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Local leaders in random networks
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We consider local leaders in random uncorrelated networks, i.e., nodes whose degree is higher than or equal
to the degree of all their neighbors. An analytical expression is found for the probability for a node of degree
k to be a local leader. This quantity is shown to exhibit a transition from a situation where high-degree nodes
are local leaders to a situation where they are not, when the tail of the degree distribution behaves like the
power law ~k~% with y.=3. Theoretical results are verified by computer simulations, and the importance of

finite-size effects is discussed.
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I. INTRODUCTION

In the last few years, the study of networks has received
increasing attention from the scientific community [1,2] in
disciplines as diverse as biology (metabolic and protein in-
teractions), computer and information sciences (the Internet
and the World Wide Web), etc. It has been shown that many
empirical networks differ from regular lattices by their ran-
dom structure and by the heterogeneity of the node proper-
ties, i.e., nodes inside a given network may exhibit very dif-
ferent topological properties. The best-known case is node
degree heterogeneity, which results in fat-tailed degree dis-
tributions where many nodes are sparsely connected while a
few nodes, or hubs, receive a large number of links [3]. It is
now well known that degree heterogeneity [4,5] and espe-
cially the presence of hubs are important factors that may
radically alter the propagation of data, e.g. rumors [6], opin-
ions [7,8], or viruses [9], and may provoke a network’s
weakness in face of targeted attacks [10,11].

The important role played by hubs in the above processes
has therefore motivated a detailed study of the extremal
properties of networks. Different contributions [12,13] have
focused on the properties of the degree of the leader (the
node with the highest degree), in particular on the probability
that the leader never changes, and on related leadership sta-
tistics [14]. These approaches, based on the theory of ex-
treme statistics [15], have provided an excellent description
of the behavior of the global extrema in the network but,
surprisingly, the statistics of local extrema have not been
considered yet. There are several reasons, though, to focus
on local leaders, namely, nodes whose degree is larger than
or equal to the degree of their neighbors, and on strict lead-
ers, namely, nodes whose degree is strictly larger than the
degree of their neighbors (see Fig. 1). Such nodes may be
viewed as local hubs that trigger the communication between
nodes at the local level. Indeed, individuals usually compare
their state (e.g. opinion, wealth, idea, etc.) with the state of
their neighbors, thereby suggesting that a local leader might
have a dominant role in its own neighborhood, whatever the
absolute value of its connectivity. As a rich among the poor,
a local leader might therefore have a more dominant role
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than as a rich among the richest. From a marketing point of
view, for instance, the identification of such nodes might be
of interest in order to target nodes that play an important role
within circles of friends [16]. Let us also stress that local
leaders form a subset of nodes that might grasp important
characteristics of the whole network and could be helpful in
order to visualize its internal features.

In this paper, we focus on the properties of local leaders in
uncorrelated infinite and finite random networks, i.e., net-
works where the degrees of neighboring nodes are not cor-
related [17]. In Sec. II, we derive an analytical formula for
the probability P, for a node of degree k to be a local leader,
and show that this probability undergoes a phase transition
where the control parameter is the degree distribution itself
[18]. When the tail of the distribution decreases faster than a
power law ~k™7 with y,.=3, the probability to be a local
leader goes to 1 for large enough values of k. When the tail
of the distribution decreases more slowly than ~k~ 7, in con-
trast, this probability vanishes for large enough degrees. In
Sec. III, we validate our theoretical predictions by computer
simulations and show how finite-size effects may affect the
above transition. In Sec. IV, finally, we conclude and propose
generalizations of the concept of local leader.

FIG. 1. Sketch of a random network composed of 16 nodes. The
network possesses three local leaders; two of them are strict leaders.
The numbers inside the vertices represent their degrees.
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II. BEING RICH AMONG THE POOR, AND VICE VERSA

Let us consider an undirected random network determined
by its degree distribution 7, i.e., the probability that a ran-
domly chosen node has degree k. By construction, this dis-
tribution satisfies the relations

Enk=17 Eknk=z’ (1)
k=1 k=1

where z=2L/N is the average degree, N the total number of
nodes, and L the total number of links in the network. In the
above relations, we have assumed that there are no nodes
with degree k=0, which is reasonable as such nodes are not
part of the network structure.

