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We propose a quantitative function for community partition—i.e., modularity density or D value. We dem-
onstrate that this quantitative function is superior to the widely used modularity Q and also prove its equiva-
lence with the objective function of the kernel k means. Both theoretical and numerical results show that
optimizing the new criterion not only can resolve detailed modules that existing approaches cannot achieve, but
also can correctly identify the number of communities.
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I. INTRODUCTION

It has been widely demonstrated in the past that many
interesting systems can be represented as networks com-
posed of vertices and edges [1-3]. Such systems include the
internet, social and friendship networks, food webs, biomo-
lecular networks, and citation networks. The prolific progress
in the study of complex networks driven by the development
of information technology and the increasing availability of
huge networked data in the real world have revealed many
interesting topological properties, such as small-world prop-
erties, power-law degree distributions, and network motifs.

A topic of great interest in the area of complex networks
is the community structure and its detection. A community
could be roughly described as a collection of vertices in a
subgraph that are densely connected among themselves
while being loosely connected to the vertices outside the
subgraph. Since many networks exhibit such a community
structure, the characterization and detection of such a com-
munity structure have great practical significance. Taking
biological molecular networks as an example, dividing pro-
tein interaction networks into modular groups provides
strong evidence of independent functions and actions for
proteins in different subgraphs [3,4].

There have been abundant techniques proposed to detect
community structure [5,6] and fuzzy community structure
[7-10] in a network from various fields, but most methods
require a definition of community that imposes the limit up
to which a group should be considered as a community.
However, the concept of community itself is qualitative; e.g.,
nodes must be more connected within its community than
with the rest of the network. Therefore, its quantification is
still a subject of debate. Two aspects greatly complicate this
problem. In general, the size heterogeneity of communities
often greatly affects the measure of community [11]. Another
aspect is that, even in a specific network, the generation
mechanism or link degree may vary greatly.
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A widely used quantitative measure for evaluating the
partition of a network is called modularity (known as Q),
which was introduced by Newman and Girvan [12]. If one
chooses the modularity as the relevant quantitative function,
the problem of community detection becomes equivalent to
modularity optimization. Modularity optimization seems to
be an effective method to detect communities both in real
and in artificially generated networks. By defining Q as an
objective function, a class of methods aiming to maximize
the modularity has been developed [13-15]. However, the
modularity has been exposed to resolution limits [16-18].
Fortunato and Barthélemy [16] recently claimed that modu-
larity contains an intrinsic scale that depends on the total size
of links in the network. Modules smaller than this scale may
not be resolved even in the extreme case that they are com-
plete graphs connected by single bridges [16]. Similar obser-
vations have also been raised by [17,18]. In [18], a general-
ized modularity called localized modularity measure was
proposed.

In this paper, we propose a quantitative measure for
evaluating the partition of a network into communities based
on the concept of average modularity degree. We call this
quantitative measure the modularity density or D value. In
addition to the simple form, we show that the proposed cri-
terion improves the resolution limit in community detection
based on theoretical analysis and numerical test of artificial
networks and real-world networks. We also theoretically re-
veal the equivalence of modularity density and the objective
function of kernel & means, which explains the implication of
the criterion in another way.

II. MODULARITY DENSITY

Given a network G=(V,E), V is the vertex set, E is the
edge set, and A is the adjacent matrix of G. If V| and V,
are two disjoint subsets of V, we further define L(V,,V,)

=EiEV1,jEV2Aijv L(VUVI):ZiEVl,J‘EVlAij’ and  L(V,V))
:E,EVI’J-E{,]AU, where V;=V-V,. Given the partition of a
network G, G,(V,.E,),...,G,,(V,.,E,), where V; and E; are,
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respectively, the node set and the edge set of G; for i

=1,...,m, the well-known modularity Q is defined as fol-
lows:
o | L(V,V)  (L(V,V))?
Q=2[ —( : (1)
o1 L L(V,V) L(V,V)

