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Wavy fronts and speed bifurcation in excitable systems with cross diffusion
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A bifurcation of excitation fronts induced by cross diffusion in two-component bistable reaction-diffusion
systems of activator-inhibitor type is discovered. This bifurcation is similar to the nonequilibrium Ising-Bloch
bifurcation. A different type of fronts, whose spatial profiles are characterized by oscillating tails, are associ-
ated with this bifurcation. These fronts are described using exact analytical solutions of piecewise linear

reaction-diffusion equations.
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I. REACTION-DIFFUSION SYSTEMS WITH SELF- AND
CROSS DIFFUSION

Excitation waves in active media are usually described by
a set of reaction-diffusion equations [1]. FitzHugh and
Nagumo et al. [2] suggested a simple two-component system
which is now used in the literature in its diffusive form

u Pu
—=u(l-u)(u—a)-v+D,—,
5 = -uu-a) P

v v
P =¢e(u /w)+DUz9x2’ (1)
where 0<a<1 and &, u are positive constants; D, and D,
are the Fickian diffusion coefficients, hence non-negative
constants. The constant « is an excitation threshold and ¢ is
the ratio of time scales of the two reactions. This system is
considered a basic model of excitation and propagation in
various active physical, chemical, and biological media [3].
A further simplification consists of using the piecewise linear
function —u—v+ 6(u—a) [4] to model the nonlinear reaction
terms. Using such an approximation for the FitzHugh-
Nagumo model with a diffusion term in the first equation
(i.e., with D,=0), Rinzel and Keller [5] performed analytical
calculations of wave propagation and found speed versus ex-
citation threshold relations. Ito and Ohta [6] investigated the
Rinzel-Keller model with double diffusive components. In
all of these studies, traveling waves were always nonoscilla-
tory in space. However, waves with oscillating tails may also
occur in two-component reaction-diffusion models of this
type [7].

In the present paper we continue our studies [7] of the
dynamics of reaction-diffusion systems where self- and cross
diffusion are explicitly taken into account. Here, we focus on
solutions for a two-component system with self- and cross
diffusion [8] that show fronts with oscillatory tails. In the
context of population dynamics [8—10], cross-diffusion terms
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appear due to taxis processes, which are accepted as a math-
ematical description for the predator-prey pursuit and eva-
sion systems [3]. The model proposed by Shigesada et al. [9]
for spatial segregation of interacting species is given by the
system of two equations

ou &

= @[("104' ru+ rp)ul + (19— sy = s150)u,

ot
v &
o y[(’zo + gl + rypU)v ] + (820 = 211 = s00)v, (2)

where all the r; and s;; are constants. Models with cross
diffusion also arise in the study of transport in magnetically
confined fusion plasmas [11].

Spatial interactions in reaction-diffusion systems with
cross diffusion are described by self-diffusion terms ¢*u/dx>
and v/ dx* and taxis terms d/ dx(udv/dx) and d/ dx(vdu/ dx)
[8]. In an ideal multicomponent system, all components are
similar to each other and all binary diffusion coefficients are
constant. For simplicity, we consider here cross-diffusion
terms having a form similar to the self-diffusion. This has
also been done by Dubey et al. [10]. Then the simplest gen-
eral description of the excitable medium by a two-
component reaction-diffusion system includes both self- and
cross diffusion in the following way:

@—f( )+D—u+h@
g TV T B2 T2
dv v Fu
= = g(u,v) + Dy— - h,—, 3
o g(u,v) v 2 P (3)

where f(u,v) and g(u,v) are the reaction terms. The activa-
tor reaction term f(u,v) is usually a nonlinear function,
whereas the inhibitor reaction g(u,v) is often linear; D,,
represent the self-diffusion coefficients for the activator and
inhibitor, respectively; for the cross-diffusion terms, the con-
stants &, and h, are positive parameters associated with the
retreat and pursuit of the prey and predator as a consequence
of the interaction [3]. The choice of signs at &, , mimicks the
pursuit-evasion interaction of predator and prey [8].
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To deal with solitary population waves we choose bistable
dynamics. Thus we wish to consider the modified double
diffusive Rinzel-Keller model [5], where the usual self-
diffusion terms are supplemented with cross-diffusion ones.
We aim at obtaining analytical solutions for fronts and deter-
mining their velocities.