Let us now evaluate the probability P, that a node of
degree k is a local leader—the case of strict leaders will be
briefly discussed at the end of this section. To do so, one first
has to look at the probability g; that a neighbor of the node
under consideration has degree j. In a network where the
degrees of adjacent nodes are statistically independent, g;
does not depend on the degree k of the local leader, and it is
therefore equal to the probability that a randomly chosen link
arrives at a node of degree j, so that g;=jn;/z. One easily
verifies that g; is a probability, i.e., ;q;=1. The probability

J
for this neighbor to have degree j=k is therefore

k

Ej"j

J=1

&= (2)

Z

By definition, a node with degree & is a local leader if each of
its k neighbors has a degree smaller than or equal to k. By
using the statistical independence of the degrees of these k
neighbors, P, is found by multiplying Eq. (2) k times,

k k
Ej”j
j=1

sz B . (3)

In general, P, is a function of k whose behavior may be
evaluated numerically by inserting the degree distribution n;
of the network in Eq. (3) and by performing the summations.
In the following, however, we would like to derive general
properties of P, that do not depend on the details of n;. To do
so, let us only focus on the asymptotic behavior of P;, when
k is large, and assume that n;, may be approximated for large
enough values of k by a power law n,=Ck™?, where C is a
normalization constant. The case of pure power laws where
n,=Ck™" for all k will be detailed later on.

Let us emphasize that such a tail of the degree distribution
is a very general behavior, as it includes scale-free distribu-
tions (y finite), while exponential distributions are recovered
in the limit y— . In the following, we focus on general
values of 7, with the sole constraint that y>2 so that the
average degree is well defined. In that case, E;il Jnj=zis a
finite number and Eq. (3) may be rewritten as
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% k

E Cj—(y—l)
P\ 1= (4)

where we used the fact that Ele Jni=2 =2 n,.

For large enough values of k, the summation in (4) may
be replaced by an integral so that P, asymptotically behaves

as
sz<l—

In order to determine the asymptotic behavior of Py, it is
useful to rewrite Eq. (5) as

Ck~-2 )k

(y-2) ©)

P~ o In[1-Ck™ 2 (y-2)z] (6)
whose dominating term is, when k2 s sufficiently small,
P.= g—Ck_”'})/(y—Z)z_ (7)

By construction, y>2 and z is positive, so that the
asymptotic values of Py, for large enough values of k, are

1 for y>3,
P, — (e for y=3, (8)
“lo for y<3.

The system therefore undergoes a transition at y=3. If the
tail of the degree distribution decreases fast enough, so that
v>3, the probability P, asymptotically goes to 1. Conse-
quently, nodes with a higher degree have a larger probability
to be local leaders. When y<<3, in contrast, the probability to
be a local leader decreases with increasing degree k and as-
ymptotically vanishes, so that, surprisingly, nodes with a
larger degree might have a smaller probability to be local
leaders.

This result, which may appear intriguing at first sight, can
be explained by analyzing the competition between two
trends. On one hand, a node with a high degree has a higher
probability of having a higher degree than any other particu-
lar node, which tends to increase its probability of being a
degree leader. On the other hand, a node with a higher degree
has more neighbors, which tends to decrease the probability
of having a higher degree than all its neighbors [see the
exponent k in Eq. (3)]. Depending on the value of vy, the
asymptotic behavior is dictated by the first or the second
phenomenon, with a transition when y=3, where an equilib-
rium occurs.