Modularity optimization for Q seems to be an effective
method to detect communities in networks. However, Fortu-
nato and Barthélemy [16] recently pointed out the serious
resolution limits of this method and claimed that the size of
a detected module depends on the size of the whole network.
This is mainly because the modularity measure does not con-
tain information on the number of nodes in a community and
the choice of partition is highly sensitive to the total number
of links in the network [17]. In the following, we will intro-
duce a measure D, which is related to the density of sub-
graphs to overcome this problem. We first define the average
modularity degree of subgraph G;(V,,E;) as follows:

d(Gz) = din(Gi) - dout(Gi) s

where d;,(G,) is the average inner degree of the subgraph G,
which is equal to twice the number of edges in subgraph G;
divided by the number of nodes in set V;. d,,(G;) is the
average outer degree of subgraph G;, which is equal to the
number of edges with one node in V; and the other node
outside V; divided by the number of nodes in V,. It can be
easily formulated as

L(V, V) = L(V,,V))

d Gi =
@) v

The intuitive idea is that d(G;) should be as large as possible
for a valid “community.” Then we define the modularity den-
sity of a partition as the sum of all average modularity de-
grees of G; for i=1,...,m. Let D denote the modularity den-
sity (called the D value in this paper) of a partition of a
network G into communities G, ...,G,,. Then, in contrast to
Q, D can be calculated as follows:

o« L(V,V) = L(V,,V)
i=1 |Vi|

D=2d(G)= (2)
i=1

The summation extends to all communities G; of a given
partition. Note that this measure provides a way to determine
if a certain mesoscopic description of the graph is accurate in
terms of communities. The larger the value of D, the more
accurate a partition is. So the community-detection problem
can be viewed as a problem of finding a partition of a net-
work such that its modularity density D is maximized. Since
our purpose is to maximize the modularity density D, every
term d(G,;) must be non-negative. Therefore, the partition
(subgraphs) by optimizing D results in communities consis-
tent with the weak definition suggested by Radicchi et al.
[19].

The search for optimal modularity density D is a NP-hard
problem due to the fact that the space of possible partitions
grows faster than any power of system size. In this paper we
will prove that the modularity-detection problem based on
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FIG. 1. Schematic examples. (a) The clique circle graph in the
left figure. Each module is a clique of n nodes, and two adjacent
modules are connected by one edge. (b) A network with two pairs
of identical cliques in the right figure. One pair of cliques have n
nodes, and the other pair of cliques have p nodes.

optimizing D value is equal to a kernel k-means problem.
Such a theoretical result may be exploited to derive an effi-
cient computational algorithm for optimizing D.

III. IMPROVING RESOLUTION LIMITS
BY MODULARITY DENSITY

Although detecting communities based on the optimiza-
tion of modularity has been widely used as a popular
method, Fortunato and Barthélemy recently found that
modularity optimization may fail to identify modules smaller
than a scale even in cases where modules are unambiguously
defined [16]. This scale depends on the total size of the net-
work and on the degree of interconnectedness of the mod-
ules. In this paper, we propose a modularity density D to
overcome such a problem. To assess the reliability of modu-
larity density, we perform the same tests as those examples
from Fortunato and Barthélemy [16].

A. Modularity density does not divide a clique into two parts

Given a clique with n nodes, maximizing modularity den-
sity or D does not divide it into two or more parts.

We can prove this result by contradiction. Suppose that P
is a partition which divides the clique into G, and G, and the
number of nodes in G; and G, are n; and n,, respectively;
then, the number of edges between G, and G, is nn,. Let D
be the modularity density of G and let D, denote the modu-
larity density of partition P; then,

D0=n—1,

_ny(n 1) —nymy N ny(ny=1) —mny
: n ny

Since Dy>D;, maximizing D value does not divide the
clique into two parts.

