigh number exceeds the critical value
of Rac=657 for no-slip boundary conditions in layers heated
from below. In their simulations the inverted temperature
gradient arises due to a turning back of the cold finger near
the hot wall. We have shown, however, that common to all
steady and oscillatory instabilities found here, the production
of kinetic energy by buoyancy is very weak. For that reason
buoyancy as a major direct factor for the instability can be
ruled out. On the other hand, buoyancy may be of impor-
tance indirectly, as it influences the basic flow and tempera-
ture fields. Since no stationary instabilities have been found
by Sim, Zebib, and Schwabe �44� in their simulations for a
cylindrical configuration under zero gravity, we conclude
that it is the change of the basic velocity field due to buoy-
ancy which enables the stationary instability, not the inverted
basic temperature gradient.
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