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A dynamic memory model is proposed in which an agent “learns” a new agent by means of recommenda-
tion. The agents can also “remember” and “forget.” The memory size is decreased while the population size is
kept constant. “Fame” emerged as a few agents become very well known in expense of the majority being
completely forgotten. The minimum and the maximum of fame change linearly with the relative memory size.
The network properties of the who-knows-who graph, which represents the state of the system, are
investigated.
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I. MOTIVATION

One of the observations of complex systems is that they
are made out of many interacting agents. Usually, the num-
ber of agents is simply too big for an agent to be informed of
all the others. Therefore agents act based on limited informa-
tion. Many real-life examples can be given: A consumer can
only have access to a limited number of suppliers. A car can
only encounter a small number of other cars in a traffic jam.
In the brain, a neuron cannot be connected to all the other
1011 neurons �1�. No web page can connect to all the other
existing web pages. Similarly, no router can be connected to
all other routers on the Internet. Even in many simple mod-
els, access to only the local information is a common prop-
erty. In Bak’s sandpile model, a sand particle communicates
only with the four sand particles in its neighborhood �2�.
Similarly, in Axelrod’s two-dimensional culture model, an
agent interacts with its four neighbors only �3�. In Conway’s
game of life a cell checks its eight neighbors in order to
decide whether to live or die in the next cycle �4�. Although
information exchange is relatively local and the rules of ex-
change are quite simple, these systems manage to become
complex systems.

An individual cannot know the entire population but a
small fraction of it. Consider the ratio of the number of
people that one knows to the size of the population of the
city or the country that she lives in. One expects that this
ratio, which will be an important parameter of the model
developed in this study, is a very small number �16�. Another
observation is that the people that we know constantly
changes. We “learn” new people from many sources includ-
ing people, books, newspapers, radio, television, e-mail,
www, and short messaging services �SMS�. On the other
hand, we do not “remember” all the people that we learn. We
have a limited cognitive capacity. A mechanism enables us to
“forget” people. Therefore a model should deal with con-
cepts such as population, memory, learning, remembering,
forgetting, and interaction of individuals that change their
memory content. This paper mainly considers the human
population in the development of the model but the findings
are applicable to many systems.

Mobile phones are a good example which satisfy many
properties of the model presented in this paper �17�. They
have a limited memory. When they receive a call, they try to
store the caller number. They usually do not store their own
phone number, that is, they do not “know” themselves. An-

other example would be routers in computer networks.

II. RECOMMENDATION MODEL

A reasonable question would be: What happens if an
agent is allowed to interact with all the other agents, but
remembers only a small fraction of them? In order to inves-
tigate this question a simple model is constructed. The dy-
namics of the system is investigated as the memory size is
decreased.

A. Static memory model

Let ai be an agent. Let A= �ai �1� i�n� be a population
of n agents. Each agent ai has a memory Mi�A. An agent ai
knows agent aj if aj �Mi. The knownness ki of agent ai is the
number of agents that know ai. Then ki= ��aj �ai�Mj��. If
everybody knows the agent, that is ki=n, then the agent is
called perfectly known. On the other hand, if nobody knows
the agent, that is ki=0, then the agent is called completely
forgotten. Knownness depends on n. For example, for n
=100, one can be known by at most 100 people but for n
=1000, knownness can be as high as 1000. In order to com-
pare populations of different sizes, a metric, independent of
n, is needed. The fame fi of agent ai is defined as the ratio of
its knownness to the population size, that is f i=ki /n. Since
0�ki�n, it is always the case that 0� f i�1. Hence fame is
a normalized measure of knownness.

An agent learns an agent ai if it gets ai in its memory. An
agent ai remembers agent ar, if ai selects ar among the agents
stored in its memory. An agent forgets agent af if it removes
af from its memory.