B. Modular density can resolve
most modular networks correctly

To test the quality of the modularity density, we use the
schematic example from [16], which is a network consisting
of a ring of cliques connected through single links [see Fig.
1(a)]. Each clique is a complete graph K, with n (n=3)
nodes and n(n—1)/2 links. Assuming that there are m cliques
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(m=2 can be exactly divided by k, where k=2 is an inte-
ger), the network has a total of N=mn nodes and L=mn(n
—1)/2+m links.

The network has a clear modular structure where each
community corresponds to a single clique, but the correct
result cannot be obtained by optimizing Q value [16]. Now
we optimize D value to find the solution. The modularity
density Dy;,q, Of the natural partition can be easily and ana-
lytically calculated as follows:

b _mM=m<n_l_%)_

single —

On the other hand, the modularity density D, of the partition
in which the k consecutive cliques are considered as single
communities is

_ﬂkn(n—l)+2(k—3)
Tk kn '

Supposing k=2, n=3, and m=2; then,

2\ mkn(n-1)+2(k-3)
Dsingle_Dkzm n-1l-—|-—

n k kn
) n-1 2(k-3)
_m[("_l)_ Tk Kn }

2

n
>m{(n—l)—z—n_1—£}

n k kn

2
n
3
n

Em[(n—l)— _n—l_l}

=m[(n—1)— —n;1}>0.

Although the above analysis is conducted for the special par-
tition that the k consecutive cliques are considered as single
communities, by a similar argument we can prove that such a
result is actually valid for any kind of grouping cliques (i.e.,
any combination of cliques as communities). Therefore,
these results, along with the fact that optimizing D does not
divide a clique into two parts, lead to the conclusion that the
maximal value of D exactly corresponds to the correct par-
tition (with each single clique as a community). In other
words, optimizing D can lead to the correct partition. A com-
plete analytical proof based on optimization method leads to
the same conclusion (see Appendix B).

For the special case n=2, the network is a circle of 2m
nodes and 2m links. Suppose that m can be exactly divided
by k; then, the modularity density D, of the partition that the
2k consecutive nodes constitute an individual community is

mé4(k—1) k-1
k= =2m )
k 2k k

It is easy to verify that the maximal value of D, is obtained
when k=2; i.e., every partition is a path with four nodes. The
reason that this result does not agree with above one is that
K, is a trivial clique. Since every K, is a single edge with the
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same inner degree as the outer degree, it cannot be a com-
munity by itself.

C. Modular density can detect communities
with different sizes

Suppose that there is a network consisting of four cliques,
two of which are K, and the other two are K, for 3=p
=n [see Fig. 1(b)].

In [16,18], the authors observed that optimizing Q has a
tendency to merge small modules. In the following, we prove
that the D value based optimization does not have such a
problem.

Let Dyeparare denote the modularity density of the partition
in which the two small cliques are separated and D,,,,,. de-
note the modularity density of the partition where the two
small cliques are merged; then,

nn-1)-1 nn-1)-3 pp-1)=-2
= + +2

D

separate — n n p
-1)-1 -1)-3 4
=n(n ) +n(n ) -1
n n p
nn—-1)-1 nn-1)-3 2p(p-1)
D = + +

merge —

n n 2p
=n(n—l)—l +n(n—1)—3+(p_1).
n

It is easy to verify that when p =3,

4
Dseparate_Dmerge= Z(P_ 1) - [_7 - (P— 1) >0.

The above analysis is conducted for the special partition that
two small cliques are merged as a community with each
other clique as a community. With the fact that optimizing D
does not partition a clique into two parts, it is easy to see that
any other partition has a lower D value than the one with
each clique as a community. Therefore, the optimal value of
D corresponds to the correct partition. In contrast to the
modularity Q, optimizing the D value can correctly detect
communities with any sizes.

Based on the above discussion, clearly the maximum D
value is often achieved when the network is correctly parti-
tioned. Such a fact demonstrates the effectiveness of the D
value acting as a quantitative function for community struc-
ture.

