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We report on the observation of noise-free stochastic resonance in an externally driven diode resonator close
to an interior crisis. At sufficiently high excitation amplitudes the diode resonator shows a strange attractor
which after the collision with an unstable period-three orbit exhibits crisis-induced intermittency. In the inter-
mittency regime the system jumps between the previously stable chaotic attractor and the phase space region
which has been made accessible by the crisis. This random process can be used to amplify a weak periodic
signal through the mechanism of stochastic resonance. In contrast to conventional stochastic resonance no
external noise is needed. The chaotic intrinsic dynamics plays the role of the stochastic forcing. Our data
obtained from the diode resonator are compared with numerical simulations of the logistic map where a similar
crisis-induced intermittency is observed.
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I. INTRODUCTION

Stochastic resonance �SR�, originally found for the over-
damped motion of a particle in a double well potential �1�,
can nowadays be rated as a paradigm of nonlinear dynamics
which occurs in various nonlinear systems driven by noise
and some weak periodic input signal �2�. In the output of
such systems the modulation frequency of the periodic drive
is well pronounced at a distinguished nonzero noise intensity
while at lower and higher noise intensities the periodic part
tends to zero. This counterintuitive effect of high coherence
at an optimal noise intensity is the characteristic feature of
SR and is found in different types of systems, such as
bistable, reset fire, threshold, and dynamical systems, from
various fields of science; see, e.g., Refs. �3–7�.

It is well known that chaotic systems exhibiting intermit-
tency can also amplify a weak signal via SR �8–10�. Here the
slow intermittent jump dynamics can be synchronized with
the periodic modulation while the fast chaotic dynamics acts
as a source of randomness. This effect is called noise-free
stochastic resonance to underline that no external noise is
needed. Such a phenomenon was studied in detail for the
cases of Pomeau-Manneville intermittency �11�, on-off inter-
mittency �12–15�, and crisis-induced intermittency at a merg-
ing crisis �8,16,17�.

In this paper we consider noise-free SR by experimental
means at an interior crisis. Our experimental setup consists
of a diode resonator where an interior crisis, arising from a
period-three window, is observed. We compare our experi-
mental data with numerical results of the logistic map. In
both the real and the model systems, the two states of chaotic
motion are quite different. Thus our systems show a pro-

nounced asymmetry. For stochastic systems such an asym-
metry levels off the main peak of amplification and shifts it
to higher noise intensities �18�.

The paper is organized as follows. In the next section we
present the experimental setup and the basic bifurcation dia-
gram. Section III is devoted to techniques—taking the logis-
tic map as an example—how to distinguish the two chaotic
phases occurring at the crisis. These techniques allow us to
determine the mean residence times which play a key role for
understanding the SR effects reported in Sec. IV. We con-
clude with some remarks on the universality of the observed
noise-free SR phenomena.

II. EXPERIMENTAL SETUP

The diode resonator shown in Fig. 1 is a simple and ro-
bust nonautonomous electronic circuit showing chaos at suf-
ficiently strong excitation. We choose the amplitude of the
sinusoidal drive U0 as the control parameter keeping the fre-
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FIG. 1. Diode resonator circuit consisting of a 1N4006 diode, an
inductor L=1 mH, a resistor R=51�, and a sinusoidal drive U�t�
=U0 sin��t� with amplitude U0=0–6 V and frequency � /2�
=1 MHz. Additional components for shielding and extracting the
signal which were implemented to minimize noise and cross-talk
are not shown.
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quency � constant, and record the time series of the output
signal UR�t�. Plotting the maxima of UR�t� as a function of
the control parameter U0 the bifurcation diagram, Fig. 2, was
obtained. The oscillator follows a period-doubling cascade
ending up in chaos. The chaotic regime is riddled with peri-
odic windows, each of them connected either with an addi-
tional period doubling sequence or a discontinuous transi-
tion.