An abstraction which simplifies the model is made. It is
assumed that every agent has the same memory size m, that
is ∀i �Mi � =m. Then the total memory capacity of the popu-
lation is nm. The memory ratio � is defined to be the ratio of
memory size to the population size, �=m /n. We have 0��
�1, since this work considers m values in the range 0�m
�n. Note that � corresponds to the ratio of the number of
people that one knows to the number of people one possibly
knows. As discussed in the “motivation” section, � is ex-
pected to be a small value which corresponds to small
memory sizes.

The state of an agent is the content of its memory. Simi-
larly the state of the system is the memories of all the agents.

PHYSICAL REVIEW E 77, 036118 �2008�

1539-3755/2008/77�3�/036118�7� ©2008 The American Physical Society036118-1

http://dx.doi.org/10.1103/PhysRevE.77.036118


The state of the system can be represented by an n�m ma-
trix as in Fig. 1 where row i corresponds to the memory Mi.

B. Dynamic memory model

The system defined so far is a static one. In order to make
it dynamic, interaction between agents is defined by means
of recommendation. Agent ag recommends agent ar to agent
at as visualized in Fig. 1. The agents ag, ar, and at are called
the giver, the recommended, and the taker, respectively. The
steps of the recommendation process are �i� ag remembers ar;
�ii� ag gives ar to at; and �iii� at learns ar if at does not
already know ar. “Remembering” and “forgetting” are primi-
tive operations. On the other hand, “learning” is not a primi-
tive operation for m�n, since there is no empty space in the
memory for the recommended agent. So learning comprises
three basic operations: �i� remember some agent af; �ii� for-
get af in order to obtain an empty slot; and �iii� put the
recommended agent ar to this slot.

Some remarks about the recommendation operation are
needed.

�i� Selections. The recommendation operation is carefully
defined so that it is open to extensions. There are four selec-
tions in every recommendation operation, namely selections
of giver-taker �ag ,at� and recommended-forgotten �ar ,af� as
illustrated in Fig. 1. These correspond to selections of g and
t from the set of �1,2 , . . . ,n� and memory positions r and f
from �1,2 , . . . ,m�. Different specifications of selections
would produce different results. In the simple recommenda-
tion model of this paper, all four selections are defined to be
randomly chosen from a uniform distribution.

�ii� Axelrod’s culture model. Another selection criterion
could be the case that both the giver and the taker should
know the same people in order to interact. Restrict the selec-
tion of ag and at in such a way that �Mg�Mt � �k, the case
where two agents commonly know at least k agents. For k
=1, this leads to a model that is similar to Axelrod’s culture
model where the culture vector has only one feature and the
corresponding set of traits is �1,2 , . . . ,n�.

�iii� Invariants. The recommendation operation preserves
some global values. Since there are nm memory locations,

the summation of the knownnesses of the system is given as
�i=1

n ki=nm. This summation is invariant with respect to rec-
ommendation operation, since a recommendation increases
the knownness of the recommended by one while decreases
that of the forgotten by one.

�iv� Completely forgotten. If an agent becomes completely
forgotten, then there is no way to be known again.

�v� Perfectly known. If an agent becomes perfectly
known, it does not mean that it will stay this way unless the
system is in one of its “absorbing states.”

�vi� Recommending items. Note that although the memory
model is presented as agents recommending agents, it can be
extended to a model for a general case of agents recommend-
ing any type of items, such as books or songs, to other
agents. Concepts such as “completely forgotten” would be
difficult to explain for a human population since a person
would know herself even if the rest forgets her. On the other
hand, it is not hard to talk about a song, a book, a cultural
tradition, or even a language that is completely forgotten. In
science, there are many examples of concepts discovered,
forgotten, and rediscovered. A few changes would be needed
to extend the model. Let B be the set of items. Then, an
agent ai�A would have items bj �B in her memory, that is
Mi�B. The memory ratio, that is the ratio of the actual
number of memorized to the number of possibly memorized,
would be �=m / �B�. The recommendation operation would be
defined as an agent ag recommends item br to agent at. In the
rest of the paper, we assume that agents recommend agents
to agents, that is B=A.

