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We demonstrate that the dynamics toward and within the Feigenbaum attractor combine to form a
q-deformed statistical-mechanical construction. The rate at which ensemble trajectories converge to the attrac-
tor �and to the repellor� is described by a q entropy obtained from a partition function generated by summing
distances between neighboring positions of the attractor. The values of the q indices involved are given by the
unimodal map universal constants, while the thermodynamic structure is closely related to that formerly
developed for multifractals. As an essential component in our demonstration we expose, in great detail, the
features of the dynamics of trajectories that either evolve toward the Feigenbaum attractor or are captured by
its matching repellor. The dynamical properties of the family of periodic superstable cycles in unimodal maps
are seen to be key ingredients for the comprehension of the discrete scale invariance features present at the
period-doubling transition to chaos. Elements in our analysis are the following. �i� The preimages of the
attractor and repellor of each of the supercycles appear entrenched into a fractal hierarchical structure of
increasing complexity as period doubling develops. �ii� The limiting form of this rank structure results in an
infinite number of families of well-defined phase-space gaps in the positions of the Feigenbaum attractor or of
its repellor. �iii� The gaps in each of these families can be ordered with decreasing width in accordance with
power laws and are seen to appear sequentially in the dynamics generated by uniform distributions of initial
conditions. �iv� The power law with log-periodic modulation associated with the rate of approach of trajecto-
ries toward the attractor �and to the repellor� is explained in terms of the progression of gap formation. �v� The
relationship between the law of rate of convergence to the attractor and the inexhaustible hierarchy feature of
the preimage structure is elucidated. �vi� A �mean field� evaluation of the atypical partition function, a ther-
modynamic interpretation of the time evolution process, and a crossover to ordinary exponential statistics are
given. We make clear the dynamical origin of the anomalous thermodynamic framework existing at the
Feigenbaum attractor.
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I. INTRODUCTION

A fundamental question in statistical physics is whether
the structure of ordinary equilibrium statistical mechanics
falters when its fundamental properties, phase-space mixing
and ergodicity, breakdown. The chaotic dynamics displayed
by dissipative nonlinear systems, even those of low dimen-
sionality, possesses these two crucial conditions, and acts in
accordance with a formal structure analogous to that of ca-
nonical statistical mechanics, in which thermodynamic con-
cepts meet their dynamical counterparts �1�. At the transition
between chaotic and regular behavior, classically represented
by the Feigenbaum attractor �1�, the Lyapunov exponent van-
ishes and chaotic dynamics turns critical. Trajectories cease
to be ergodic and mixing; they retain memory of their initial
positions and fluctuate according to complex deterministic
patterns �2�. Under these conditions it is of interest to check
up whether the statistical-mechanical structure subsists, and,
if so, examine if it is unchanged or if it has acquired a new
form.

With this purpose in mind, the exploration of possible
limits of validity of the canonical statistical mechanics, an
ideal model system is a one-dimensional map at the transi-

tion between chaotic and regular behavior, represented by
well-known critical attractors, such as the Feigenbaum at-
tractor. So far, recent studies �3� have concentrated on the
dynamics inside the attractor and have revealed that these
trajectories obey remarkably rich scaling properties not
known previously at this level of detail �4�. The results are
exact and clarify �4� the relationship between the original
modification �5,2� of the thermodynamic approach to chaotic
attractors �6–8� for this type of incipiently chaotic attractor,
and some aspects of the q-deformed statistical mechanical
formalism �9–11�. The complementary part of the dynamics,
that of advance on the way to the attractor, has, to our knowl-
edge, not been analyzed, nor understood, with a similar de-
gree of thoroughness. The process of convergence of trajec-
tories into the Feigenbaum attractor poses several interesting
questions that we attempt to answer here and elsewhere �12�
based on the comprehensive knowledge presented below.
Prominent among these questions is the nature of the con-
nection between the two sets of dynamical properties, within
and outside the attractor. As it turns out, these two sets of
properties are related to each other in a statistical-mechanical
manner, i.e., the dynamics at the attractor provides the con-
figurations in a partition function while the approach to the
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attractor is described by an entropy obtained from it. As we
show below, this statistical-mechanical property conforms to
a q deformation �9� of the ordinary exponential weight
statistics.

Trajectories inside the attractor visit positions forming os-
cillating log-periodic patterns of ever increasing amplitude.
However, when the trajectories are observed only at specified
times, positions align according to power laws, or q expo-
nential functions that share the same q index value �4,10�.
Further, all such sequences of positions can be shifted and
seen to collapse into a single one by a rescaling operation
similar to that observed for correlations in glassy dynamics,
a property known as �aging� �10,13�. The structure found in
the dynamics is also seen to consist of a family of Mori’s q
phase transitions �2�, via which the connection is made be-
tween the modified thermodynamic approach and the q sta-
tistical property of the sensitivity to initial conditions �4,10�.
On the other hand, a foretaste of the nature of the dynamics
outside the critical attractor can be appreciated by consider-
ing the dynamics toward the so-called superstable cycles, or
supercycles, the family of periodic attractors with Lyapunov
exponents that diverge toward minus infinity. This infinite
family of attractors has as accumulation point the transition
to chaos, which for the period-doubling route is the Feigen-
baum attractor. As described below, the basins of attraction
for the different positions of the cycles develop fractal
boundaries of increasing complexity as the period-doubling
structure advances toward the transition to chaos. The fractal
boundaries, formed by the preimages of the repellor, display
hierarchical structures organized according to exponential
clusterings that manifest in the dynamics as sensitivity to the
final state and transient chaos. The hierarchical arrangement
expands as the period of the supercycle increases.

To observe the general procedure followed by trajectories
to reach the attractors, and their complementary repellors, we
consider an ensemble of uniformly distributed initial condi-
tions x0 spanning the entire phase-space interval. We find
that this is a highly structured process encoded in sequences
of positions shared by as many trajectories with different x0.
Clearly, there is always a natural dynamical ordering in the
x0 as any trajectory of length t contains consecutive positions
of other trajectories of lengths t−1, t−2, etc. with initial
conditions x0�, x0�, etc. that are images under repeated map
iterations of x0. In the case of the Feigenbaum attractor the
initial conditions form two sets, dense in each other, of pre-
images of each the attractor and the repellor. There is an
infinite-level structure within these sets that, as we shall see,
is reflected by the infinite number of families of phase-space
gaps that complement the multifractal layout of both attrac-
tor and repellor. These families of gaps appear sequentially
in the dynamics, beginning with the largest and followed by
other sets consisting of continually increasing elements with
decreasing widths. The number of gaps in each set of com-
parable widths increases as 2k, k=0,1 , . . ., and their widths
can be ordered according to power laws of the form �−k,
where � is Feigenbaum’s universal constant ��2.5091. We
call k the order of the gap set. Furthermore, by considering a
fine partition of phase space, we determine the overall rate of
approach of trajectories toward the attractor �and to the re-
pellor�. This rate is measured by the fraction of bins W�t�

still occupied by trajectories at time t �14�. The power law
with log-periodic modulation displayed by W�t� �14� is ex-
plained in terms of the progression of gap formation, and its
self-similar features are seen to originate in the unlimited
hierarchy feature of the preimage structure.

