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The effects of spatiotemporally correlated noise on the regularity of spiking oscillations are studied in a
network composed of Fitz-Hugh-Nagumo neurons. The spiking regularity of the neural network becomes the
best at a moderate noise intensity, indicating the occurrence of coherence resonance �CR�. The CR in a
Watts-Strogatz small-world network is further improved by adding a small fraction of long-range connections.
Given a set of temporal correlation constant � and spatial correlation length � of the noise, there exists an
optimal network topology randomness, at which the spiking oscillations show the best regularity. The optimal
randomness of the network topology at different � and � varies in a narrow range. Changing � does not affect
the optimal � for achieving the most regular spike train, whereas varying �, the best spiking regularity emerges
at different optimal �.
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I. INTRODUCTION

In nature, many systems are exposed to inherent noise, or
are subjected to the action of external noise. In nonlinear
systems, noise in some cases can play constructive roles.
Perhaps the best known of these are stochastic resonance
�SR�, in which the response of a system to a weak signal is
enhanced most at an optimal noise strength �1�, and coher-
ence resonance �CR�, in which the regularization of the sys-
tem response is maximized at an optimal noise intensity
without an external drive �2�. In neuroscience, SR and CR
have been studied extensively in experiments and in theories
�3–9�. For instance, the sensory mechanoreceptors of cray-
fish can detect a very weak water movement of about 10 nm
by means of SR �3�. Experimental evidence of CR has been
reported in the coherence between spinal and cortical neu-
rons in the somanosensory system of the anaesthetized cat
�9�. Recently, SR or CR in coupled systems has also drawn
great interests. Coupling can effectively enhance the phe-
nomenon of SR or CR in the system of coupled units beyond
that of the individual unit. Such behaviors are called array-
enhanced stochastic resonance �AESR� �10� or array-
enhanced coherence resonance �AECR� �11�. In neuronal
systems, coupling between neurons can improve their signal-
processing capabilities through AESR or AECR �12–14�.

In coupled systems, two ingredients may have significant
effects on the systems’ collective behaviors: �i� noise corre-
lation, including temporal correlation and spatial correlation,
and �ii� the topology of connecting structure. In most of the
previous investigations, fluctuations are typically accounted
for by white noise, namely, temporally independent noise.
However, for most systems, white noise is not a good ap-
proximation of the actual fluctuations present in the system
which are frequently colored noise �temporally correlated
noise�. Experimental results �15,16� have demonstrated that
colored noise, rather than white noise, provides the best

model for the background input. Spatially correlated noise
also attracted increasing attention �17,18�. It has been sug-
gested that neurons receive synaptic inputs from a large
number of other neurons, and these inputs may be highly
correlated �19�. Thus the spatial correlation in input noise
must be taken into account in some cases.

As to the topological structure of a network, a prominent
type is “small-world” topological structure introduced by
Watts and Strogatz �20,21� among various network topolo-
gies. Many real-world networks exhibit geometrical proper-
ties of small-world network �22�. For example, neuron con-
nectivity in the cortex and other brain regions is mainly
local, with relatively sparse long-distance projections, sug-
gesting the small-world topological structure. Earlier small-
world network investigations mostly focused on the topo-
logical properties of the networks and various mechanisms to
determine the topology. Recent research is engaged in under-
standing how the network topology influences the system’s
dynamical behaviors �23–26�. For example, it has been
shown that small-world connections can enhance the prob-
ability of spiral wave’s formation in excitable media �25�.
Different avalanche behaviors have been found for different
density of long-range connections in the small-world neural
networks �26�. These studies demonstrate that small-world
topological structure plays a crucial role for systems’ dynam-
ics.

The effects of the randomness of the network topology
and the noise spatial correlation on the coherence factor have
been investigated in Ref. �27�. In our work, the effect of the
noise temporal correlation on coherence resonance is further
investigated in a network of Fitz-Hugh-Nagumo �FHN� ex-
citable cells. We mainly explore the general influences of the
network topological structure and the noise spatiotemporal
correlation on the dynamical behaviors of the system. It is
found that compared to that in a regular or in a completely
random network, CR can be enhanced in a small-world net-
work. When changing the temporal correlation constant �
and spatial correlation length � of the noise, the optimal
randomness of the network topology for the best spiking
regularity varies slightly. For different �, the optimal � of the
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noise keeps unchanged for the best spiking regularity, while
the optimal � increases with � increasing.