C. Simple recommendation model

Many models can be built on these concepts. One of the
simplest models, called the simple recommendation model, is
obtained by defining all the selection mechanisms as random
selections. There are four random selections for each recom-
mendation. The giver, g, and the taker, t, are selected ran-
domly from the set of �1,2 , . . . ,n�. The giver ag selects the
recommended agent ar from its memory by selecting r from
�1,2 , . . . ,m� randomly. This is the remembering process. If
the taker at already knows ar, then it does nothing. Otherwise
it has to learn it. Learning calls for selecting a memory slot.
This selection of f is also done randomly from �1,2 , . . . ,m�.

This definition implies a number of properties. �i� The
selection rules do not prefer one agent to another. That is, the
process is symmetric with respect to agents. �ii� Any agent
can get a recommendation from any other agent. Note that
this may be an oversimplification, since in real-life examples
an agent can get in touch with only a limited number of
agents. On the other hand, increase in communication �e.g.,
via e-mail� may enable one to communicate with almost any-
body.

D. Termination conditions

When to terminate a simulation is a difficult issue. De-
fined this way, the memories of the agents are kept changing
as long as the recommendations continue. There are some
special cases in which continuing recommendations cannot
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FIG. 1. The state of the system is represented by an n�m ma-
trix. The row g corresponds to the memory Mg of the agent ag.
During recommendation, the rth item ar is selected by the giver
agent ag and recommended to at. In order to make space for ar, the
taker agent at selects the fth item af to forget.
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change the state of the system. In these cases, the simulation
can be terminated.

Absorbing states

A state where every agent has exactly the same memory
content, that is ∀i , jMi=Mj, is called an absorbing state. In
an absorbing state case, nobody can recommend anything
new since everybody knows exactly the same m agents and
the remaining n−m agents are completely forgotten. So there
is no point continuing the simulation. Therefore an absorbing
state is a termination point. Since the system asymptotically
converges into one of these absorbing states, absorbing states
are theoretical termination points. Note that m=0 and n=m
cases are special cases of absorbing states.

Simulations show that there are two regimes in the system
�5�. In the beginning, the system tends to forget. This forget-
ting mechanism works so powerful that many agents become
completely forgotten at the very early stages of the simula-
tion. As simulations proceed, the number of known people
becomes much less than the population size. Then the system
reverses this behavior. This time it tries not to forget. This is
an expected behavior since the system converges to an ab-
sorbing state asymptotically. In this paper the second regime
is investigated. The average recommendation per agent � is
defined to be the ratio of total number of recommendations
to the population size n. Throughout this study �=106 is
used.

III. RANDOM INITIAL MEMORY

The initial configuration of the agent memory is important
for the model. The memories of the agents are initially filled
with randomly selected indexes from �1,2 , . . . ,n�. Repeti-
tions are not allowed. The model is simulated for different
values of n and m. Population sizes of n=102, 103, and 104

and memory ratios of �=0.50, 0.30, 0.20, 0.10, 0.05, and
0.01 are used.

Effects of memory size

For the same population size n, effects of changing
memory size m in the interval 0�m�n is investigated.
Since the memories of the agents are initially randomly
filled, the initial fame of an agent is around the average value
of 	f
=m /n. As m is decreased, some agents become more
known than others, at the expense of others becoming less
known. Further decrease of m increases the degeneration fur-
ther.

For n=100, � is changed and the change in fame f is
observed. Figure 2 is an example of various simulations
which produce similar results. In this visualization, agent
number 1 is the most famous one and agent number 100 the
least famous. Note that the area under the curve is equal to
the total memory capacity n�m. As m decreases, agents on
the right become completely forgotten, as a result the agents
on the left become increasingly famous. Around �=0.5, the
knownness of some agents becomes very low. Completely
forgotten agents starts to appear around �=0.35. From that
point on, decrease in m increases the number of completely

forgotten agents. Since the total memory capacity is fixed, a
few agents become very well-known as a result of this pro-
cess. Hence fame emerges as an effect of small memory size.