Before proceeding to give details in the following sections
of the aforementioned dynamics, we recall basic features of
the bifurcation forks that form the period-doubling cascade
sequence in unimodal maps, epitomized by the logistic map
f��x�=1−�x2, −1�x�1, 0���2 �15,1�. The superstable
periodic orbits of lengths 2N, N=1,2 ,3 , . . ., are located along
the bifurcation forks, i.e., the control parameter value �
= �̄N��� for the superstable 2N attractor is that for which
the orbit of period 2N contains the point x=0, where ��

=1.401 155 189. . . is the value of � at the period-doubling
accumulation point. The positions �or phases� of the 2N at-
tractor are given by xm= f �̄N

�m��0�, m=1,2 , . . . ,2N. Notice that
infinitely many other sequences of superstable attractors ap-
pear at the period-doubling cascades within the windows of
periodic attractors for values of ����. Associated with the
2N attractor at �= �̄N there is a �2N−1� repellor consisting of
2N−1 positions ym, m=1,2 , . . . ,2N−1. These positions are

the unstable solutions �df �̄N

�2k��y� /dy��1 of y= f �̄N

�2k��y�, k
=0,1 ,2 , . . . ,N−1. The first, k=0, originates at the initial
period-doubling bifurcation, the next two, k=1, start at the
second bifurcation, and so on, with the last group of 2N−1,
k=N−1, stemming from the N−1 bifurcation. We find it use-
ful to order the repellor positions, or simply, repellors,
present at �= �̄N, according to a hierarchy or tree, the �old-
est� with k=0 up to the most �recent� ones with k=N−1. The
repellors’ order is given by the value of k. Finally, we define
the preimage x�j� of order j of position x to satisfy x
=h�j��x�j�� where h�j��x� is the jth composition of the map

h�x�� f �̄N

�2N−1��x�. We have omitted reference to the 2N cycle in
x�j� to simplify the notation. The interval lengths or diameters
dN,m are measured when considering the superstable periodic
orbits of lengths 2N. The dN,m are defined �here� as the �posi-
tive� distances of the elements xm, m=0,1 ,2 , . . . ,2N−1, to

their nearest neighbors f �̄N

� 2N−1��xm�, i.e.,

dN,m � �f �̄N

�m+2N−1��0� − f �̄N

�m��0�� . �1�

For large N, dN,0 /dN+1,0��. We present explicit results for
the logistic map, which has a quadratic maximum, but the
results are easily extended to unimodal maps with general
nonlinearity z�1.

Central to our discussion is the following broad property:
Time evolution at �� from t=0 up to t→� traces the period-
doubling cascade progression from �=0 up to ��. Not only
is there a close resemblance between the two developments
but also quantitative agreement. For instance, the trajectory
inside the Feigenbaum attractor with initial condition x0=0,
the 2� supercycle orbit, takes positions xt such that the dis-
tances between appropriate pairs of them reproduce the di-
ameters dN,m defined from the supercycle orbits with �̄N
���. See Fig. 1, where the absolute value of positions and
logarithmic scales are used to illustrate the equivalence. This
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property has been key to obtain rigorous results for the sen-
sitivity to initial conditions for the Feigenbaum attractor
�3,10�.

The layout of the rest of this paper is the following. In
Sec. II we present the dynamical properties of the family of
supercycles, describing their preimage structure, final state
sensitivity, and transient chaos. Details of the superstrong
insensitivity to initial conditions displayed by these attractors
are given as an Appendix. In Sec. III we make use of the
results of the previous section to describe the dynamical
properties of approach to the Feigenbaum attractor. We pro-
vide details of its preimage structure, the sequential opening
of phase-space gaps, and the scaling for the trajectories’ rate
of convergence to the attractor �and repellor�. In Sec. IV we
explain the aforesaid statistical-mechanical structure lying
beneath the dynamics of an ensemble of trajectories en route
to the Feigenbaum attractor �and repellor�. In Sec. V we
summarize our results.

II. HIERARCHICAL PROPERTIES IN THE DYNAMICS
OF SUPERCYCLE ATTRACTORS

To obtain dynamical properties with previously unstated
detail we determined the organization of the entire set of
trajectories as generated by all possible initial conditions. We
find that the paths taken by the full set of trajectories in their
way to the supercycle attractors �or to their complementary
repellors� are far from unstructured. The preimages of the
attractor of period 2N, N=1,2 ,3 , . . ., are distributed into dif-
ferent basins of attraction, one for each of the 2N phases

�positions� that compose the cycle. When N�2 these basins
are separated by fractal boundaries whose complexity in-
creases with increasing N. The boundaries consist of the pre-
images of the corresponding repellor and their positions clus-
ter around the 2N−1 repellor positions according to an
exponential law. As N increases the structure of the basin
boundaries becomes more involved. That is, the boundaries
for the 2N cycle develop new features around those of the
previous 2N−1 cycle boundaries, with the outcome that a hi-
erarchical structure arises, leading to embedded clusters of
clusters of boundary positions, and so forth.

The dynamics associated with families of trajectories al-
ways displays a distinctively concerted order that reflects the
repellor preimage boundary structure of the basins of attrac-
tion. That is, each trajectory has an initial condition that is
identified as an attractor �or repellor� preimage of a given
order, and this trajectory necessarily follows the steps of
other trajectories with initial conditions of lower preimage
order belonging to a given chain or pathway to the attractor
�or repellor�. This feature gives rise to transient chaotic be-
havior different from that observed at the last stage of ap-
proach to the attractor. When the period 2N of the cycle in-
creases, the dynamics becomes more involved with
increasingly more complex stages that reflect the preimage
hierarchical structure. As a final point, shown in the Appen-
dix, in the closing part of the last leg of the trajectories an
ultrarapid convergence to the attractor is observed, with a
sensitivity to initial conditions that decreases as an exponen-
tial of an exponential in time. In relation to this we find that
there is a functional composition renormalization group �RG�
fixed-point map associated with the supercycle attractor, and
this can be expressed in closed form by the same kind of q
exponential function found for both the pitchfork and tangent
bifurcation attractors �16,17�, like that originally derived by
Hu and Rudnick for the latter case �18�.

A. Preimage structure of supercycle attractors

The core source of our description of the dynamics to-
ward the supercycle attractors is a measure of the relative
time of flight tf�x0� for a trajectory with initial condition x0 to
reach the attractor. The function tf�x0� is obtained for an
ensemble representative of all initial conditions −1�x0�1.
This comprehensive information is determined through the
numerical realization of every trajectory, up to a small cutoff
	�0 at its final stage. The cutoff 	 considers a position xf
�xm
	 to be effectively the attractor phase xm. This, of
course, introduces an approximation to the real time of flight,
which can be arbitrarily large for those x0 close to a repellor
position ym or close to any of its infinitely many preimages
xm

�j�, j=1,2 , . . . , N�2. In such cases the finite time tf�x0 ;	�
can be seen to diverge tf →� as x0→ym and 	→0. As a
simple illustration, in Fig. 2 we show the time of flight tf�x0�
for the period 2 supercycle at �= �̄1 with 	=10−9 together
with the twice-composed map f �̄1

�2��x� and a few representa-
tive trajectories. We observe two peaks in tf�x0 ;	� at y1

= �−1+�1+4�̄1� /2�̄1�0.618 034 0. . ., the fixed-point repel-
lor and at its �only� preimage x1

�1�=−y1, where y1= f �̄1

�2��x1
�1��.