II. MODEL AND METHODS

The model used here consists of N �N=100� FHN neu-
rons in which a small-world network topology is constructed
as follows. First, a regular lattice is considered, in which
each neuron connects to its K �K=4� nearest neighbors.
Next, each local link is visited once and, with the rewiring
probability p, removed and reconnected to a randomly cho-
sen neuron. It should be noted that a lot of network realiza-
tions exist for a given p. The rewiring parameter p takes
different values between 0 and 1 and controls the topology of
the network: if p=0, only local connections are present, and
conversely if p=1, any two neurons in the network can be
connected with the same probability �global connectivity�.
The FHN model investigated in this work is simplified from
the Hodgkin-Huxley �HH� model and its dynamics provides
a simple representation of the firing dynamics of sensory
neurons. This model has been utilized to investigate various
dynamical processes, such as spiral wave �28�, synchroniza-
tion �29�, stochastic resonance �30,31�, and coherence reso-
nance �32,33�. The latter has especially garnered more inter-
est in literature. The dynamics of each FHN neuron is
described by the following equations:

�
dxi

dt
= xi −

xi
3

3
− yi + gij�xj − xi� + �i�t� , �1�

dyi

dt
= xi + ai, �2�

where xi �t� is a fast variable representing the membrane
voltage of ith neuron, and yi �t� is a slow recovery variable.
The time scale separation � is set to 0.01 and the bifurcation
parameter ai is assumed the same for every neuron and is set
to 1.02 so that the dynamics has only a stable focus but is
close to the supercritical Hopf bifurcation at ai=1. gij is the
coupling parameter between the two neurons i and j, and its
value is determined by the coupling pattern of the system. If
these two neurons are coupled to each other, gij is a determi-
nate value g, otherwise, gij =0.

The spatiotemporally correlated noise �i is generated with
the method in Ref. �27� by summing N Gaussian colored
noise with correlation function mk,

�i =
1

��
k��

mk
2
�
k��

Ci+kmk, �3�

� = �− 4�, . . . ,− 2,− 1,0,1,2, . . . ,4�� , �4�

where Ci is Gaussian colored noise with zero mean and cor-
relation given by 	Ci�t1�Ci�t2�
= �D /��exp�−

�t1−t2�
� �. This col-

ored noise is produced by the Ornstein-Uhlenbeck �OU� sto-
chastic process and can be depicted by

�
dCi

dt
= − Ci + �i�t� , �5�

in which �i�t� is Gaussian white noise with 	�i�t�
=0 and
	�i�t��i�t��
=2D	�t− t��. D is the strength of �i�t�. The corre-
lation function among neurons is defined by mk
=exp�−2k2 /�2�. Thus, �i is spatiotemporally correlated noise
defined by 	�i�t�
=0 and 	�i�t�� j�t��
= �D /��exp�− �i−j�2

�2 �

exp�−

�t1−t2�
� �. It should be noted that i and j denote the

spatial positions of neurons in the network, and �i− j� repre-
sents a distance along the network.

III. RESULTS AND DISCUSSION

The stochastic differential equations �1� and �2� are nu-
merically integrated using the Euler scheme with a fixed time
step of 0.002. It has been reported that in a neuron the noise-
induced oscillations are rather irregular for small and large
noise amplitudes, while exhibit relatively periodic activity
for a moderate noise intensity �2�. Here we focus on the
collective behavior of the network and measure the average
activity x�t�= �1 /N��i=1

N xi�t�. The spatiotemporal evolution of
all 100 neurons in the network and the corresponding collec-
tive network behaviors with different noise intensity are
shown in the left and right columns of Fig. 1, respectively.
As expected, behavior similar to a single neuron occurs,
namely, Fig. 1�d� with moderate noise intensity showing the
most regular oscillations in the right three plots. As oscilla-
tions are induced by noise in each neuron, there are very few
spikes for very small noise strength. On the contrary, if the
noise intensity is large, although the spike firing becomes
more frequently, the regularity of the spike train is smeared
by the strong noise. Consequently, for an intermediate noise
intensity, the spike train is the most regular. Moreover, it can
be seen from the entire network firing events on the left
column of Fig. 1, that the spatial coherence between neurons
is decreased with the increase of the noise intensity. As os-
cillations are induced by noise in each neuron, neurons sub-
jected to different noise will display different oscillation be-
haviors. The stronger the noise intensity, the larger the
differences of the oscillations, and as a consequence, the
poorer the degree of synchronization among individual neu-
rons.