One should also note that the above calculations simplify
in term of harmonic functions H(k,y)=3%,i"?, when the
degree distribution is a pure power law n;=Ck™? for all k,
where C=1/2_k"¥=1/H(%,y). Indeed, in that case, the
probability to be a local leader P, reads
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k k
Ej—()'—l)
=1 H(k,y—1) \*
P=| 5| = (M> SEENC)
H(e,y-1)
Ej—()'—l)
j=1
Using the asymptotics of the harmonic numbers [19]
k-2
H(k,y=1)=H(,y-1) - ; (10)
(y-2)

valid when y>2, it is straightforward to recover the transi-

1/H(,2) _ e—6/11'2, since

tion (8) where e “% is now given by e~
Z=H(oc’ 'y—l)/H(OO’ 7)

Before going further, let us discuss the case of strict lead-
ers. In that case, the calculations are the same as previously,
except that the sums in P; do not go to k but to k—1. How-
ever, this difference is vanishingly small for large enough

values of k, so that the transition (8) is recovered.

II1. SIMULATIONS AND FINITE-SIZE EFFECTS

In this section, we verify the validity of the theoretical
predictions (3) and, especially, the existence of the regime
P,—0 when y<<3. One should first stress that the results
derived in the previous section are valid for uncorrelated
networks composed of an infinite number of nodes. How-
ever, whatever the specified degree distribution n;, a typical
realization of the network (in a computer simulation or in a
realistic situation) involves only a finite number of nodes.
This also implies that the largest degree k,,,, in the network
is a finite number. The degree k., of this global leader might
be estimated by using tools from the theory of extreme sta-
tistics [15], but the main point here is that the global leader is
also a local leader. Consequently, the probability for a node
of degree k., to be a local leader, when measured in such a
system, is Pkmale’ in contradiction with the prediction P,
—0.

In order to highlight this finite-size effect with simula-
tions, it is helpful to consider the truncated power laws de-
fined by

Dk for k= kpyay.
ny = . (11)
0 otherwise,

where the normalization constant D depends on y and on the
cutoff ky,,, D=1/ Z’,j:i‘xk". Such degree distributions offer
the possibility to tune the value of the extremal degree k,,,
together with a particularly simple expression for n,. To gen-
erate numerically random uncorrelated networks with the
specified degree distribution (11), we proceed as follows
[20]. We assign to each node i in a set of N nodes a degree k;
sampled from the probability distribution (11) and impose
that S k; is even. Then the network is constructed by ran-
domly assigning the L=Eﬁ,ki/ 2 edges while respecting the
preassigned degrees k;. In the simulations, we have consid-
ered networks with N=10° nodes and averaged the results
over 100 realizations of the random process. One should
stress that we have considered only truncated distributions
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FIG. 2. P, measured in random networks composed of 10°
nodes and whose degree distribution is a truncated power law (11)
with y=2.2. The results are averaged over 100 realizations. The
solid lines are the theoretical prediction (3), evaluated numerically
for the degree distributions (11). The value of k where P} begins to
increase toward P,=1 due to finite-size effects (see main text) is
seen to be proportional to k.

such that k,,,, is effectively the maximum degree for each
realization of the network, i.e., such that the expected num-
ber of nodes with k., verifies Nny = 1. Computer simula-
tions (see Fig. 2) show an excellent agreement with the the-
oretical prediction (3) and confirm that P, decreases to
values close to 0 when y<3, as predicted by (8), before
increasing to 1 due to finite-size effects. When y>3, in con-
trast, P, directly increases to 1 (see Fig. 3), as expected.
Simulation results are also in perfect agreement with the the-
oretical prediction (3) in that case.

The above method ensures that the realized network is
uncorrelated, even when y<<3. Indeed, for small values of
kpax (i€., for a maximum degree that scales at most as N'/?),

Py

FIG. 3. P, measured in random networks composed of 10°
nodes and whose degree distribution is a truncated power law (11)
with y=2.5, 3.0, 3.5 and 4.0, respectively. The results are averaged
over 100 realizations and k,,,,=20. The solid lines are the theoret-
ical prediction (3), evaluated numerically for the degree distribu-
tions (11).