II. CROSS DIFFUSION IN BOTH EQUATIONS:
PROPAGATING FRONTS

Taking into account the form of the reaction functions for
the bistable regime of the Rinzel-Keller system [5] with

equal diffusion coefficients D,=D,=D and h,=h,=h, the
model equations read
du Pu )
—=—u-v+0u-a)+D—+h—,
ot ox? ox
v v Fu
—= -v)+D—S-h—. 4
ot s(u-v) ox? ox? “

We wish to investigate traveling waves u=u(¢) and v=v(§),
where £=x—ct is the traveling wave coordinate and c is the
wave propagation speed. For the system (4), the fully ana-
lytical solutions are easily available in the particular case of
e=1.

In the following we give some details of the mathematical
procedure for the derivation of the solutions. The general
solutions u(§) and v(£) have the form

u(é) = 2 A, e+ oy,

v(é) = 2 ByeMt+ v, (5)

where A,, B,, u*, and v* are constants to be determined in
each of the regions u <a and u>a. The constants B, can be
expressed via the constants A,. These expressions will be
formulated below.

A. Front solutions and wave speed diagram

Inserting the general solutions (5) into the model equa-
tions (4) we obtain the following matrix equation:

(D)\2+c)\—1
—hNr+ 1

AN? =1 A
5 =0. (6)
D\N*+ch—1/\B

Hence the characteristic equation reads (DA>+ch—1)°
—i%(h\>=1)?>=0 (with i>=-1) and yields four eigenvalues

*

)\i——p—zq+\rb+ld——p ig=*y=*iz,
No=-p+igt\b—id=-p+igxyTiz, (7
where
__ <o - ch
P=om+ny 1T aprend)
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P—q
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b=p"—qg°+——, d=
p q cl2

c/2

y=ANW2+ P +b)2, =N+ P -b)2.  (8)

Therefore the front solutions read

uy (&) = A, cos(I_§) + As sin(1_8)],
Uy (&) = A, cos(1,€) + A sin(1, )] + 1/2,
v1(8) = "B cos(I_é) + By sin(I_)],

v,(8) = 4B, cos(l, &) + By sin(1, ] + 1/2, )

where the notations k. and /. stand for k.= *y—p and [+
=z*q, respectively. The integration constants B are ex-
pressed as

1 _
Biy=———l(a1y+ B16)A 3 F (16, — Biy1)As 1],
Y+

1
Bys=— 35—y, + Brd)As 4 F (26, = Bryr) A4 ]
%+ &

(10)
with
=Dk -1*) +ck,—1, By=1(2Dk,+c),
=h(k2-1) -1, & =2hk,_,
a,=D(2 1) +ck_—1, Br=1,2Dk_+c),
Vo=h(k> =) =1, & =2hk.l,. (11)

There are five matching equations (two equations for func-
tions u and v, two for their derivatives, and the fifth equation
fixes the matching point) for five unknowns (4, ...,A4,¢).
From these equations, the speed relationship may be ob-
tained by eliminating the A,,,n=1,...,4.

The behavior of the speed ¢ versus the excitation thresh-
old a is illustrated for different values of the cross-diffusion
constant / in Fig. 1. As the influence of the cross diffusion
grows, a bifurcation in the behavior of the speed takes place.
This bifurcation separates domains where the c—a relation
has a single value [Fig. 1(a)] from a domain where this re-
lation is multivalued [Fig. 1(c)]. As this bifurcation is
crossed, the c—a curve folds to form three connected
branches. The upper and the lower branches correspond to
two counterpropagating fronts and terminate at certain criti-
cal values of a. A similar bifurcation scenario exists for the
same system without cross diffusion, where the bifurcation
parameter is the time scale €. This bifurcation has been re-
ferred to in the literature as a nonequilibrium Ising-Bloch
bifurcation [12,13].