To characterize the temporal coherence of the collective
oscillations of a network quantitatively, the coherence factor
of the variable x is obtained by the following formula �2�:

R =
�Var�Tk�

	Tk

. �6�

Here, Tk= tk+1− tk, and tk is the time of the kth pulse in the
time series of x. A smaller R corresponds to a better spiking
regularity. Biologically, this quantity is of importance be-
cause it is related to the timing precision of the information
processing in neural systems �34�. Note that a pulse occurs
when the state variable x exceeds a certain threshold value x0
�here taken arbitrarily as x0=0.5� and it turns out that the
threshold value can vary in a wide range without altering the
results.
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First, the influence of the coupling between units on the
activation of the network is investigated. Figure 2 displays
the dependence of the coherence factor R on the noise inten-
sity D achieved at different coupling strength g. Here each R
is attained by averaging over 30 network realizations for
each p. It can be seen that every curve shows a typical CR
characteristic, i.e., first a drop and then a rise with the in-
crease of the noise intensity. The lowest point of each curve
in Fig. 2 is called maximal coherence factor signed by Rm,
and the noise intensity at Rm is called optimal noise inten-
sity Dopt. When the coupling between units is weak �g
=0.01,0.03�, the corresponding Rm is large, showing de-
pressed temporal coherence. When the coupling becomes

strong �g=0.05,0.1�, the spiking regularity of the system is
improved. When the coupling strength increases further such
as g=0.3, Rm rises instead of dropping �in order to show
clear variations of R at other coupling strength, the data for R
at g=0.3 are not shown here�. Comparing the curve at g
=0.05 with that at g=0.1, it is found that the values of Rm are
very close; however, the optimal noise intensity Dopt is ap-
parently larger for the latter. Therefore, g=0.05 is considered
as a proper coupling strength and will be adopted throughout
this paper.

Figures 3�a�–3�d� depict the coherence factor R versus the
noise intensity D achieved at different rewiring probability p
and spatial correlation length � of the noise. The correlation
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FIG. 1. The spatiotemporal evolution of all 100 neurons on the left column and the corresponding collective time series on the right
column at �=0.01, a=1.02, g=0.05, p=0.05, �=0.05, �=1. From top to bottom D=0.000 08, 0.000 25, and 0.0015.
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time � of the noise is 0.02. It can be observed that Rm is the
smallest at �=0 in each plot, which implies that the spiking
regularity of the system is the best when the noise is spatially
independent. This behavior can be explained based on the
interplay among these neurons. In the case of spatially inde-
pendent noise ��=0�, neurons with completely different

noise fire spikes independently. As � increases, the correla-
tion in input noise among neurons is enhanced, and more
neurons are prone to rest or to fire synchronously, which
improves the spatial synchronization among the behaviors of
all the neurons. Inversely, the high synchronized activation
of all units prevents excitation by noise, which leads to the
decrease of the coherent motion �27,35�. Therefore, the value
of Rm increases with the increase of �. These results imply
that large � plays a negative role in enhancing CR, which is
similar to some previous studies �13,36,37�. In addition, with
the increase of �, the position of Dopt moves towards smaller
D. Moreover, the variation range of Dopt at different � be-
comes narrow gradually when the rewiring probability p in-
creases from 0 to 1, which means that the influence of � on
the dynamical behaviors of the network becomes weaker
with the increase of the disorder of the network topology. For
a regular network �p=0�, large � makes each neuron interact
with the ones exposed to the spatially correlated noise. How-
ever, increasing the disorder of the network makes each neu-
ron able to interact with distant ones exposed to an uncorre-
lated noise and reduces the spatial correlation of the noise.