IV. EQUIVALENCE OF MODULARITY DENSITY
AND KERNEL k& MEANS

Once the number of communities is fixed, the optimiza-
tion process of modularity density leads to the detection of
proper communities and the quality of the solution is evalu-
ated on the basis of its D value. On the other hand, the
efficiency of optimizing modularity density can be exploited
based on the equivalence of modularity density and the ob-
jective function of kernel k means [20]. Next, we derive such
theoretical results.
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Given a set of data vectors V={v}Y, with v;ER", the
goal of kernel k means is to find an m-way disjoint partition
{V .}, of the data (where V, represents the cth cluster) such
that the following objective function is minimized:

FZE E ||¢(Ui)_mc

c=1v,EV,

where F=F({V.}"L,) and

27 (3)

E (v))

v, €V,

\2

m.= ,
|V.| is the cardinality of the subset V,, and ¢ is a function
mapping the vectors in V onto a generally higher-
dimensional space. Clearly, if ¢ is the identity function, the
above equation recovers the standard definition of the &
means.

We can easily obtain the following formulation by ex-
panding the distance term | ¢(v;)—m|]* in the objective func-
tion:

2 E Bv) - ¢(Uj)
60 =l = ) - Blo) - =

V.l
> 2 ) ¢v)

v;EV. v EV,

V[

(4)

Notice that only the inner products are used in the equation.
As a result, for a given kernel matrix K, where K;;
=¢(v;)- p(v;), we can compute the distances between two
data points v; and v; without knowing explicit representa-
tions of ¢(v;) and ¢(v;). It has been shown that any positive
semidefinite matrix K can be thought of as a kernel matrix
[21].

Using the kernel matrix, Eq. (3) can be rewritten as

. 22 K, 2 2Ky
EV, EV, v,EV,
F=3 K- — T G
c=1v,EV, |VC| |Vc|

On the other hand, the purpose of this paper is to look for the
m-way disjoint partition {V,.}", of V that maximizes the
modularity density:

m

D=2
c=1

L(VC’ Vc) - L(ch Vc)
V.|

. (6)

where D=D({V.}'_,). Let us first define a diagonal degree
matrix C with Cii:E}LlAU. Then we associate the given
graph with an N X N kernel matrix as follows:

K=0ol+2A-C, (7)

where [ is the identity matrix and o is a real number chosen
to be sufficiently large so that the K is positively definite.
Now given an m-way disjoint partition {V_}'_, of the graph,
the corresponding modularity density and the objective func-
tion of kernel k means are related as follows:
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F=(N-m)o-D. (8)

An important point follows: F attains its minimum if and
only if the maximum of D is achieved, independently of o,
as is shown in [20], when considering the standard iterations
of k means. Therefore, kernel k¥ means may be straightfor-
wardly used to find the m optimal clusters of the graph by
simply maximizing the modularity density. On the other
hand, similar to Q, we can also use k means to determine an
appropriate m, e.g., by varying m so as to obtain an optimal
objective function.

Furthermore, if we use the following kernel matrix K,
instead of K in Eq. (7),

Ky=0l+2[NM-(1-N)(C-4)], 0=A=1, (9)

we can obtain a more general modularity density measure:

m

2NL(V,,V;) = 2(1 = N)L(V,, V)
D)\= E |V| .
i=1 i

(10)

When A=1, D, is equivalent to the ratio association [20];
when A=0, D, is equivalent to the ratio cut [20]; when \
=0.5, D, is equivalent to the modularity density D. So the
general modularity density D, can be viewed as a combina-
tion of the ratio association and the ratio cut. Generally, op-
timization of the ratio association algorithm often divides a
network into small communities [22], while optimization of
the ratio cut often divides a network into large communities.
The general modularity density Dy, which is a convex com-
bination of these two indexes, can avoid the resolution limits.
In other words, we can decompose the network into large
communities and small communities by using a small N\ and
a large \, respectively. As a matter of fact, the phenomenon
of multiple resolutions for modular structures in complex
networks is natural [23]. Many complex networks have a
hierarchical or nesting community structure [24]. Therefore,
generally there is no absolutely “optimal” standard for the
community structure of complex networks, which means that
we cannot obtain the so-called optimal N value in a general
sense. In other words, this general function can be applied to
analyze the topological structure and uncover more detailed
and hierarchical organization of complex systems by varying
the \ value. However, for specific cases, we may obtain the
optimal or “appropriate” D, to find out community structure
by exploiting additional information on the topological struc-
ture of networks as well as the context implication of com-
munities in networks