Eventually m decreases to the extreme case of m=1 where
an agent can remember only one agent. In this �=0.01 case,
the dynamics of the system goes to an extreme. All the
agents become completely forgotten, except only one. That
lucky agent is known by all other agents. This is the expected
absorbing state since the number of known agents is m=1. In
order to check this finding, simulations with larger values of
n are done for m=1. It is observed that as the population size
gets larger; reaching an absorbing state becomes harder.

IV. REGULAR INITIAL MEMORY

One may suspect that these findings are due to small fluc-
tuations of the random initial memory. Although random ini-
tialization does not prefer any agent systematically, it has
some statistical variation. As a result of that, some agents
could be slightly more known then others. This initial unbal-
ance may affect the dynamics. In order to check this possi-
bility, a perfectly symmetrical memory initialization scheme
is used. In the regular initial memory scheme, each agent ai
is allowed to know its m-neighbor, that is Mi= �ak �k� i
+ j �mod n� for 1� j�m�, similar to the case of �6�. In this
way, it is guaranteed that the knownness of every agent is
exactly m.

For regular initial memory, an n=100–1000 range with
increments of 100 is simulated. For each n, a �=0.10–0.90
range with increments of 0.05 is studied. Additionally, a �
=0.01–0.05 range with increments of 0.01 is simulated in
order to see the behavior at very small values of �. Every n
and � combination is simulated 20 times. Interestingly, both
random and regular initial memory strategies produce similar
results.
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FIG. 2. �Color online� Even distribution of fame degrades as �
decreases. The model is simulated for various m values where n
=100 and �=106. At the end of the simulation, memory dumps of
agents provide who-knows-who information. Fame of each agent is
calculated and for better visualization the agents are sorted in de-
creasing order of fame.
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A. Minimum fame

The minimum fame fmin in the population for a range of
parametric settings is investigated. As � decreases, the mini-
mum value of fame decreases as in Fig. 3�a�. This decrease
turns out to be linear. As n increases the linear region be-
comes more visible and n values 800–1000 produce almost
the same line. For n=1000, the line is given as fmin�1.1�
−0.12. The minimum value of fame is f =0 when the first
agent becomes completely forgotten. Occurrence of the first
f =0 case depends on n and it has quite a dynamic range. The
first f =0 case occurs when � is around 0.35 for n=100. As n
increases, the first f =0 case moves to smaller values of �.
For n=1000, it happens at �=0.1.

B. Percentage of forgotten agents

As � is decreased beyond the point where at least one
agent is forgotten, the minimum fame does not provide any
further information. For those values of �, the number of

completely forgotten agents can be investigated.
The percentage u of the population that is completely for-

gotten is used and Fig. 3�b� is obtained. Note that the graphs
in Figs. 3�a� and 3�b� complement each other for any particu-
lar value of n. As expected, for any values of �, one graph
has nonzero values whenever the other graph has zeros. Here
again, as n increases, the curves converge to a line which is
given as u�−9.2�+1 calculated for n=1000.

C. Maximum fame

The maximum value of fame fmax has an interesting be-
havior as � changes. For n=100, fmax slowly decreases as �
decreases from 0.9 to 0.1. It reaches a minimum value
around �=0.1. Interestingly, further decrease of � causes fmax
to increase. This pattern can be seen by tracing Fig. 4�a�
from right to left, where the emergence of fame can be ob-
served as the relative memory size �indicated by �� is de-
creased. This unexpected behavior can be explained: When
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FIG. 3. �Color online� Averages of 20 simulations with various n
values where �=106 and m changes as � does. �a� Change of the
minimum fame, and �b� change of the percentage of the completely
forgotten agents as � changes.
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FIG. 4. �Color online� Averages of 20 simulations with various n
values where �=106 and m changes as � does. �a� Change of the
maximum fame, and �b� change of the cumulative fame of the top
5% as � changes.
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�=1, every agent is known by everybody else so the fame is
1. As � decreases, the memory size of the agents decreases.
Since no one dominates the memories yet, people are almost
evenly distributed in the memories. So the reduction of the
maximum fame is due to the decrease of the memory size;
but as � keeps decreasing, after a certain point some people
become completely forgotten and some others become the
dominating ones. As � approaches to the limit of 0, more
people become completely forgotten and fewer people domi-
nate the memories. Those that dominate take all the refer-
ences. So the rapid increase of maximum fame in the vicinity
of �=0 can be explained due to this positive feedback.