Figures 4�a�–4�d� show how the coherence factor R
changes with the noise intensity D at different rewiring prob-
ability p and temporal correlation constant � of the noise.
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FIG. 2. The coherence factor R versus the noise intensity D at
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FIG. 3. The coherence factor R versus the noise intensity D at different spatial correlation lengths � of the noise in �a� the regular network
�p=0�; �b� and �c� the small-world networks with p=0.20, and p=0.50, respectively; �d� the completely random network �p=1�. g=0.05 and
�=0.02.
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Here the spatial correlation length � is 1. Each Rm is the
smallest at �=0.2 whatever p is, therefore there exists an
optimal noise correlation time �=0.2. Similar results are ob-
tained for other � values and the corresponding figures are
omitted. As the noise correlation time increases, Dopt takes a
larger value, that is, a stronger noise is needed to excite the
neurons. When the noise spatial correlation is fixed, the spa-
tiotemporally correlated noise is actually characterized by
two parameters, the noise intensity D and the correlation
time �. The measurement of the amplitude of the noise can
be characterized by �=�D /� �38�. It can be seen that �
varies directly proportional to D, but inversely proportional
to �. Thus, the increment of � is equivalent to the decrease of
D, vice versa. It is known that there exists an optimal noise
intensity corresponding to the best spiking regularity in the
network. So there definitely exists an optimal noise correla-
tion time.

Comparing Rm values at the same � for different values of
p in Fig. 4, Rm at p=0.05 has the smallest value. Then, there
may be an optimal rewiring probability corresponding to the
best spiking regularity. R versus D at different p is plotted in
Fig. 5, in which �=0.05 is taken as an example. It can be
seen that CR is enhanced in a small-world network. The plot
also shows that Rm at p=0.05 is the smallest, which further
assures that p=0.05 is the optimal rewiring probability in
this case. It is emphasized that for various �, there still exists
an optimal rewiring probability around p=0.05, as shown in
Fig. 7. Usually, a small-world network is characterized by
two important parameters: a small average path length L�p�
and a large clustering coefficient C�p�. Here, L�p� is defined
as the number of edges in the shortest path between two

neurons, averaged over all pairs of neurons. C�p� is defined
as the extent to which neurons connected to any neuron are
connected to each other. It can be seen from Fig. 6 that the
“small-world properties” of the network are especially appar-
ent when p varies from 0.05 to 0.10. Therefore, the positive
role of small-world topology to enhance the CR of the sys-
tem is remarkable when p emerges in this range. In fact, in
some previous work concerning small-world networks, it
was also found that certain remarkable dynamical behavior
can appear for an optimal randomness of the network topo-
logical structure. For example, an optimal level of topologi-
cal randomness exists such that the system has maximum
order and the spatiotemporal chaos is tamed in an array of
coupled pendulum networks �39�. In the coupled Hodgkin-
Huxley neurons, there are optimal random shortcuts where
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FIG. 4. The coherence factor R versus the noise intensity D at different correlation times � of the noise in �a� the regular network �p
=0�; �b�–�d� the small-world networks with p=0.05, p=0.2, and p=0.50, respectively. g=0.05 and �=1.
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the collective spike coherence and individual one conduct
the best temporal coherence �40�.

In order to explore comprehensively the influences of the
three parameters p, �, and � on the spiking regularity of the
system, the maximal coherence factor Rm as a function of the
network topology randomness p at different values of � is
depicted in the plots of Fig. 7. Figure 7�a� denotes the case
taking a small noise correlation time ��=0.02�, while Fig.
7�b� is an example using an intermediate noise temporal cor-
relation constant ��=0.2�, and Fig. 7�c� is the case with a
large noise correlation time ��=2.0�. As discussed above, Rm
is the smallest at �=0.2 when all other parameters are fixed.
Moreover, it can be observed that the optimal rewiring prob-
ability p in each curve ranges from 0.05 to 0.1 in all three
plots, which agrees well with the network topological char-
acteristics shown in Fig. 6.

Another prominent behavior shown in Fig. 7 is that as �
increases, � corresponding to the minima of Rm also in-
creases. When �=0.02, the curve lies in the lowest position if
�=0, which has been discussed in Fig. 3. When � increases
to 0.2, Rm takes the smallest value at each p if �=1. When
�=2.0, the spatial correlation length of the noise correspond-
ing to the smallest Rm at each p is 2. These results suggest
that large � is helpful for enhancing the regularity of the
spike train of the network when the correlation time � be-
comes larger. This fact can be understood from two points of
view: �i� By looking at the expression for the noise correla-
tion function 	�i�t�� j�t��
= �D /��exp�− �i−j�2