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments on both artificial
networks and well-studied real networks. We first formulate
the community-detection problem into an integer program-
ming model to optimize D value (see Appendix A), and then
the integer programming is solved by the LINGO software.

A. Artificial networks

First, we do the test on the computer-generated networks.
Each network has 128 nodes, which are divided into 4 com-
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0.2} | = D-value method
—o— GN-algorithm
—v— Spectral algorithm

fraction of nodes correctly classified

4 5 6 7 8
k
out
FIG. 2. Test of various methods on computer-generated net-
works with known community structures. It is a plot of the fraction

of nodes correctly classified with respect to k,,,. Each point is an
average over 100 realizations of the networks.

munities with size 32 each. Edges are placed randomly with
two fixed expectation values so as to keep the average degree
of a node to be 16 and the average edge connections k,,, of
each node to nodes of other modules. The experiment was
designed by Girvan and Newman [25] and has been broadly
used to test community-detection algorithms [25,26].

The computational results for this experiment are summa-
rized in Fig. 2 and Table I, which show the fraction of nodes
that are correctly classified into the communities with respect
to k,,, by our method and the other algorithms, respectively.
We can see that our method based on the D value performs
much better than other algorithms, such as the Girvan-
Newman (GN) algorithm [25] and the spectral algorithm
based on optimizing Q [14]. Table I demonstrates the results
of the cluster compression algorithm, Q optimization algo-
rithm, and D optimization algorithm. From Table I we can
see that, when the communities are of equal size and similar
total degree, every method performs very well. At the same
time, when k,,=8, which indicates that the corresponding
networks are difficult to be partitioned, our method has the
highest accuracy. When the communities vary in size or in

TABLE I. Benchmark performance for symmetric and asym-
metric group detection measured as fraction of correct assignments,
averaged over 100 network realizations with the standard deviation
in parentheses.

Group ko  Compression (0] D value
Symm. 6 0.99 (0.01)  0.99 (0.01) 0.99 (0.01)
7 0.97 (0.02)  0.97 (0.02) 0.97 (0.02)
8 0.87 (0.08)  0.89 (0.05) 0.91 (0.03)
Node asymm. 6 0.99 (0.01)  0.85 (0.04) 0.99 (0.01)
7 0.96 (0.04)  0.80 (0.03) 0.98 (0.02)
8 0.82 (0.10)  0.74 (0.05)  0.94 (0.03)
Link asymm. 2 1.00 (0.00) 1.00 (0.01)  1.00 (0.00)
3 1.00 (0.00)  0.96 (0.03) 1.00 (0.00)
4 1.00 (0.01)  0.74 (0.10)  0.99 (0.01)
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total degree, the modularity optimization approach is more
difficult to resolve the community structure (Table I) [17].

We adopted the same method in [17] to construct asym-
metric networks; i.e., three of the four groups in the bench-
mark test were merged to form a series of test networks, each
with one large group of 96 nodes and one small group of 32
nodes. These asymmetrically sized networks are harder for
both the Q optimization algorithm and cluster compression
algorithm, but the D optimization algorithm can recover the
underlying community structure more often than other two
methods by a sizable margin. Finally, we conducted another
set of benchmark tests using the link asymmetric networks
used in [17]. They are composed of two groups, each with 64
nodes, but with different average degrees of 8 and 24 links
per node. For these networks, we use k,,,=2,3,4, for which
the D optimization algorithm has a comparable result with
the cluster compression algorithm and can recover commu-
nity structure more often than the modularity optimization
approach.