Another observation is that the decrease of maximum
fame is also linear. As in the case of minimum fame, as n
gets larger, the linear pattern becomes more apparent. For
n=1000, it is given as fmax�0.91�+0.11.

D. Cumulative fame

Maximum fame is a measure of the dominance of one
agent. Dominance of a group of famous agents is investi-
gated by means of the cumulative fame of the top p percent
of agents ordered according to their fames. The top p% of
the population is selected. The cumulative fame fp% is ob-
tained by adding their fames. The maximum possible value
for the cumulative fame is np /100 when all top p% are com-
pletely known, that is, each has fame of f =1. This value is
used for normalization.

In this study, p=5 is used and Fig. 4�b� is obtained. As n
increases, the curves converge to a line which is given as
f5%�0.95�+0.071 for n=1000. Figures 4�a� and 4�b� are
quite similar as expected. On the other hand, the f5% line
decreases slightly faster than the fmax line as � decreases. As
� decreases to �=0.1, the curves become saturated. They
stay this way for awhile and then as � approaches 0, they
start to decrease again. This behavior near �=0 can be ex-
plained by the memory size. As m decreases, at some point
there is no space to keep 5% of the population. Whenever
that happens, the cumulative fame of the top 5% starts to
decrease towards 0. This final decrease is much sharper. This
behavior can be seen more clearly for small values of n in
the figure. For example, for n=100, top 5%, means five
agents. If m becomes less than 5, that is ��0.05, a sharp
decrease is expected as in the figure.

V. NETWORK ISSUES

A who-knows-who graph is another representation of the
state of the system. The directed graph G�A ,E� where A is
the set of agents and E= ��ai ,aj� �aj �Mi� is called the who-
knows-who graph. The graph is a directed graph, since the
corresponding relation “to know” is not symmetric.

In this directed graph, out-degree is not interesting since
all vertices have the same out-degree of m, independent of
recommendations. On the other hand, in-degree of a vertex
changes by the recommendations and has a dynamic range
starting from 0 and it can be as large as n. For both random
and regular initial memory cases, the initial in-degree distri-
bution is uniform since every agent has the same knownness

of m. As a result of recommendations, in-degrees of a few
agents increase while the majority decreases to 0. So as a
result of recommendations, uniform in-degree distribution
degrades to the one with two peaks around 0 and n. At an
absorbing state, there would be exactly two nonzero points in
the in-degree distribution, namely 0 and n. There is a nucleus
of m vertices in which a vertex is connected to other m−1
vertices and itself. The remaining n−m vertices are con-
nected to this m-vertex nucleus. The m vertices of the
nucleus have an in-degree of n and n−m vertices have 0.

The undirected graph underlined by the directed who-
knows-who graph is topologically investigated. In the ran-
dom case, the initial network is a random graph. In the regu-
lar case, the initial graph is regular. As the recommendation
dynamics takes place and fame emerges, both initial graphs
transform into one common graph structure. The few famous
vertices, which are in the process of forming the nucleus,
become hubs. The rest of the vertices are connected to these
hubs. Giving this picture, the graph is more towards star-
connected rather than power-law degree distribution. There-
fore the average distance is very low. The clustering coeffi-
cient is also low. The recommendation is a transformation
that uses local information only. There are some network
growth models that also use local information only but they
produce power-law degree distribution �7,8�.

VI. ABSORBING STATES

The main focus of this work is the behavior of the system
as it approaches but never reaches an absorbing state. In this
section a brief investigation of the system at the absorbing
state is done and the rest is left as future work. The system
simply takes too much time to reach an absorbing state for n
values considered so far. On the other hand, if one reduces n,
absorbing states become obtainable within reasonable dura-
tions. Simulations are done for small values of n and m such
as n� �20,30,40,50,60� and m� �1,2�. As a measure of
time, the number of simulation cycles required to reach an
absorbing state is measured.