Clearly, there are two basins of attraction each for the two

FIG. 1. Left panel: Absolute value of attractor positions for the
logistic map f��x� in logarithmic scale as a function of the loga-
rithm of the control parameter difference ��−�. Right panel: Ab-
solute value of trajectory positions for the logistic map f��x� at ��

with initial condition x0=0 in logarithmic scale as a function of the
logarithm of time t, also shown by the numbers close to the circles.
The arrows indicate the equivalence between the diameters �N in
the left panel, and position differences �N with respect to x0=0 in
the right panel.
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positions or phases, x1=0 and x2=1, of the attractor. For the
former it is the interval x1

�1��x0�y1, whereas for the second
one it consists of the intervals −1�x0�x1

�1� and y1�x0�1.
The multiple-step structure of tf �x0�, of four time units each
step, reflects the occurrence of intervals of initial conditions
with common attractor phase preimage order k.

For the next supercycle—period 4—the preimage struc-
ture turns out to be a good deal more involved than the
straightforward structure for �̄1. In Fig. 3 we show the times
of flight tf�x0� for the N=2 supercycle at �= �̄2 with 	
=10−9, the map f �̄2

�4��x� is superposed as a reference to indi-
cate the four phases of the attractor �at x1=0, x2=1, x3
�−0.3107. . ., and x4�0.8734. . .� and the three repellor po-
sitions �at y1�0.571 663 5. . ., y2�0.952 771. . ., and y3�
−0.189 822. . .� In Fig. 3 there are also shown four trajecto-
ries each of which terminates at a different attractor phase.
We observe a proliferation of peaks and valleys in tf�x0�,
actually, an infinite number of them, that cluster around the
repellor at y1�0.571 663 5. . . and also at its preimage at
x1

�1�=−y1 �these are the positions at �= �̄2 of the �old� repel-
lor and its preimage in the previous N=1 case�. Notice that
the steps in the valleys of tf�x0� are now eight time units
each. The nature of the clustering of peaks �repellor phase
preimages� and the bases of the valleys �attractor phase pre-
images� is revealed in Fig. 4 where we plot tf on a logarith-
mic scale for the variables 
�x−y1�. There is an exponential
clustering of the preimage structure around both the old re-
pellor and its preimage. This scaling property is corroborated
in Fig. 5 from which we obtain x−y1�7.5
�10−5 exp�0.80l�, where l=1,2 ,3 , . . . is a label for consecu-
tive repellor preimages.

A comparable leap in the complexity of the preimage
structure is observed for the following—period

8—supercycle. In Fig. 6 we show tf�x0� for the N=3 super-
cycle at �= �̄3 with 	=10−9, together with the map f �̄2

�8��x�
placed as reference to facilitate the identification of the loca-
tions of the eight phases of the attractor, x1–x8, and the seven
repellor positions, y1–y7. In addition to a huge proliferation
of peaks and valleys in tf�x0�, we observe now the develop-
ment of clusters of clusters of peaks centered around the
repellor at y1�0.562 644 7. . . and its preimage at x1

�1�=−y1
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FIG. 2. Left axis: The twice iterated map f �̄1

�2��x�, with �̄1=1
�gray line�. Right axis: Time of flight tf�x�, the number of iterations
necessary for a trajectory with initial condition at x to reach an
attractor position. The values of x near the high spikes correspond
to initial conditions very close to the repellor and its preimage. We
present three example trajectories �and the y=x line as an aid to
visualize them�: The dotted line shows a trajectory that starts at the
attractor position x=0 and remains there. The solid line is a trajec-
tory starting near the repellor at y1, and after a large number of
iterations reaches the attractor position x=1. Finally, the dash-
dotted line is an orbit starting at x=0.5 that in just a few iterations
reaches x=0.
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�4��x�, �̄2�1.310 702 64. Two
orbits �solid bold and dashed bold lines� start very near each other
and by the position y1 of the old repellor, although indistinguishable
at the beginning, they take very different subsequent paths to reach
the attractor positions at x=1 and x�0.8734. See bottom right
panel. Another two orbits �in dotted and solid lines� start at an
attractor position x=1 and at a repellor preimage position, respec-
tively. Finally, one more orbit �dashed line� starts at an intermediate
initial condition and reaches very quickly the attractor position at
x�−0.310 703. See bottom left panel.
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rithmic scale. See Fig. 5.
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�these are now the positions of the original repellor and its
preimage for the N=1 case when �= �̄3�. The steps in the
valleys of tf�x0� have become 16 time units each. Similarly to
the clustering of peaks �repellor phase preimages� and val-
leys �attractor phase preimages� for the previous supercycle
at �̄2, the spacing arrangement of the new clusters of clusters
of peaks is determined in Fig. 7 where we plot tf in a loga-
rithmic scale for the variables 
�x−y1�. In parallel to the
previous cycle, an exponential clustering of clusters of the
preimage structure is found around both the old repellor and
its preimage. This scaling property is quantified in Fig. 8
from which we obtain x−y1�8.8�10−5 exp�0.84l�, where
l=1,2 ,3 , . . . counts consecutive clusters.

An investigation of the preimage structure for the next
N=4 supercycle at �= �̄4 leads to another substantial incre-
ment in the complications of the structure of the preimages
but with such density that it is cumbersome to describe here.
Nevertheless, it is clear that the main characteristic in the
dynamics is the development of a hierarchical organization
of the preimage structure as the period 2N of the supercycles
increases.

B. Final state sensitivity and transient chaos

With the knowledge gained about the features displayed
by the times of flight tf�x0� for the first few supercycles, it is
possible to determine and understand how the leading prop-
erties in the dynamics of approach to these attractors arise.
The information contained in tf�x0� can be used to demon-
strate in detail how the concepts of final state sensitivity
�19�—due to attractor multiplicity—and transient chaos
�1�—prevalent in the presence of repellors that coexist with
periodic attractors—are realized in a given dynamics. Final
state sensitivity is the consequence of fractal boundaries
separating coexisting attractors. In our case there is always a
single attractor but its positions or phases play an equivalent
role �20�. Transient chaos �1� is due to fast separation in time
of nearby trajectories by the action of a repellor and results
in a sensitivity to initial conditions that grows exponentially
up to a crossover time after which decay sets in. We describe
how both properties result from an extremely ordered flow of
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trajectories toward the attractor. This order is imprinted by
the preimage structure described above.