036114-3



BLONDEL et al.

it is known [20-24] that the probability for self-loops or
multiple edges to occur is negligible and that the degrees of
neighboring nodes are uncorrelated. We have verified this
absence of correlations in our networks by measuring the
assortativity coefficient [17], which is vanishingly small. For
larger values of k,,, in contrast, the network densifies and
exhibits disassortative correlations. It would have been inter-
esting to look for discrepancies between simulation results
and the theoretical prediction (3), thereby highlighting how
correlations affect the probability of a node to be a local
leader. Unfortunately, for such networks, the maximum de-
gree of the network fluctuates from one realization to an-
other, which implies that the degree distribution is not a con-
tinuous function (for large degrees) and that it cannot be
approximated by the average degree distribution. Thus the
theoretical prediction (3) ceases to be valid in that case. In
order to highlight the role of correlations, one therefore
needs a method that generates networks with correlations
and whose degree distribution does not fluctuate at each re-
alization. A possibility would be to look at growing net-
works, e.g., the Barabdsi-Albert model [3,25], where the de-
gree of the nodes would be bounded by some maximum
value k., €.g. a node ceases to receive links if its degree is
equal to k., Such an analysis, however, goes beyond the
scope of this paper.

Let us now return to the uncorrelated case when y<<3. In
order to evaluate where finite-size effects become non-
negligible, we have focused on the value k., where Pj is
minimum (see Fig. 2) and we have studied the relation be-
tween k, and k,,.,. By inserting the distribution (11) and
integrating (3) numerically, one observes that k. increases
linearly with k., k.=~ ak,,,. When y=2.2, for instance, one
finds a=0.3189. This linear dependence has important con-
sequences as it implies that finite-size effects affect only a
vanishingly small number of the nodes when £, is suffi-
ciently large. To show this, let us consider the proportion rpg
of nodes affected by the finite-size effects,

kmax

Ngg = E Dk™”

k=akax
Kmax
=~ f Dk™dk
=k
D
=@ -, (12)

where the summation has been replaced by an integral, as
kmax 18 sufficiently large. The quantity ngg obviously goes to
zero when k., — . Let us note that this limit makes sense
only when N— o and that the maximum degree also has to
satisfy k., <N"? in order to ensure that the network is un-
correlated [20].

Before concluding, let us also derive the behavior of P,
close to k., In that case, numerical integration shows an
exponential decrease in (k,,—k) so that one looks for a so-
lution of the form

Ek

P, =~ Flhmah) (13)
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where the constant E is found by comparing (13) with

kmax
Pk:exp|:kln(l— 2 Dj‘w_l)/z)] (14)

J=k+1

and by looking at the dominant terms for small values of
k' =ky—k. When k,,, is sufficiently large, it is straightfor-
ward to show that

E= kmax ln(l) + kmax—l ln(l - Dk;fa))’(_1>/z) = - Dk;(a);(_Z)/Z.
(15)

This asymptotic behavior has been successfully compared
with simulations.

IV. CONCLUSION

In this paper, we have analyzed the statistical properties of
local leaders in uncorrelated networks. Such nodes, which
may be viewed as local hubs, have a crucial location in a
social or information network, as they dominate all their
neighbors. Their identification and a better understanding of
their properties might therefore be of practical interest. In
marketing, for instance, local leaders are good candidates to
target in order to maximize a marketing campaign or to mini-
mize the erosion of customers from a company, e.g. to churn
for mobile operators [26]. We have observed that the prob-
ability for a node of degree k to be a local leader undergoes
a transition from a rich is rich to a rich is poor situation,
which suggests that nodes with a high degree might not be
the most influential at the local level. It is interesting to stress
that the transition takes place at a realistic value of the
power-law exponent y,=3 [27,28], i.e., scale-free distribu-
tions usually have an exponent between 2 and 3 [29], and
that y,=3 is also the critical value under which the variance
diverges. To conclude, one should stress that the local
maxima of other node quantities could also give insight into
the network structure, e.g., the number of triangles [16].
More general definitions of local leaders could also be con-
sidered, e.g. a node of degree k is an « leader if all of its
neighbors have degree k' <k/«. A generalization of our
study to such situations and a comparison with empirical
data (where nodes might exhibit degree-degree correlations)
could therefore be of interest.
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