For our analysis we focus on the period-three window
which occurs in the range U0=2.7–4.0 V. At U0=2.7 V the
window opens in a saddle node bifurcation where a pair of
stable and unstable period-three orbits is generated. At U0
=3.5 V the stable orbit starts bifurcating in a period doubling
sequence which results in a period-three chaotic attractor for
U0�3.8 V. For later reference we will label such a state as
“Ch1”. At a critical value, Uc=4.0 V, the period-three cha-
otic attractor is destroyed in a crisis and a mixing chaotic
state occurs. The chaotic attractor now fills the gaps between
the bands, and we will label such gaps by “Ch2”. In Fig. 3
the band attractor of period three exemplifies the effect of
such an interior crisis. This type of crisis which closes the
periodic window results in chaos-chaos intermittency where
the system alternates between the different types of chaotic
motion, labeled “Ch1” and “Ch2”. Figure 4 shows a typical
time series UR�t� from the intermittency regime. The times �1
and �2 a trajectory spends in each state were found to be
larger than the time scale at which correlations of the chaotic
motion decay. Thus, as usual, one can treat this type of in-
termittency similar to a dichotomous random process.

III. IDENTIFICATION OF STATES

A typical “burst” event �Ch2� as displayed in Fig. 4 shows
up as a small slump of amplitude and an interrupt of the still
present periodicity which is characteristic for the state
“Ch1.” However, a clear characteriazation of the intermittent
states directly from the time series UR�t� turns out to be
rather difficult, in particular, when trying to accomplish this
procedure automatically. Different parts of the attractor cor-
responding to the phases Ch1 and Ch2 are convoluted in
such a way that a separation by a simple threshold condition

is not feasible. A criterion can be derived by considering
details of the jump processes in terms of a return map.

First, we illustrate this idea at an interior crisis of the
logistic map

xn+1 = rxn�1 − xn� � Mr�xn� . �1�

Figure 5 shows a small part of the bifurcation diagram
containing the period-three window. A saddle-node pair of
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FIG. 2. Bifurcation diagram of the diode resonator constructed
from the maxima of the output signal UR�t� at discrete times tn.

FIG. 3. Density plots showing the projection of the attractor
onto the U-UR plane as a screen shot from an analog oscilloscope.
Top: Driving amplitude U0�Uc=4.0 V. Bottom: U0�Uc.
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FIG. 4. Typical time trace in the intermittent regime showing a
single burst.
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period-three orbits is generated at r=1+�8�3.828 �see Ref.
�19��. Via a cascade of period doublings a period-three cha-
otic state is generated. The unstable period-three orbit cre-
ated in the saddle-node bifurcation determines the basin
boundary of chaotic motion with different phases and thus
prevents the period-three chaotic attractor to fill the gaps
between the bands. At rc�3.8568 the unstable periodic orbit
collides with the boundary of the chaotic attractor causing an
interior crisis and resulting in a single band mixing chaotic
state. To distinguish the former chaotic attractor, the “laminar
state” Ch1, from the “burst” dynamics �Ch2� we resort to the
skeleton of the logistic map. The first six images of the criti-
cal point x=1 /2, gn�r�=Mr

n�1 /2�, n=1,2 , . . . ,6 determine
the boundary of the period-three chaotic state for r�rc, since
the critical point is contained in one of the chaotic bands and
the three intervals are mapped onto each other �20�. Beyond
the crisis, for r�rc, the borderline functions gn�r� are
smooth continuations of the precritical attractor defining the
Ch1 regime. For maps with critical points these borderlines
can be observed as the most significant structures in the in-
variant density. Such structures arise from folding the phase
space during one iteration step. Because the derivative van-
ishes at the critical point a high density is created at the next
image points gn while the density decays on further iteration
due to the stretching of the chaotic map. Symbolic dynamics
tells us that the three intervals �g2 ,g5�, �g3 ,g6�, and �g4 ,g1�
constitute the period-three chaotic state for r�rc while the
gaps are determined by �g5 ,g3� and �g6 ,g3�. Thus, even be-
yond the crisis we can define the two different chaotic phases
Ch1 and Ch2 by the symbolic variable

�n = �+ 1 if xn � �g5,g3� � �g6,g4� ,

− 1 if xn � �g2,g5� � �g3,g6� � �g4,g1� .
�2�

Such a symbolic representation constitutes the basis for the
further data analysis.