It is clear that the system reaches an absorbing state as-
ymptotically. Therefore, near the absorbing state, forgetting
the next person becomes increasingly harder. Let ti be the
time the ith person is forgotten. Then, define the time needed
to forget the next person after the ith person as �t�i�= ti+1
− ti where i� �1, . . . ,n−m�. As expected, �t�i� rapidly in-
creases as i approaches n−m.

In some systems, system size makes a big effect on the
behavior. When the parameters are scaled with the systems
sizes, then some regularities become visible �9�. In this sys-
tem n turns out to be an important parameter. Figure 5 pro-
vides the behavior of �t�i� as an average of 40 simulation
runs. In the x axis the number of persons forgotten is scaled
by n which is the percentage of forgotten, that is u. In the y
axis �t�i� is scaled as �t�i� /m for various values of n.

Interestingly, there are two families of curves. The upper
family belongs to m=2. It starts with a slight decrease which
corresponds to the initial trend of forgetting. Then the regime
changes and forgetting becomes harder and harder as u ap-
proaches 1. The m=1 family does not have this pattern. Un-
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fortunately, these n and m values are too small to observe the
patterns that are focused in this work.

VII. RELATED WORK ON FAME

Recently some studies on fame have been done. The dif-
ficulty starts with the definition of fame. An innovative met-
ric for fame is defined as the number of hits returned from a
search of a person’s name on Google �10,11�. In this study,
the fames and the achievements of WWI fighter pilots are
examined. “Fame” F is defined as the number of Google hits.
“Achievement” is the number of opponent aircrafts de-
stroyed. It is found that fame grows exponentially with
achievement. The distribution of fame is given as P�F�
	F−
 where 
�2. A similar study on scientists gives an-
other distribution, P�F�	e−�F where �=0.001 02 �12,13�.

Scientific papers can be “famous” by getting cited. A
study on scientific papers published in Physical Review D in
1975–1994 has been done �14�. There are 24 000 papers,
350 000 citations, that is 15 citations per paper on the aver-
age. Yet, 44 papers are cited 500 times or more. It is found
that copying from the list of references used in other papers
has an impact. A paper that is already cited has more chances
to get cited again.

Early results of the simple recommendation model such as
the fast and slow forget regimes, asymptotic approach to

absorbing states, and degeneration of the distribution of
knownness to fame as � decreases were presented in �5�.

VIII. CONCLUSIONS

“Too many to remember” is quite the common case in
many complex systems. A dynamic memory model is defined
where agents interact by exchanging recommendations. A
random-selection based model is described as the simplest
instantiation of the general model. Although the model does
not prefer any agent, some agents become increasingly fa-
mous as the memory gets smaller. This observation can be
interpreted as the emergence of fame.

The model can be used in some practical applications.
Suppose some agents are preferred in the recommendations.
Then, their fame is expected to increase and last longer. This
can be used to model the social dynamics of advertisement.
Essential questions in advertisement such as how frequently
to advertise or how widely to advertise can be better esti-
mated. Voting or election results are studied in opinion dy-
namics �15�. Emergence of fame can be considered as a for-
mation of an opinion through interactions of agents.

The general model will serve as a basis for building so-
phisticated models as different selection criteria are adopted
and the agent interaction scheme is restricted with new as-
sumptions. For example, it is possible to define selections so
that only agents with a common friend can interact. This
leads to a version of Axelrod’s culture model �3�. The model
can be modified so that the giver always recommends itself
rather than some agent from its memory. Then it becomes
very close to the small-world model presented in �6�. An-
other possibility is to place the agents on the vertices of an
interaction graph, possibly with small-world or scale-free
properties in order to introduce real-world flavor.
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FIG. 5. �Color online� Time to forget next person scales with n
for small n and m values. Average of 40 simulations.
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