In general, before resolving the community structure, we
must determine the number of communities in the network;
then, we can partition the network into communities. This
problem can be solved by using the extended modularity
density D,. From the result of extensive simulation, we
found that the maximum D value can often be obtained when
the network is correctly partitioned. So we can determine the
number of communities according to the D value; that is, the
maximum D value corresponds to the correct number of
communities. On the other hand, since the number of com-
munities varies in different networks, we can use the ex-
tended D, instead of D to determine the number of commu-
nities. In this case, we can adjust parameter A to obtain the
proper number of communities. For example, we can use
large \ to obtain communities of small size or use small \ to
obtain communities of large size.

To test the performance of our method in selecting the
number of communities, we do some simulations on the net-
works of Table I. Using proper A\, we can find the number of
communities when D, is maximized. Then we summarize
the results of our method and the results of the other two
methods in Table II. From Table II, in any case, our method
performs much better than the other two methods.

B. Real-world networks
1. Karate club network

Now we do the test on real networks. The first example is
the famous karate club network analyzed by Zachary [27]. Tt
consists of 34 members of a karate club as nodes and 78
edges representing friendship between members of the club
which was observed over a period of two years. Due to a
disagreement between the club’s administrator and the club’s
instructor, the club split into two small ones. The question is
that whether we can uncover the potential behavior of the
network, detect the two communities or multiple groups, and
particularly identify which community a node belongs to.

By using our method, the network was partitioned into
two communities exactly consistent with real partition when
k=2 (see Fig. 3). However, maximizing the D value, we
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TABLE II. Benchmark performance for model selection mea-
sured as fraction of correct identification of number of groups, av-
eraged over 100 network realizations with the average number of
assigned modules in parentheses.

Group  k,,, Compression 0 D value
Symm. 6 1.00 (4.00)  1.00 (4.00) 1.00 (4.00) (A=0.65)
7 1.00 (4.00)  1.00 (4.00) 1.00 (4.00) (A=0.65)
8 0.14 (1.93) 0.70 (4.33) 0.82 (4.18) (A=0.80)
Node 6 1.00 (2.00)  0.00 (4.95) 1.00 (2.00) (\=0.65)
asymm. 0.80 (1.80)  0.00 (4.97) 1.00 (2.00) (\=0.65)
8 0.06 (1.06)  0.00 (5.29) 0.68 (1.70) (\=0.65)
Link 1.00 (2.00)  0.00 (3.10) 1.00 (2.00) (A=0.50)
asymm. 3 1.00 (2.00)  0.00 (4.48) 1.00 (2.00) (A=0.50)
1.00 (2.00)  0.00 (5.55) 1.00 (2.00) (A=0.60)

obtained the “optimal” partition with k=4 which is also rea-
sonable from the topology of the network.

2. Football team network

The second real network is the college football network of
the United States. The schedule of Division I games can be
represented by a network, in which the nodes denote the 115
teams and the edges represent 613 games played in the
course of the year. The teams are divided into 12 conferences
containing around 8-12 teams each. Games are more fre-
quent between members of the same conference than those
between members of different conferences, with teams play-
ing an average of about seven intraconference games and
four interconference games in the 2000 season. Interconfer-
ence play is not uniformly distributed; teams that are geo-
graphically close to one another but belong to different con-
ferences are more likely to play with one another than teams
separated by large geographic distances. The natural commu-
nity structure in the network makes it a commonly used
workbench for community-detecting algorithm testing
[25,26,28,29].

Using our algorithm, we can partition the network into
conferences with a high degree of success. Figure 4 shows

FIG. 3. (Color online) Zachary’s karate club network. Square
nodes and circle nodes represent the instructor’s faction and the
administrator’s faction, respectively.
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FIG. 4. (Color online) Community structure of the football team
network.

the community structure of football team network calculated
by our method. Because there are few edges between 5 mem-
bers of the 12th conference, these 5 nodes are distributed to
other communities; e.g., node 91 is distributed to community
9, node 43 is distributed to community 6, node 81 is distrib-
uted to community 8, and node 83 is distributed to commu-
nity 5. We note that nodes 37, 59, 60, and 64 construct to a
new community because there are more links within them
than with the other nodes. Nodes 98 and 111 are incorrectly
classified due to the fact that there are more games with the
teams in the classified communities than the teams in their
own conferences. The community structure found by our
method seems to suggest a more precise organization than
the original conferences.