Front profiles are presented graphically in Fig. 2. When
the front has a nonzero speed, oscillations in the front profile
are pronounced [Fig. 2(c)]. We denote these profiles as wavy
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FIG. 1. Speed c versus excitation threshold a relation at differ-
ent values of the cross-diffusion constant: (a) weak cross-diffusion
case with D=1, h=0.01, (b) equal self- and cross-diffusion case
with D=h=1, and (c) strong cross-diffusion case with D=1, h=3.

fronts. When the front is motionless, the tails of the front
show nonoscillatory behavior. For moving fronts, we present
examples of front solutions with positive values of the speed.
Therefore the fronts move from left to right, i.e., when the
cross-diffusion front propagates, the pronounced spatial os-
cillations precede the front. In the model where only self-
diffusion is present the pronounced oscillations (if any) lag
behind the front. The generic form of the oscillatory behavior
(spiral in the u—v diagram [Fig. 2(f)]) remains similar in
both cases.

B. Linear stability analysis

To investigate the stability of the fronts u(¢) and v(§) we
consider perturbed solutions of the form Au(é,y,1)=u(§)

+u(éexp(wt+iny) and Av(&, x,1)=v(&)+0(&exp(wt+iky),
where y is the direction transverse to the direction of propa-
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gation of the planar front. A linear stability analysis assumes
perturbed solutions of the form

U(& x.0) = u(§) + Aul€, x.1),

V(& x.1) =v(&) + Av (& x.1), (12)

where small perturbations Au(&,y,7) and Av(&,x,r) are
added to the planar front solutions. In the stationary frame,
the full perturbed solutions satisfy

U FU FU FV PV

—=D — |+h

P (?_§2+¥> +f(U,V),

+
9E oy’

v (ﬁZV (92V> (&ZU FU
—=D +—|—=h
ae I

= — +—— | +g(U, V) (13
ot o0& af) guy) {13)
and u(§), v(§) are time-independent solutions of these equa-
tions. Subtracting the equations for the unperturbed solutions
and linearizing for small Au and Av, we obtain the varia-
tional equations for the perturbations

JAu ( P Au a"zAu) ( FAv  FAv ) af
— = >+ >+ |+ Au
ot o0& ax o€ ax u
aJ
+ —fAv,
v
dAv ( FAv  FAv ) ( P Au &ZAM) dg
—= >+t~ |-h s+ |+ —Au
ot € ax s ax du
a
+ fAv. (14)

The equations for the eigenfunctions (the variational
equations) read

i dT
D S+ h " — [+ D - Su—a)lii- (1 + k)5 =0,
& d¢

v du
D —h 5 + (1 + D) — (Q+ DiAF=0,  (15)
& d§
where Q=1+ w.
Inserting the perturbation solutions in the form i, 7(§)

=SA,B exp():g) into the variational equations (15) we obtain
the following matrix equation:

(D(XZ-Kz)-Q h(xz—Kz)-1><A’>
~ " “l=0. w6
-hN-)+1 DN -KY)-Q/ \B

Hence the characteristic equation is [D(\*—«2)—QJ?
—i2[h(N2= k*)=1]*=0 and then
DQ+h

i oL DO
D+ I?

N2 i
"D i

(17)
When the pure self-diffusion case (D=1 and 4=0) is consid-
ered, then Q=N2-«?Fi and it can be seen that the fastest

growing mode will always correspond to k=0. We may then
restrict ourselves to the =0 case as we did in Ref. [7].
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FIG. 2. Front profiles for [(a)—(c)] activator u(£) (bold lines) and inhibitor v (&) (thin lines) and [(d)—(f)] u—v phase diagrams for [(a) and
(d)] the weak cross-diffusion case with D=1, h=0.01, [(b) and ()] equal self- and cross-diffusion case with D=h=1, and [(c) and (f)] strong
cross-diffusion case with D=0.01, h=1. The value of the excitation threshold is fixed at a=0.4 so that the front speed is always positive. The

null-clines f(u,v)=0 and g(u,v)=0 are shown by thin lines [(d)—(f)].

When the pure cross-diffusion case (D=0 and h=1) is con-
sidered, then Q= * i(\>— k2= 1) and it is evident that the real
part of ) is not changed by «, which therefore does not
affect the stability of the solutions. Thus we can turn our
attention to the k=0 case again.