We now turn to the identification of the different dynami-
cal regimes in our experimental system. The diode resonator
follows a bifurcation scenario very similar to that of the lo-
gistic map. An appropriate return map un�un+1 can be con-

structed from the local maxima un�UR�tn� of the time series.
But the resulting structure, shown in Fig. 6, is far more com-
plex than the logistic map since the experimental data repre-
sent a one-dimensional projection of a higher-dimensional
chaotic system. In contrast to the logistic map the projection
of the three branches of the experimental band attractor onto
the horizontal axis are no longer separated but partly overlap.
Even more, the Ch1 and Ch2 phases are highly intermingled
and more sophisticated tools are required to separate both
states.

Despite these difficulties the main ideas developed in the
context of the logistic map can be used here as well to sepa-
rate the two different regimes of the intermittent dynamics.
Again, the maximal value of the amplitude

g1 = max
n

	un
 = max
t

	UR�t�
 �3�

is of crucial importance. If our dynamical system were the
logistic map then one of the preimages would be the critical
point g0 causing the folding of the phase space. Similar to-
pological considerations apply to our experimental results as
well �see Fig. 6�, although we do not have to resort to a
one-dimensional map. The following five recursive images
g2 , . . . ,g6 are again boundary points for each of the three
branches. Below the crisis, for U0�Uc, one can clearly ob-
serve that the different branches of the attractor Ch1 are
mapped onto each other and visited in a well-defined se-
quence �see Fig. 7�a��. Beyond the crisis, for U0�Uc, the
combined folding and stretching process maps some of the
images outside the starting branch �see Fig. 7�b��, generating
the Ch2 phase of the dynamics. The return map is neither a
single valued function nor are the different branches of the
phases well separated when projected onto the horizontal
axis. Thus no simple threshold condition on the amplitudes
un, such as Eq. �2�, can be applied. Taking into account how
the different branches of our return map are mapped onto
each other we can develop a simple recipe to decompose the
time series. The points g1 and g4 can be used to isolate the
nonoverlapping first branch of the Ch1 phase. If un
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FIG. 5. Skeleton of the logistic map in a neighborhood of the
period three window. Solid lines: first six iterates gn�r� of the criti-
cal point; broken line: unstable period-three orbit. Labels refer to
the phases “Ch1” and “Ch2”.
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FIG. 6. Return map constructed from the local maxima of the
experimental time series UR�t� close to the crisis. Labels refer to the
critical point and its images. The rightmost branch of the Ch1 phase
remains well separated, while the other branches overlap with each
other and with parts of the Ch2 phase.
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� �g4 ,g1� we assign the symbol �n=−1 to this event and to
the two following iterates. Those data points which after
three iterations do no longer fit into the branch cycle Fig. 7
are attributed to the phase Ch2 by assigning a symbolic co-
ordinate with positive value. The same applies to their fol-
lowers as long as there is no event un� �g4 ,g1� detected.

By exploiting this technique the experimental time series
can be converted into a symbolic sequence, as was already
demonstrated for the logistic map. We use this sequence for
further analysis, e.g., for the evaluation of the mean resi-
dence times ��1� and ��2� of the two different phases Ch1 and
Ch2, respectively. The dependence of the mean residence
time on the control parameter U0 is shown in Fig. 8. The
mean laminar residence time ��1� follows a power law
�21–25�. The exponent is related to the geometric properties
of the attractor. The mean burst residence time ��2� tends to a
finite limit when approaching the crisis. Analytic expressions
for scaling exponents have been derived in Ref. �26� for
one-dimensional maps.