3. Journal index network

The journal index network constructed by Rosvall and
Bergstrom [17] consists of 40 journals as nodes from 4 dif-
ferent fields: physics, chemistry, biology, and ecology and
189 links connecting nodes if at least one article from one
journal cites an article in the other journal during 2004. Ten
journals with the highest impact factor in the 4 different
fields were selected. Using our method, we can partition the
network into 4 communities correctly (Fig. 5).

We can also partition the network into two, three, or five
modules, but such partitions yield lower D values. When we
partition the network into two components, physical journals
cluster together with chemical journals and biological jour-
nals cluster together with ecological journals. When we split
it into three components, ecological journals and biological
journals separate, but physical journals and chemical jour-
nals remain together in a single module. When we intend to
split the network into five modules, we get essentially the
same partition as with four, only with the singly connected
journal Conservation Biology split off by itself as a commu-
nity. This result is consistent with that in [17].

VI. CONCLUSION

In this paper, we proposed a measure called modularity
density or D value for resolving community structure,
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FIG. 5. (Color online) Community structure of the journal index
network and the D value for the journal network partition into one
to five different modules.

showed that it can be considered as a convex combination of
two known indexes and proved that our criterion is equiva-
lent to the objective function of kernel k£ means. We have
verified that optimization of the D value has no drawback to
divide the network either into too small communities or into
too large communities. By optimizing the D value, we can
almost always resolve the network into correct communities.

We also formulated the D-value optimization problem as
a nonlinear integer programming (see Appendix A) and con-
ducted numerical tests on both artificial networks and real-
world networks. Compared with other algorithms, the D
value has no problem in grouping small modules. Our algo-
rithm can generally find the global optimal solution in a short
time and also is suited for weighted networks.

By studying the community-detection problem, we may
obtain deep insights into the complexity of networks. How-
ever, the well-known modularity Q has encountered obvious
difficulties and limitations with practical applications
[16—18]. From the theoretical and numerical results of this
paper, we believe that the proposed measure is a significant
contribution to this field. In particular, the general modularity
density D, of Eq. (10) can be used to resolve various types
of communities. The flexible \ also enlarges our understand-
ing about network structures. Moreover, a more efficient op-
timization technique based on this measure can be expected
from the theoretical results of this paper.
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APPENDIX A: NONLINEAR INTEGER PROGRAMMING
MODEL FOR OPTIMIZING THE D VALUE

The D-value optimization problem can be formulated as
an integer nonlinear programming problem.

Given a network G=(V,E) with V={v,---
cent matrix of G is A:

,U,} the adja-

ap Ctt A

where

a,»j

1 if (U,»,vj)EE,
0 otherwise.

Let x; (i=1,...,n, [=1,... k) be a set of binary variables,
where x;;=1 denotes that the node v; belongs to the /th com-
munity. The problem of dividing network into k communities
can be modeled as follows:

n n

n n
X 2 2 a;iXiXj — E E aijxil(l - xj/)

i=1 j=1 i=1 j=1

max f= 2, . , (A1)
I=1
Exil
i=1
subject to
0< X xy<n, I=1,....k,
i=1
k
Ex,»,z 1, i=1,...,n,
I=1
.xi1=0,1, i=l,...,n, l=1,. ,k,
when k=2. We can use binary variables x; (i=1,---,n) to

express the division of the network; that is, x;=1 denotes that
the node v; belongs to the first community, while x;=0 de-
notes that v; belongs to the second community. So the model
can be expressed as follows:
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n

E 2 Qa;iXiXj— 2 E aijxi(l _xj)

i=1 j=1 i=1 j=1

max f= .
Exi
i=1
E E aij(l - x)(1 _-xj) - E E aij(l _xi)xj
i=1 j=1 i=1 j=1
n-— Exi
i=1
(A2)
subject to
0< > x,<n,
i=1
x,-=0,1, i=1,...,n.