For the simplest supercycle at �= �̄1, there is trivial final
state sensitivity as the boundary between the two basins of
the phases, x1=0 and x2=1, consists only of the two posi-
tions y1�0.571 663 5. . . and x1

�1�=−y1. See Fig. 2. Consider
the length � of a small interval around a given value of x0
containing either y1 or x1

�1�, when �→0 any uncertainty as to
the final phase of the trajectory disappears. It is also simple
to verify that when x0 is close to y1 or x1

�1� the resulting
trajectories increase their separation at initial and intermedi-
ate times, displaying transient chaos in a straightforward
fashion. In Fig. 9 we show the same type of transitory expo-
nential sensitivity to initial conditions for a trajectory at �
= �̄3 after it reaches a repellor position in the final journey
toward the period 8 attractor. This behavior is common to all
periodic attractors when trajectories come near a repellor at
the final leg of their journey.

For �= �̄2 there are more remarkable properties arising
from the more complex preimage structure. There is a con-
certed migration of initial conditions seeping through the
boundaries between the four basins of attraction of the
phases. These boundaries, shown in Fig. 10, form a fractal
network of interlaced sub-basins separated from each other
by two preimages of different repellor phases and have at
their bottom a preimage of an attractor phase. Trajectories on
one of these sub-basins move to the nearest sub-basin of its
type �next-nearest neighbor in actual distance in Fig. 10� at
each iteration of the map f �̄2

�4� �four time steps for the original
map f �̄2

�. The movement is always away from the center of
the cluster at the old repellor position y1 or at its preimage
x1

�1� �located at the steepest slope inflection points of f �̄2

�4�

shown in Fig. 3�. Once a trajectory is out of the cluster �con-
tained between the maxima and minima of f �̄2

�4� next to the
mentioned inflection points� it proceeds to the basin of at-
traction of an attractor phase �separated from the cluster by
the inflection points with gentler slope of f �̄2

�4� in Fig. 3�

where its final stage takes place. When we consider a large
ensemble of initial positions, distributed uniformly along all
phase space, the common journey toward the attractor dis-
plays an exceedingly ordered pattern. Each initial position x0
within either of the two clusters of sub-basins is a preimage
of a given order k of a position in the main basin of attrac-
tion. Each iteration of f �̄2

�4� reduces the order of the preimage
from k to k−1, and the new position x0�= f �̄2

�4��x0� replaces the
initial position x0� �a preimage of order k−1� of another tra-
jectory that under the same time step has migrated to the
initial position x0� �a preimage of order k−2� of another tra-
jectory, and so on.

It is clear that the dynamics at �= �̄2 displays sensitivity
to the final state when the initial condition x0 is located near
the core of any of the two clusters of sub-basins at y1 and x1

�1�

that form the boundary of the attractor phases. Any uncer-
tainty on the location of x0 when arbitrarily close to these
positions implies uncertainty about the final phase of a tra-
jectory. There is also transient chaotic behavior associated to
the migration of trajectories out of the cluster as a result of
the organized preimage resettlement mentioned above. In-
deed, the exponential disposition of repellor preimages
shown in Fig. 5 is actually a realization of two trajectories
with initial conditions in consecutive peaks of the cluster
structure. Therefore, the exponential expression given in the
previous section in relation to Fig. 5 can be rewritten as the
expression for a trajectory x
�x0 exp��eff
�, with x
=x−y1,
x0=7.5�10−5, and �eff=6.4, where 
=1,2 ,3 , . . .. Straight-
forward differentiation of x
 with respect to x0 yields an ex-
ponential sensitivity to initial conditions with positive effec-
tive Lyapunov coefficient �ef f. See Fig. 11.

As can be anticipated, the dynamics of approach to the
next supercycle at �= �̄3 can be explained by enlarging the
description presented above for �= �̄2 with the additional
features of its preimage structure already detailed in the pre-
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ceding section. As in the previous case, trajectories with ini-
tial conditions x0 located inside a cluster of sub-basins of the
attractor phases will proceed to move out of it in the system-
atic manner described for the only two isolated clusters
present when �= �̄2. However, now there is an infinite num-
ber of such clusters arranged into two bunches that group
exponentially around the old repellor position y1 and around
its preimage x1

�1�. See Figs. 6–8. Once such trajectories leave
the cluster under consideration they enter into a neighboring
cluster, and so forth, so that the trajectories advance out of
these fractal boundaries through the prolonged process of
migration out of the cluster of clusters before they proceed to
the basins of the attraction of the eight phases of this cycle.
In Fig. 12 we show one such trajectory in consecutive times
t=1,2 ,3 , . . . for the original map and also in multiples of

time t=23 ,223 ,323 , . . .. The logarithmic scale of the figure
makes evident the retardation of each stage in the process. As
when �= �̄2, it is clear that in the approach to the �= �̄3
attractor there is sensitivity to the final state and transitory
chaotic sensitivity to initial conditions. Again, the exponen-
tial expression, given in the previous section associated with
the preimage structure of clusters of clusters of sub-basins,
shown in Fig. 8, can be interpreted as the expression of a
trajectory of the form x
�x0 exp��eff
�. Differentiation of x


with respect to x0 yields again an exponential sensitivity to
initial conditions with positive effective Lyapunov coeffi-
cient �eff.

When the period 2N of the cycles increases we observe
that the main characteristic in the dynamics is the develop-
ment of a hierarchical organization in the flow of an en-
semble of trajectories out of an increasingly more complex
disposition of the preimages of the attractor phases.

III. DYNAMICAL PROPERTIES OF APPROACH
TO THE FEIGENBAUM ATTRACTOR

A convenient way to visualize how the preimages for the
Feigenbaum attractor and repellor are distributed and orga-
nized is to consider the simpler arrangements for the preim-
ages of the supercycles’ attractors and repellors of small pe-
riods 2N, N=1,2 , . . .. As we have seen, when the period 2N

increases the preimage structures for the attractor and repel-
lor become more and more involved, with the appearance of
new features made up of an infinite repetition of building
blocks. Each of these new blocks is equivalent to the more
dense structures present in the previous 2N−1 case. In addition
all other structures in the earlier 2N−2 , . . . ,21 cases are still
present. Thus a progressively more elaborate organization of
preimages is built upon as N increases, so that the preimage
layout for the Feigenbaum attractor and repellor is obtained
as the limiting form of the rank structure of the fractal
boundaries between the finite-period attractor position ba-
sins. The fractal boundaries consist of sub-basins of preim-
ages for the attractor positions separated by preimages of the
repellor positions. As N increases the sizes of these sub-
basins decrease while their numbers increase and the fractal
boundaries cover a progressively larger part of total phase
space. See Figs. 13 and 16.

Interestingly, the sizes of all boundary sub-basins vanish
in the limit N→�, and the preimages of both attractor and
repellor positions become two sets—with dimension equal to
the dimension of phase space—dense in each other. In the
limit N→� there is an attractor preimage between any two
repellor preimages and the other way round. �The attractor
and repellor are two multifractal sets with dimension df
�0.538. . . �15�.� To visualize this limiting situation consider
that the positions for the repellors and their first preimages of
the 2N-th supercycle appear located at the inflection points of

f �̄N

�2N��x�, and it is in the close vicinity of them that the men-
tioned fractal boundaries form. To illustrate how the sets of
preimage structures for the Feigenbaum attractor and repellor

develop we plot in Fig. 13 the absolute value of ln�df �̄N

�2N� /dx�
for N=1,2 , . . . ,4 vs x. The maxima in this curve correspond
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to the inflection points of f �̄N

�2N��x� at which the repellor posi-
tions or their first preimages are located. As shown in Fig.
13, when N increases the number of maxima proliferate at a
rate faster than 2N.