�2 �exp�−
�t1−t2�

� �, it
can be found that for two consecutive neurons in the net-
work, the noise intensity varies directly proportional to �, but
inversely proportional to �. Therefore, when the temporal
correlation of the noise increases, the spatial correlation of
the noise should also increase, thus producing a “compensa-
tion” effect to maintain the proper noise intensity needed for
coherence. �ii� As the correlation time of the noise increases,
the deterministic component of the noise term is enhanced,
while the proportion of the stochastic component reduces. In
the long correlation time limit �→�, the deterministic be-
havior is recovered �41�. In this case there are two ways to
strengthen the stochastic part: one is to increase the noise

intensity, and the other is to enhance the spatial correlation
length of the noise so that the stochastic part of the noise
term in each neuron can reinforce each other. Obviously,
increasing the noise intensity alone can not be satisfied. The
optimal noise Dopt against the spatial correlation length � of
the noise is plotted in Fig. 8. Horizontally, it can be seen that
Dopt tends toward smaller value as � increases. Vertically, it
can be observed that Dopt moves toward larger value with the
increase of the correlation time � of the noise. Furthermore,
the effect of � on Dopt is evidently larger than that of �,
resulting in the fact that the coherence curves are closer to
each other near quite flat optimal intervals in Fig. 3 than
those in Fig. 4. Comparison of Figs. 7 and 8 illustrates that
when � increases, properly enhancing � can induce more
regular spiking with smaller Dopt value. Usually, a large spa-
tial correlation length is considered to degrade coherence
resonance of a system �13,36,37�; however, in the case of
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large temporal correlation it is found that improved coher-
ence resonance can be obtained by increasing the spatial cor-
relation length of the noise.

As mentioned above, the influence of each control param-
eter, such as the coupling strength, the rewiring probability,
and the spatiotemporally correlated levels of the noise
etc., on the dynamical behaviors of the network are charac-
terized mainly by two factors, the maximal coherence factor
Rm and the optimal noise intensity Dopt. Within the whole
selected range of these control parameters, the effect of the
noise temporal correlation � on Dopt is stronger than those of
other parameters, while it is difficult to distinguish which
parameter Rm is more sensitive to. It is known that only
parameters � and � have a direct relationship with D �see the
noise correlation expression 	�i�t�� j�t��
= �D /��exp�− �i−j�2

�2 �

exp�−

�t1−t2�
� ��. Moreover, Fig. 8 illustrates that the variation

of � has a larger impact on D than on �. So, among all the
discussed parameters, the correlation time of the noise has
the strongest influence on the Dopt. Anyway, these individual
parameters constitute an integrated system, and the spiking
regularity can be optimized through the interplay of these
parameters.

IV. SUMMARY

This paper investigates the effects of the network topol-
ogy and the spatiotemporally correlated noise on the spiking

regularity in networks composed of Fitz-Hugh-Nagumo neu-
rons with the emphasis on the networks with Watts-Strogatz
small-world topological structure. The constructive role of
noise is discussed and coherence resonance phenomenon is
observed in the networks. It is found that coherence reso-
nance can be improved by merely adding a small fraction of
long-range connections in the regular network. In addition,
there exists a narrow network topology randomness range
that covers the optimal randomness of the network topologi-
cal structure at different spatiotemporal correlation levels of
the noise. Moreover, when the spatial correlation length � of
the noise increases, the spiking of the system is the most
regular at the same temporal correlation constant � of the
noise regardless the network topological structure. When the
correlation time � increases, the best spiking regularity of the
system emerges at a larger spatial correlation length �.

It is known that collective oscillations of a group of neu-
rons are common in the brain and are thought to play a
critical role in various physiological schemes. Meanwhile,
the brain is the most complex and fascinating processor, and
the neuron activity in the brain is subjected to many factors.
Our results indicate that the collective spiking regularity of
the neural network can be modulated by controlling the net-
work topological structure and the level of correlation of the
noise. These results discussed above shall provide further
insights into the detailed dynamics of complex phenomena
taking place in some real neuronal circuits or neuron systems
whose connection structures are similar to those discussed in
this paper. The role of long-range connections have been
explored in detail in topological analyses of neural connec-
tivity �42,43�. However, to our knowledge, there are few
investigations about the combined influences of network to-
pological structures, noise spatiotemporal correlation, and
noise strength on the dynamical behaviors in a system. We
hope that the interplay of these parameters can result in some
new phenomena.
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