Now we will consider the situation when the system is
placed in the frame moving at velocity c¢. Then with the
perturbations Au(&,1)=u(&)e”, Av(€,1)=0(£)e®" and the ex-
pressions for the null-clines, we write the variational equa-
tions as

& dv di _
Ddfz+hd_§2+cd_§_[1+w_5(u_a)]u_v=0’
v da dv _
Dd_gz_hd_§2+cd_§+u_(l+w)v:0 (18)

Inserting the perturbation solutions into the variational
equations (18) we obtain the following matrix equation:

[N

Then the characteristic equation written as (DA2+ck—)?
—i2(hA\2=1)2=0 yields four eigenvalues,

AN =1

(Dmcx_n
DN2+ch—Q

AN+ 1

>
I+ %
I+
I+

—igry=*iz,

'Bl

I+

iz, (20)

-I- I

1
I+

+igxy

"m

where

P-qQ
c/2

PQA+q
c/2
7=V +d*+b)2, 7=N(b*+d*-b)/2.

The perturbation solutions read

i1,(8) = €+4A, cos(I_&) + Ay sin(9)],

, d=2pG-

)

21

(&) = A, cos(1,£) + Ay sin(L, )],
5,(8) = ¢*4[B, cos(I_&) + By sin(1_&)],

5,(8) = 4B, cos(1,£) + B, sin(T,9)] (22)

using the notations k.= *y—p and l.=7*§. The integra-

tion constants B are

Bl%“ [(“171+3151)A13+ (a151 El?l)g&l],
Y1+ 96
324 =-——[(@%+ ﬁzéz)Azzt + (a252 ,32:)72)1&4,2]
Y+ 6,
(23)
with

=D(k*-P)+ck,—Q, B, =1L(2Dk, +c),
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Vi=h(2-1) -1, & =2hk,l_,

=Dk -P)+ck_-Q, B,=1,02Dk_+c),

Yo=h(k2-1F)—1, & =2hk1,. (24)

The matching conditions for the derivatives have jumps due
to the delta function in the variational equations. To make
use of this behavior we integrate the variational equations
over a small interval about the matching point of the pertur-
bations. Nonzero contributions arise from the diffusive terms
and terms with a delta function, i.e.,

di O+e dv O+e O+e
pZ| + 2 +f D eio (25)
df 0—€ df 0-€ 0-€ |du(0)/d§|
for the first equation in Eq. (18) and
d~ O+e d~ O+e
pZ| — il -0 (26)
d§ 0-€ d§ 0-€

for the second. After the integration of the delta function we
can rewrite Eq. (25) as

D(ﬁ—@)+h<@—@>+L=O, (27)
¢ d§ d¢  dé)  |du(0)/d]

where ip=const is a perturbation amplitude, so that Eq. (26)

reads
D(d_d_)h(d_d_) 08)
dé¢ dé¢ d¢  dé

Thus in the absence of cross diffusion (D=1,4=0), there is a
jump in the activator derivative

dit, (0)/d€ = dity(0)/dé + ity |du(0)/dé

bl

dir,(0)/dé = diry(0)/dé; (29)

however, when the self-diffusion vanishes (D=0,h=1) the
jump appears in the inhibitor derivative

dit, (0)/dé = dit,(0)/dE,

di,(0)/dé = diy(0)/dE + i/ |du(0)/dé|. (30)

The stability analysis shows that the middle branch of the
multivalued curve in Fig. 1(c) is unstable (for k=0), whereas
the upper and lower branches are stable.

II1. CROSS DIFFUSION IN ONE EQUATION: STATIONARY
FRONTS

In the model described above, cross-diffusion terms ap-
pear in both equations of system (4). Now we will consider
the situation when the cross diffusion needs to be taken into
account only in a single equation. Such a description would
be useful whenever the cross-diffusion coefficients are very
different for the two components so that neglecting one is
justified. Here, we assume the case where cross diffusion
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appears only in the activator equation. Hence our simplified
model reads

du Pu )
—=-u-v+0u-a)+D—S+h—,
ot ox ox
P 2 31)
—=u- —.
ot v o>

For the sake of analytical solvability, we restrict our consid-
eration to stationary solutions. Then the matrix equation (6)

takes the form

DN* -1 hN*-1\(A

, -0, (32)
1 DN -1/\B

so that the characteristic equation yields the eigenvalues

1
N 4= \E_D\/2D+h +\(2D+h)>-8D*. (33)

Then it follows that, when h/(2D) > \_s"2— 1, the roots (33) are
real, whereas when 0<h/(2D)<y2-1 the roots contain
imaginary parts (taking into account that the constants D and
h are positive).