A. Sequential opening of phase-space gaps

One way that the preimage structure described above is
manifest in the dynamics is via the successive formation of
phase-space gaps that ultimately give rise to the attractor and
repellor multifractal sets. In order to observe explicitly this
process we consider an ensamble of initial conditions x0
spread out uniformly across the interval −1�x0�1 and keep
track of their positions at subsequent times. In Figs. 14–16
we illustrate the outcome for the supercycles of periods 22,
23, and 24, respectively, where we have plotted the time evo-
lution of an ensemble composed of 104 trajectories. In the
left panel of each figure we show the absolute value of the
positions �xt� vs time t, while, for comparison purposes, in the

right panel we show the absolute value of �x� both vs f �̄N

�2N��x�

and vs �df �̄N

�2N� /dx� to facilitate identification of the attractor
and repellor positions. The labels k=0,1 ,2 , . . . indicate the
order of the gap set �or equivalently the order of the repellor

generation set�. In Fig. 14 �with �= �̄2� one observes a large
gap opening first that contains the old repellor �k=0� in its
middle region and two smaller gaps opening afterward that
contain the two repellors of second generation �k=1� once
more around the middle of them. In Fig. 15 �with �= �̄3� we
initially observe the opening of a primary and the two sec-
ondary gaps as in the previous �= �̄2 case, but subsequently
four new smaller gaps open each around the third generation
of repellor positions �k=2�. In Fig. 16 �with �= �̄4� we ob-
serve the same development as before; however, at longer
times eight additional and yet smaller gaps emerge around
each fourth generation of repellor positions �k=3�. Naturally,
this process continues indefinitely as N→� and illustrates
the property mentioned before for ��, that the time evolution
at fixed control parameter values resembles progression from
�=0 up to, in this section, �̄N. It is evident in all Figs. 14–16
that the closer the initial conditions x0 are to the repellor
positions the longer times it takes for the resultant trajecto-
ries to clear the gap regions. This intuitively evident feature
is essentially linked to the knowledge we have gained about
the fractal boundaries of the preimage structure, and the ob-
servable �bent over� portions of these distinct trajectories in
the figures correspond to their passage across the boundaries.
�Since the ensemble used in the numerical experiments is
finite there appear only a few such trajectories in Figs.
14–16.�
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FIG. 13. Absolute value of df �̄N

�2N��x� /dx, for N=1, 2, 3, and 4,
on a logarithmic scale as a function of x in the interval 0�x�1.
The proliferation of maxima conveys the development of the hier-
archical structure of repellor preimages. See text.

FIG. 14. Phase-space gap formation for �= �̄2. Left panel: time
evolution of a uniform ensemble of 104 trajectories as a function of
�x� �black areas and open circles�. The values of the index k label the
order of the gap set. Right panel: Rotated plots of f �̄2

�4��x� �gray� and
�df �̄2

�4��x� /dx� �black� vs �x� as guides for the identification of attrac-
tor and repellor positions.

FIG. 15. Phase-space gap formation for �= �̄3. Left panel: time
evolution of a uniform ensemble of 104 trajectories as a function of
�x� �black areas and open circles�. The values of the index k label the
order of the gap set. Right panel: Rotated plots of f �̄3

�8��x� �gray� and
�df �̄3

�8��x� /dx� �black� vs �x� as guides for the identification of attrac-
tor and repellor positions.

FIG. 16. Phase-space gap formation for �= �̄4. Left panel: time
evolution of a uniform ensemble of 104 trajectories as a function of
�x� �black areas and open circles�. The values of the index k label the
order of the gap set. Right panel: Rotated plots of f �̄4

�16��x� �gray� and
�df �̄4

�16��x� /dx� �black� vs �x� as guides for the identification of attrac-
tor and repellor positions.
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To facilitate a visual comparison between the process of
gap formation at �� and the dynamics inside the Feigenbaum
attractor—as illustrated by the trajectory in Fig. 1 �right
panel�—we plot in Fig. 17 the time evolution of the same
ensemble composed of 104 trajectories with �=��. This
time we use logarithmic scales for both �xt� and t and then
superpose on the evolution of the ensemble the positions for
the trajectory starting at x0=0. It is clear from this figure that
the larger gaps that form consecutively all have the same
width in the logarithmic scale of the plot and therefore their
actual widths decrease as a power law, the same power law
followed, for instance, by the position sequence xt=�−N, t
=2N, N=0,1 ,2 , . . ., for the trajectory inside the attractor
starting at x0=0. This set of gaps develop in time beginning
with the largest one containing the k=0 repellor, then fol-
lowed by a second gap, one of a set of two gaps associated
with the k=1 repellor, next a third gap, one gap of a set of
four gaps associated with the k=2 repellor, and so forth. The
locations of this specific family of consecutive gaps advance
monotonically toward the sparsest region of the multifractal
attractor located at x=0. The remaining gaps formed at each
stage converge, of course, to locations near other regions of
the multifractal, but are not easily seen in Fig. 17 because of
the specific way in which this has been plotted �and because
of the scale used�. In Fig. 18 we plot the same data differ-
ently, with the variable ln�x� replaced by ln�1−x�, where now
another specific family of gaps, one for each value of k
=0,1 ,2 , . . ., appears, all with the same width on the logarith-
mic scale; their actual widths decrease now as �−2N, N
=0,1 ,2 , . . .. The locations of this second family of consecu-
tive gaps advance monotonically toward the most crowded
region of the multifractal attractor located at x=1. The time
necessary for the formation of successive gaps of order k
=0,1 ,2 , . . . increases as 2k because the duration of equiva-
lent movements of the trajectories across the corresponding
preimage structures involve the 2k-th composed function

f �̄N

�2k��x�.

B. Scaling for the rates of convergence to the attractor
and repellor

There is �14� an all-inclusive and uncomplicated way to
measure the rate of convergence of an ensemble of trajecto-
ries to the attractor �and to the repellor� that consists of a
single time-dependent quantity. A partition of phase space is
made of Nb equally sized boxes or bins and a uniform dis-
tribution, of Nc initial conditions placed along the interval
−1�x�1, is considered again. The number r of trajectories
per box is r=Nc /Nb. The quantity of interest is the number of
boxes W�t� that contain trajectories at time t. This is shown
in Fig. 19 on logarithmic scales for the first five supercycles
of periods 21 to 25 where we can observe the following fea-
tures: In all cases W�t� shows a similar initial nearly constant
plateau �W�t���, 1� t1� t0, t0=O�1�� and a final well-
defined decay to zero. As it can be observed in the left panel
of Fig. 19, the duration of the final decay grows �approxi-
mately� proportionally to the period 2N of the supercycle.