IV. NOISE-FREE STOCHASTIC RESONANCE

For studying the phenomenon of noise-free stochastic
resonance we applied a slow amplitude modulation to the
fast external excitation of the diode resonator. The constant
drive amplitude U0 was replaced by

Ũ0�t� = U0�1 + m sin�	mt��, 	m 
 � . �4�

Here we choose 	m=10 kHz and m=0.01 so that for U0
slightly above the critical value Uc the modulation frequency
is of the same order of magnitude as the jump rate between
the two different states Ch1 and Ch2. The symbolic time
series can be compared with the modulation signal by means

of the cross correlation function ��nŨ0�tn+ t��. If we account
for the nonvanishing time average of the output signal by
considering the fluctuation ��n=�n− ��n�, then the amplitude
of the normalized cross correlation function is given by

C1 =
maxt
���n sin�	m�tn + t���


�����n�2�/2
. �5�

Figure 9 shows the amplitude in dependence on the bifurca-
tion parameter U0. Well below the onset of the crisis U0

Uc the correlation amplitude C1 is small because the slow
periodic drive does not induce phase slips among the period-
three chaotic motion. Very close to the crisis U0�Uc the
correlation function shows a dramatic increase and reaches a
sharp maximum which is a characteristic feature of noise-
free SR. This main peak arises from the change of the burst
rate from zero to a finite value when the control parameter
crosses Uc �see Refs. �16,27��. In addition, we observe sev-
eral smaller peaks of comparable width for larger values of
the driving amplitude. Such maxima correspond to several
nonmonotonic bumps of the jump rate as a function of U0
which were already visible in our data for the mean residence
time ��1�; see Fig. 8 �24,25�.

In order to show that the observed noise-free SR repre-
sents a universal property of an interior crises we also con-
sidered the logistic map introduced above as a simple model
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FIG. 7. Diagrammatic view of the folding and stretching process
of a chaotic three-band attractor. �a� Below the crisis. Labels refer
to the images of the “critical point” g0; solid lines visualize the
three bands which are mapped onto each other. �b� Beyond the
crisis. Dashed lines indicate those parts which are not mapped onto
each other any more.
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FIG. 8. Mean residence times of the diode resonator evaluated
from the symbolic time series. ��1� follows a power law with a
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FIG. 9. Noise-free stochastic resonance of the diode resonator
evaluated in terms of the normalized cross correlation function be-
tween the symbolic time series and the modulation signal �5�.
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which also exhibits interior crises. We applied a periodic
parameter modulation

r̃n = r�1 + m sin�	mn��

to the one-dimensional map xn+1= r̃nxn�1−xn�. We measured
the response and analyzed it in terms of the cross correlation
function C1 between the filtered symbolic output �n and the
modulation signal at the input. Figure 10 shows C1 as a
function of r. The result largely coincides with that of the
diode resonator. The numerical simulation shows the stron-
gest resonance peak close to the onset of the crisis, r=rc,
where a small change of the control parameter has a strong
effect on the residence times and the jump rates. In accor-

dance with the experimental findings smaller resonance
peaks are visible as well. Thus, the noise-free SR at an inte-
rior crises shows up as a stochastic multiresonance �16,28�.

V. CONCLUSION

We have proven that noise-free stochastic resonance
caused by an interior crisis can be detected in experiments.
Although we have adopted a fairly simple electronic circuit
the approach does not rely on any peculiar feature of the
experimental setup, and it is promising to apply the approach
to more intricate time series.

A major constraint for the identification of the resonance
phenomenon is caused by the proper identification of the
different dynamical phases of the intermittent regime. Since
in typical experiments such phases are highly intermingled
one cannot apply a simple threshold condition. We have em-
ployed here return maps and ideas borrowed from symbolic
dynamics for the purpose of state identification. In such a
way a quantitative criterion has been developed to separate
the different dynamical phases which are related with the
precritical attractor and the precritical chaotic repeller, re-
spectively. The approach converts the time series into a sym-
bolic representation which allows the accurate determination
of mean residence times and cross correlation functions.

The resonance phenomenon clearly shows up as maxima
in the cross correlation function between signal and periodic
drive. Apart from the main peak which appears close to the
bifurcation point further secondary maxima are visible be-
yond the crisis. Such kind of multiresonance is caused by the
geometric structure of the chaotic attractor. Surprisingly the
fine structure observed in the experiment coincides to some
degree even quantitatively with the multiresonance observed
in the logistic map. It seems to be promising to investigate
the generic properties of such a feature.
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