When the A\, are real, the front solutions are

uy(x) =AM+ Ayehs,
u ( _ Aox Agx
z.x)—Aze +A4€ +1/2,
v1(x) = ByeM* + Bye™3¥,

U5(x) = Boe™* + By + 172 (34)

and B,=A,/(1-D\?), n=1,...,4. When the \, have imagi-
nary parts, i.e.,

L RO DR

D d= ZDZVSDZ— (2D + h)?,

y=N(\B2+ & +b)2, 7=N\b*+d>-b)12, (35)

the front solutions read

u,(x) = A, cos(zx) + Az sin(zx)],
uy(x) = e™A, cos(zx) + A, sin(zx)] + 1/2,
v1(x) = e[ B, cos(zx) + By sin(zx)],

v,(x) = e[ B, cos(zx) + B, sin(zx)] + 1/2 (36)

and the B, constants are

B y=———=(aA,; ¥ BA3 ),
1,3 a2+,82( 1,3+,3 3,1)
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1

By4=- m(aAzA + PAso), (37)
where a=Db-1=h/(2D) and B=Dd=+\2-[1+h/(2D)]>.
The stationary front profiles exhibit nonoscillating behavior
(data not presented here). Another analytically solvable case
of cross diffusion in one equation with D,=D and D,=h,
(h,=0) [see Eq. (3)] produces a characteristic equation of the
form (hN?>—1)(DA\*-2)=0 and is beyond the scope of our
investigation.

IV. REALISTIC MODELS AND THEIR APPLICATION

Cross-diffusion terms must be considered explicitly in
certain reaction-diffusion systems occurring in nature. A typi-
cal example is combustion, where cross diffusion acts on all
variables and contributes substantially to the dynamics of
flame fronts [14,15]. For instance, in hydrogen-air flames at
atmospheric pressure, the Fickian and cross-diffusion effects
are comparable in magnitude [16]. Compared to experimen-
tal data, numerical simulations reveal that a neglect of cross-
diffusion terms leads to an inaccurate estimation of the flame
front thickness [15]. Population dynamics is another area
where mutual cross diffusion plays a central role, especially
in predator-prey systems, where the predator actively pursues
the prey, while the prey tries to evade the predator [3].

Reaction-diffusion systems, where only one of the vari-
ables is affected by cross diffusion, are also known. An ex-
ample is the O,+H, reaction to water on a Rh (110) surface
doped with the promotor K [17,18]. The latter is a mobile
species adsorbed on the Rh surface, and it enhances the rate
of the catalytic reaction. In this bistable system, a reaction
front propagates on the Rh support, which in addition to
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water formation causes a redistribution of the adsorbed po-
tassium, since the latter is dragged along with the reaction
fronts, leading to its accumulation. When two reducing fronts
(i.e., reaction fronts invading oxygen-rich domains) collide,
they annihilate and form islands of coadsorbed oxygen and
potassium of macroscopic size. When the supply of gaseous
reactants is switched off, diffusion processes reestablish a
homogeneous distribution of K on the Rh surface [17,18].
The observed phenomena have been reproduced numerically
to good agreement using a three-variable model, where cross
diffusion has only been considered in the evolution of the
potassium concentration [17,19].

To summarize, we have described a type of excitation
waves which is characteristic for two-component reaction-
diffusion systems. These waves show oscillations in the spa-
tial profile. The characteristic feature of the considered oscil-
lating tails is their damping behavior that distinguishes them
from the classical periodic waves, which are fundamental
solutions of oscillatory reaction-diffusion equations. The
waves with damping oscillatory tails are related to an inter-
mediate dynamical regime. This is similar to the oscillatory
one, but appears in excitable systems, which are only “qua-
sioscillatory.” The oscillating waves considered here arise in
the system with both self- and cross-diffusion terms in the
equations. When only cross diffusion needs to be considered
in one equation the oscillations in the wave profile vanish
and the wave profiles become monotonic [20].
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