FIG. 17. Phase-space gap formation for �=��. The black dots
correspond to time evolution of a uniform ensemble of 104 trajec-
tories as a function of �x� vs t, both on logarithmic scales. The open
circles are the positions, labeled by the times at which they are
reached, for the trajectory inside the Feigenbaum attractor with ini-
tial condition x0=0, the same as the right panel in Fig. 1.

FIG. 18. Same as Fig. 17 but with replacement of �x� by �1−x�.
Notice the change in slope with respect to Fig. 17 in the opening of
gaps and in the layout of the positions for the trajectory inside the
attractor.
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There is an intermediate slow decay of W�t� that develops as
N increases with duration also �just about� proportional to
2N. For the shortest period 21, there is no intermediate feature
in W�t�; this appears first for period 22 as a single dip and
expands with one undulation every time N increases by one
unit. The expanding intermediate regime exhibits the devel-
opment of a power law decay with the logarithmic oscilla-
tions characteristic of discrete scale invariance �21�. Clearly,
the manifestation of discrete invariance is expected to be
associated with the period-doubling cascade. In the right
panel of Fig. 19 we show a superposition of the five curves
in Fig. 19 �left panel� obtained via rescaling of both W�t� and
t for each curve according to repeated scale factors.

The limiting form W�t� for N→� is shown in the left
panel of Fig. 20 for various values of r, while in its right
panel we show, for r=100, a scale amplification of W�t� with
the same factors employed in Fig. 19 for the supercycles
with small periods. The behavior of W�t� at �� was origi-
nally presented in Ref. �14�, where the power law exponent
� and the logarithmic oscillation parameter � in

W�t� � �h	 ln �

ln �

�−�, � = t − t0, �2�

were obtained numerically with a precision that corresponds
to r=10. In Eq. �2� h�x� is a periodic function with h�1�=1
and � is the scaling factor between the periods of two con-
secutive oscillations. More recently, in Ref. �22�, it was
pointed out that numerical estimates of W�t� are subject to
large finite-size corrections, and, also, that W�t� should scale
with the intervals in the triadic cantor set construction of the
Feigenbaum attractor �22�, from which the value for �
�0.800 138 194 is reported. The values for the rescaling
factors in our Figs. 19 and 20 suffer from these large finite-
size effects due to the relatively small values of r used in the
calculations. This is evident since the time scaling factor

obtained from these data differs by 10% from the exact value
of �=2 implied by the discrete scale invariance property
created by the period-doubling cascade. In Fig. 21 we show
the rate W�t� and the superposition of repeated amplifications
of itself �as in the right panel of Fig. 20� for increasing val-
ues of Nc. We find that the scaling factor � converges to its
limit �=2.

We are now in a position to appreciate the dynamical
mechanism at work behind the features of the decay rate
W�t�. From our previous discussion we know that, every time
the period of a supercycle increases from 2N−1 to 2N by a
shift in the control parameter value from �̄N−1 to �̄N, the
preimage structure advances one stage of complication in its
hierarchy. Along with this, and in relation to the time evolu-
tion of the ensemble of trajectories, an additional set of 2N

smaller phase-space gaps develops and also a further oscil-
lation takes place in the corresponding rate W�t� for finite-
period attractors. At �=�� the time evolution tracks the
period-doubling cascade progression, and every time t in-
creases from 2N−1 to 2N the flow of trajectories undergoes
equivalent passages across stages in the itinerary through the
preimage ladder structure, in the development of phase-space
gaps, and in logarithmic oscillations in W�t�. In Fig. 22
we show the correspondence between these features
quantitatively.

IV. q-DEFORMED STATISTICAL-MECHANICAL
STRUCTURE

The rate W�t�, at the values of time for period doubling,
can be obtained quantitatively from the supercycle diameters
dN,m. Specifically, W�t�=� Z�, �= �1+�−1� /2 �23�, �= t− t0,
and

Z� = �
m=0

2N−1−1

dN,m, � = 2N−1, N = 1,2,3, . . . . �3�

Equation �3� is an explicit expression equivalent to the nu-
merical procedure followed in Ref. �22� by the use of the
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triadic cantor set construction of the Feigenbaum attractor to
evaluate the power law exponent �, and from which the
value for ��0.800 138 194 is reported. In Fig. 22 we have
added the results of a calculation of W�t� at times �=2N, N
=1,2 , . . ., according to Eq. �3�.

The predicted statistical-mechanical structure is exposed
when we identify the �scaled and shifted� decay rate Z� as a
partition function. From this viewpoint the diameters dN,m
are configurational terms that in a true statistical-mechanical
theory would be expected to obey some well-defined statis-
tical weights, such as Boltzmann factors. To check on this we
proceed to determine their time dependence given by the
bifurcation index N. The dN,m scale �asymptotically� with N
for m /2N fixed as

dN,m � �y
−N+1, N large, �4�

where the �y are universal constants obtained, for instance,
from the finite jump discontinuities of Feigenbaum’s trajec-
tory scaling function ��y�=limn→� dN,m+1 /dN,m, y
=limN→� m /2N �15�. The two largest discontinuities of ��y�
correspond to the thinner and the fuller regions of the mul-
tifractal attractor, and for these two regions we have, respec-
tively, dN,0��−N+1 and dN,1��−2�N−1�. �The length of the
first diameter is d1,0=1 and the equality in Eq. �4� is ap-
proached rapidly with increasing N.� The power law in Eq.
�4� can be rewritten as a q exponential expq�x���1− �q
−1�x�−1/�q−1� via use of the identity A−N+1��1+��−ln A/ln 2,
�=2N−1−1, that is,

dN,m � expqy
�− ��y� , �5�

where qy =1+�y
−1, �y =ln �y / ln 2, and �=�−1=2N−1−1.

Similarly, the partition function Z���−� �or Z��	−N+1�, with
�=ln 	 / ln 2 and �=2N−1, can be expressed as

Z� � expQ�− ��� , �6�

where Q=1+�−1 and once more �=�−1=2N−1−1.
Our main contention becomes evident when Eqs. �5� and

�6� are used in Eq. �3�, to yield

expQ�− ��� � �
y

expqy
�− ��y� . �7�

Equation �7� is similar to a basic statistical-mechanical ex-
pression; the quantities in it take the following parts: � an
inverse temperature, � a free energy �or the product s
=−�� a Massieu thermodynamic potential, or entropy�, and
the �y configurational energies. However, the equality in-
volves q-deformed exponentials in place of ordinary expo-
nential functions that would be recovered when Q=qy =1. It
is worth noticing that there is a multiplicity of q indices
associated to the configurational weights in Eq. �7�; however,
their values form a well-defined family �10� determined by
the discontinuities of Feigenbaum’s function �.