Although the integer nonlinear programming is theoretically
difficult to solve, the constraint conditions in above models
are simple. Hence, we can directly solve the relaxed problem
with the continuous variables in [0,1]. Experimental results
show that almost we can always obtain an integer optimal
solution by solving the relaxed problem.

APPENDIX B: COMPARISON OF THE Q AND D VALUES
ON A CLIQUE-RING NETWORK

In this appendix we mathematically show the differences
between the modularity Q and the modularity density D.
Both the partition quality functions are of complicated be-
haviors, varying with the objective networks. So some tem-
plet networks are chosen for their comparison.

In the analysis, we intend to derive continuous fitting
functions ®,(x) and ®p(x) such that

(DQ(K) :Gma)é Q(Gl’ ,GK)
S [ EG)| (2|E<G,»>| +IE(G, ) ”
Gp....Ggi=1 |E(G)| 2|E(G)|
(B1)
and
®,H(K)= max D(Gy,...,Gg)
GGk
& 21E(G)| - |E(G,.G)|
S 2 Gy B2

where G;UG, - UGg=G and G is the objective network.
®y(x) and Pp(x) are not always easily derived even for
some simple templet networks.

The templet network has n m-cliques as the nodes in the
simple ring network. In this case, suppose that we have K
communities, each of which consists of n; cliques,

PHYSICAL REVIEW E 77, 036109 (2008)

(I)ch(K) = GmaX QCV(G], ,GK)
1ree

Gk

o nm(m—1)/2+n;—1
= max >,
Gy wGrin] nm(m—1)/12+n

nm(m—1)/2+n

B {n,m(m— D2+ (- 1) +1 ]2}

1
= max \ n’[m(m—-1) + 27
[nm(m — 1)+21’l]26|,...,GK [ )+2]

K
—2[nm(m - 1) +2n]K - >, n¥[m(m—1) + 2]

i=1

K
2K 1
=l-——————~ min 5>
nm(m—1)+2n Gp....GgN™ g
2K 1
PRI SR § (B3)
nm(m-1)+2n K
then,
2x 1
0er(X) am(m—1)+2n  x (L=x=n)
(B4)
2 1
[Dg.,(x)]' = t3 (B

_nm(m—1)+2n X

which implies the optimal solution

Xper= m(m —1)/2 + IWn  for mm-1)=2(n-1).
(B6)
When m(m—1)>2(n-1), x*Qcr=n. When m=1, XZCF n.
On the other hand, when applying the modularity density D

to the ring of cliques, we analyze ®, . (K) for K=n just
following the computation of & (K):

®p.(K)= max Dre(Gy, ...,Gg)

Gy Gy
K
nm(im—1)+2(n;—1) -2
= max

Gi,....Ggi=1 n;m

C g nlmm-1)+2]-4

Gy-Gki=1 n;m

mm-1)+2 4K
—_— K- —

m mn

-D+2 4
=MK__KZ; (B7)

m mn

then

-D+2 4
mm-1)+2 4 (B8)
m mn

q)Dcr(-x) =

To find the optimal partition, we solve the problem
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mm—-1)+2 4
——x-—xX
mn

max (I)Dcr(x) =

subject to 1 =x=n, (B9)

which is a simple linearly constrained convex programming
problem. Solving the corresponding Khun-Tucker equation
leads to the optimal solution

o
chr_4’ m=1,

PHYSICAL REVIEW E 77, 036109 (2008)

m=2,

* —_—
XDer =

n
2’

Xpep=n, m=3. (B10)
Therefore, the community size found by the D value is un-
related to the total size of the network, mn, but the commu-
nity size found by the modularity Q is related to the total size

of the network.
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