In the spirit of a mean field approximation we suppose
that, for a given value of N, e.g., N=3, the diameters dN,m
that are of similar lengths have actually equal length, and this
length is obtained from those of the shortest or longest di-
ameters via a simple scale factor; e.g., d3,3=d3,2=�−1d3,0
=�d3,1. This initiates a degree of degeneracy in the lengths
that subsequently spreads all the way through the bifurcation
tree. See Fig. 23 �24�. As a result of this approximation, the
dN,m scale with increasing N according to a binomial combi-
nation of the scale factors of those diameters that converge to
the most crowded and most sparse regions of the multifractal
attractor. To be precise, the 2N−1 diameters at the Nth super-
cycle have lengths equal to �−�N−1−l��−2k and occur with mul-
tiplicities � N−1

k �, where k=0,1 , . . . ,N−1. As shown in Fig. 23
the diameters create a Pascal triangle across the bifurcation
cascade. This feature greatly simplifies the evaluation of the
partition function and directly yields

Z� = �
k=0

N−1 	N − 1

k

�−�N−1−k��−2k = ��−1 + �−2�N−1, �8�

�=2N−1. We obtain 	= ��−2+�−1�=1.7883, �=0.8386, and
Q=2.1924, a surprisingly good approximation when com-
pared to the numerical estimates �=0.8001 and Q=2.2498
of the exact values. Under this approximation all the indices
qy in Eq. �7� are equal, qy =q=1+�−1, �=ln � / ln 2, and Eq.
�7� becomes

FIG. 22. Correspondence between the power law decay with
log-periodic oscillation features of the rate W�t� with the sequential
opening of phase-space gaps. Top panel: The solid line is W�t� from
Fig. 21 and the open circles values are obtained for W�t� from Eq.
�3� at times t=2N, N=1,2 , . . .. See text.

FIG. 23. Sector of the bifurcation tree for the logistic map f��x�
that shows the formation of a Pascal triangle of diameter lengths
according to the scaling approximation explained in the text, where
��2.5091 is the pertinent universal constant.

q-DEFORMED STATISTICAL-MECHANICAL… PHYSICAL REVIEW E 77, 036213 �2008�

036213-11



expQ�− ��� = �
k=0

N−1

��N − 1,k�expq�− ��� , �9�

where ��N−1,k�=�−l� N−1
k �. In thermodynamic language,

the approach to the attractor described by Eq. �7� or �9� is a
cooling process �→� in which the free energy �or energy� �
is fixed and therefore the entropy s=−�� is linear in �. It is
instructive to define an energy landscape for the Feigenbaum
attractor as being composed of an infinite number of valleys
whose equal-valued minima at �→� coincide with the
points of the attractor on the interval �−�−1 ,1� �23�. When
�=2N−1−1, N finite, the valleys merge into 2N−1 intervals of
widths equal to the diameters dN,m.

As established some time ago, the so-called thermody-
namic formalism �1� is built around the statistical-
mechanical framework followed by the geometric properties
of multifractals. The partition function formulated to study
their properties, like the spectrum of singularities f��̃� �1�, is

Z��̃,q� � �
m

M

pm
�̃ lm

−q, �10�

where the lm �in a one-dimensional systems� are M disjoint
interval lengths that cover the multifractal set and the pm are
probabilities given to these intervals. The standard practice
consists of demanding that Z�� ,q� neither vanishes nor di-
verges in the limit lm→0 for all m �and consequently M
→��. Under this condition the exponents �̃ and q define a
function �̃ �q� from which f��̃� is obtained via Legendre
transformation �1�. When the multifractal is an attractor its
elements are ordered dynamically, and for the Feigenbaum
attractor the trajectory with initial condition x0=0 generates
in succession the positions that form the diameters, generat-
ing all diameters dN,m for N fixed between times �=2N−1 and
�=3�2N−1. Because the diameters cover the attractor it is
natural to choose the covering lengths at stage N to be lm

�N�

=dN,m and to assign to each of them the same probability
pm

�N�=1 /2. For example, within the two-scale approximation
to the Feigenbaum multifractal �1�, lk

�N�=�−�N−1−k��−2k, the
condition Z��̃ ,q�=1 reproduces Eq. �8� when pm

�N�=�−1

=2−N+1, with �̃=1 and q=−�. It should be kept in mind that
the �static� partition function Z��̃ ,q� is not meant to distin-
guish between chaotic and critical �vanishing �� multifractal
attractors as we do here. As we emphasize below, it is the
functional form of the link between the probabilities pm

�N� and
actual time � that determines the nature of the statistical-
mechanical structure of the dynamical system.

A crossover to q=1 ordinary statistics when a critical at-
tractor turns chaotic; this can be explained as follows. We
first recall that multifractal sets and their statistical-
mechanical properties can be retrieved by means of the re-
cursive method of backward iteration of chaotic maps �25�.
A chaotic unimodal map has a two-valued inverse and given
a position x=xn a binary tree is formed under backward it-
eration, so there are 2n initial conditions x0 for trajectories
that lead to xn. Since in this case the Lyapunov exponent is
positive ��0, lengths expand under forward iteration ac-
cording to l
exp��n� and contract under backward iteration
as l
exp�−�n�. We can define, as above, a set of covering

lengths Dn,m=�m exp�−�n�, where m relates to the initial
condition x0 and use of them in a partition function like that
in Eq. �3� gives

exp�− ��� = �
m

�m exp�− ��� , �11�

where now �=n. Keeping in mind Pesin’s theorem � is
plainly identified as the Kolmogorov-Sinai entropy. Now, the
crossover from q-deformed statistics to ordinary q=1 statis-
tics can be observed for control parameter values in the vi-
cinity of the Feigenbaum attractor, ����, when the attrac-
tor consists of 2n̄ bands, n̄ large. The Lyapunov coefficient �
of the chaotic attractor decreases with ��=�−�� as �
�2−n̄
���, �=ln 2 / ln �F, where �F is the Feigenbaum con-
stant that measures the rate of development of the bifurcation
tree in control parameter space �15�. The chaotic orbit con-
sists of an interband periodic motion of period 2n̄ and an
intraband chaotic motion. The expansion rate
�i=0

�−1ln�df��xi� /dxi� fluctuates with increasing amplitude as
ln � for ��2n̄ but converges to a fixed number that grows
linearly with � for ��2n̄ �2�. This translates as dynamics
with q�1 for ��2n̄ but ordinary dynamics with q=1 for
��2n̄.

V. SUMMARY

As stated, the dynamics of critical attractors in low-
dimensional nonlinear maps is a suitable phenomenon for
assessing the limits of validity and generalizations of ordi-
nary statistical mechanics. There are now positive indications
that the multifractal critical attractors present in these maps
play this role, since, as it turns out, the two sets of dynamical
properties—inside and toward the Feigenbaum attractor—
appear combined in a q-deformed statistical-mechanical
structure �12�. To obtain this remarkable property it is nec-
essary to have access to detailed information for these two
different types of properties. The dynamics at the attractor
�for both trajectories and sensitivity to initial conditions� has
been analyzed in detail before for period doubling �4,10� and
for the quasiperiodic �26� transition to chaos. But the dynam-
ics on the way to the attractor is only now offered as far as
we know.

To begin with, we studied the properties of the first few
members of the family of superstable attractors of unimodal
maps with quadratic maxima and obtained a precise under-
standing of the complex labyrinthine dynamics that develops
as their period 2N increases. The study is based on the deter-
mination of the function tf�x0�, the time of flight for a trajec-
tory with initial condition x0 to reach the attractor or repellor.
The function tf�x0� was determined for all initial conditions
x0 in a partition of the total phase space −1�x0�1, and this
provides a complete picture for each attractor-repellor pair.
We observed how the fractal features of the boundaries be-
tween the basins of attraction of the positions of the periodic
orbits develop a structure with hierarchy, and how this in
turn reflects on the properties of the trajectories. The set of
trajectories produces an ordered flow toward the attractor or
toward the repellor that reflects the ladder structure of the
sub-basins that constitute the mentioned boundaries. As 2N
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increases there is sensitivity to the final position for almost
all x0, and there is a transient exponentially increasing sen-
sitivity to initial conditions for almost all x0. We observed
that transient chaos is the manifestation of the trajectories’
controlled flow out of the fractal boundaries, which suggests
that for large 2N the flow becomes an approximately self-
similar sequence of stages. As a final point, in the Appendix,
we look at the closing segment of trajectories at which a very
fast convergence to the attractor positions occurs. We found
�universality class� features, as the trajectories and sensitivity
to initial conditions are replicated by a RG fixed-point map
obtained under functional composition and rescaling. This
map has the same q-deformed exponential closed form found
to hold also for the pitchfork and tangent bifurcations of
unimodal maps �16,17�.

Subsequently, we examined the process followed by an
ensemble of uniformly distributed initial conditions x0 across
the phase space to arrive at the Feigenbaum attractor, or get
captured by its corresponding repellor. Significantly, we
gained understanding concerning the dynamical ordering in
x0, in relation to the construction of the families of phase-
space gaps that support the attractor and repellor, and about
the rate of approach of trajectories toward these multifractal
sets, as measured by the fraction of bins W�t� still occupied
by trajectories at time t. An important factor in obtaining this
knowledge has been the consideration of the equivalent dy-
namical properties for the supercycles of small periods in the
bifurcation cascade. As we have seen, a doubling of the pe-
riod introduces well-defined additional elements in the hier-
archy of the preimage structure, in the family of phase-space
gaps, and in the log-periodic power law decay of the rate
W�t�. We have then corroborated the wide-ranging correla-
tion between time evolution at �� from t=0 up to t→� with
the static period-doubling cascade progression from �=0 up
to ��. As a result of this we have acquired an objective
insight into the complex dynamical phenomena that fix the
decay rate W�t�. We have clarified the genuine mechanism by
means of which the discrete scale invariance implied by the
log-periodic property in W�t� arises, that is, we have seen
how its self-similarity originates in the infinite hierarchy
formed by the preimage structure of the attractor and repel-
lor. The rate W�t� can be obtained quantitatively �see Eq. �3��
from the supercycle diameters dN,m. These basic data descrip-
tive of the period-doubling route to chaos are also a suffi-
cient ingredient in the determination of the anomalous sen-
sitivity to initial conditions for the dynamics inside the
Feigenbaum attractor �10�.

Finally, the case is made that there is a statistical-
mechanical property underlying the dynamics of an en-
semble of trajectories en route to the Feigenbaum attractor
�and repellor�. Equation �3� is identified as a partition func-
tion built of q-exponential weighted configurations, and in
turn, the fraction Z� of phase space still occupied at time � is
seen to have the form of the q-exponential of a thermody-
namic potential function. This is argued to be a concrete,
clear, and genuine manifestation of q deformation of ordi-
nary statistical mechanics where arguments can be made ex-
plicit and rigorous. There is a close resemblance with the
thermodynamic formalism for multifractal sets, but it should
be stressed that the deviation from the usual exponential sta-

tistics is dynamical in origin, and due to the vanishing of the
�only� Lyapunov exponent.
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APPENDIX: SUPERSTRONG INSENSITIVITY TO INITIAL
CONDITIONS

The ordinary Lyapunov exponent �
��limt→� t−1 ln df �̄N

�t� �x� /dx�x=0 for the supercycle attractors
diverges to minus infinity �df �̄N

�t� �x� /dx=0 at x=0�, therefore
the sensitivity to initial conditions �t cannot have an expo-
nential form �t=exp��t� with ��0. This appendix is a brief
account of the determination of �t at the closing point of
approach to the supercycle attractors.

Representative results for the last segment of a trajectory
and the corresponding sensitivity �t obtained from a numeri-
cal investigation are shown in Fig. 24. Only the first two

steps of a trajectory with x0=0.1 of the map f �̄3

�23� can be seen
in Fig. 24�a�. A considerable enlargement of the spatial scale
�which requires computations of extreme precision �27��
makes it possible to observe a total of seven steps �56 itera-
tions in the original map�, as shown with the help of loga-
rithmic scales in Fig. 24�b�. Figure 24�c� shows both the
same trajectory and the sensitivity �t�dxt /dx0 in a logarith-
mic scale for xt and �t and a normal scale for the time t.
The trajectory is accurately reproduced �indistinguishable
from the curve in Fig. 24�c�� by the expression xt
=u−1 exp�b exp ct�, b=ln ux0 �with x0�0�, and c=ln 2,
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FIG. 24. Panel �a�: Detail of a trajectory in its final stage of
approach to the x=0 attractor position �dotted line� for the map

f �̄N

�2N��x� �solid line�. In this example N=3. Panel �b�: Same as �a� in
double logarithmic scale. Panel �c�: Trajectory xt and sensitivity to
initial conditions �t in logarithmic scale versus time t. Both func-
tions are indistinguishable. Note that there is an ultra-rapid conver-
gence, of only a few time steps, to the origin x=0. See text.
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where u�0 is obtained from the form �f �̄N

�2N���ux2 taken by
the 2N-th composed map close to x=0. This expression for xt

is just another form of writing uxt= �ux0�2t
, the result of re-

peated iteration of ux2. For the logarithm of the sensitivity
we have ln �t=−ln x0+ t ln 2+ln xt where the last �large
negative� term dominates the first two. Thus, we find that the
sensitivity decreases more quickly than an exponential, and,
more precisely, decreases as the exponential of an exponen-
tial.

We note that, associated with the general form f �̄N

�2N��x�
�ux2 of the map in the neighborhood of x=0, there is a map

f��x� that satisfies the functional composition and rescaling
equation f�(f��x�)=a−1f��ax� for some finite value of a and
such that f��x�=ux2+o�x4�. The fixed-point map f��x� pos-
sesses properties common to all superstable attractors of uni-
modal maps with a quadratic extremum. Indeed, there is a
closed form expression that satisfies these conditions, which
is f��x�=x expq�uq−1x�. The fixed-point map equation is sat-
isfied with a=21/�q−1� and q=1 /2. The same type of RG so-
lution has been previously found to exist for the tangent and
pitchfork bifurcations of unimodal maps with general nonlin-
earity z�1 �18,16,17�. Use of the map f��x� reproduces the
trajectory xt /x0 and sensitivity �t shown in Fig. 24�c�.
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