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We study the damage enhanced creep rupture of disordered materials by means of a fiber bundle model.
Broken fibers undergo a slow stress relaxation modeled by a Maxwell element whose stress exponent m can
vary in a broad range. Under global load sharing we show that due to the strength disorder of fibers, the
lifetime tf of the bundle has sample-to-sample fluctuations characterized by a log-normal distribution indepen-
dent of the type of disorder. We determine the Monkman-Grant relation of the model and establish a relation
between the rupture life tf and the characteristic time tm of the intermediate creep regime of the bundle where
the minimum strain rate is reached, making possible reliable estimates of tf from short term measurements.
Approaching macroscopic failure, the deformation rate has a finite time power law singularity whose exponent
is a decreasing function of m. On the microlevel the distribution of waiting times is found to have a power law
behavior with m-dependent exponents different below and above the critical load of the bundle. Approaching
the critical load from above, the cutoff value of the distributions has a power law divergence whose exponent
coincides with the stress exponent of Maxwell elements.
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I. INTRODUCTION

Under high steady stresses, materials often show time de-
pendent deformation and failure called creep rupture �1,2�,
which substantially limits their application in construction
components �3�. In recent years the application of statistical
physics in data evaluation of experiments and in theoretical
approaches has provided insight into the time dependent rup-
ture of disordered materials ranging from biological matter
�4,5� through construction materials �6–8� to the behavior of
fault zones responsible for the emergence of earthquakes
�1,2,9,10�. It has been pointed out that in the case of high
disorder the macroscopic failure event is preceded by an ac-
celeration of microcracking resulting in a power law finite
time singularity of several characteristic quantities of the
fracturing system �2,11–15�. The acceleration process can be
monitored experimentally by the acoustic emission technique
�14,16�, which also addresses the possibility of forecasting
the imminent failure �8,13,17�.

One of the most important theoretical approaches to the
damage enhanced creep of materials with disordered micro-
structure is the fiber bundle model �FBM� with fibers having
time dependent rheological behavior �18–25�. It has been
shown in the framework of FBM that depending on the ex-
ternal load the creeping system may undergo a damage pro-
cess and has an infinite lifetime, or breaks macroscopically
in a finite time �18–22�. Between the two regimes a transi-
tion occurs at a critical load which is equal to the static
tensile strength of the material. At macroscopic rupture tf,
the deformation rate �̇ was found to have a power law accel-
eration �̇��tf − t�−� with an exponent � fluctuating about one
�8,18�.

In the present paper we study the creep rupture process of
a bundle of linearly elastic fibers where time dependence is
introduced by the slow stress relaxation of broken fibers
modeled by Maxwell elements. Our goal is to characterize
how the system approaches macroscopic failure and derive
relations of observables that can be used to forecast the im-
minent failure event. On the macrolevel we derive the
Monkman-Grant relation of the model which expresses the
lifetime tf as a function of the minimum strain rate �̇ of the
creeping system. We characterize the sample-to-sample fluc-
tuations of tf and demonstrate that for single samples tf has a
universal relation with the characteristic time of the interme-
diate creep tm. Approaching the macroscopic failure the
strain rate presents a power law divergence with an exponent
solely depending on the stress exponent m of the Maxwell
elements. On the microlevel the rupture process is character-
ized by the distribution f��t� of waiting times �t between
consecutive fiber breakings. We find that f��t� has a power
law behavior at any load level; however, the exponent is
different on the two sides of the critical load �c, and it is a
decreasing function of the stress exponent m.

Materials where microscopic fracture events are followed
by a slow stress relaxation are, for instance, metal matrix
composites where typically brittle fibers are embedded in a
ductile metallic alloy �7�, or biological matter where the re-
laxation process can also involve colloidal shear flow �5,26�.
In short fiber random composites like paper, fiber breakings
can be followed by restructuring of the surrounding fiber
mat, where time dependence occurs due to frictional sliding
�2,27�.

II. SLOWLY RELAXING BROKEN FIBERS

Recently, we have introduced a fiber bundle model to
study the time dependent deformation and creep rupture of*feri@dtp.atomki.hu
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materials. In the model, the intact fibers are linearly elastic
but fiber failure is followed by a slow stress relaxation pro-
cess �20�. For clarity, in this section we summarize the main
steps of the model construction emphasizing aspects relevant
for the present work.

In the model we consider a bundle of N parallel fibers
which have linearly elastic behavior with the same Young
modulus Ef, so that their deformation rate can be written as

�̇ =
�̇

Ef
. �1�

Under a constant external load, the fibers break when the
local load on them exceed their local breaking threshold �th

i

which is a random variable with the probability density p and
distribution function P��th�=�0

�thp�x�dx. When a fiber breaks
we assume that its load does not drop down to zero instan-
taneously but the broken fiber undergoes a slow relaxation
process which results in a time dependent behavior of the
entire system. The broken fiber is modeled by a so-called
Maxwell element which is a serial coupling of a spring and a
dashpot �see Fig. 1� and it has a nonlinear response given by

�ḃ =
�b
˙

Eb
+ B�b

m. �2�

Here �b and �b are the time dependent strain and stress of the
broken fiber, respectively. The relaxation process is charac-
terized by the three parameters Eb, B, and m, where Eb is the
effective stiffness of the broken fiber and m characterizes the
strength of nonlinearity. The stress exponent m is a very
important material parameter whose value typically falls in
the range 1�m�30. Later on we will show that m has a
substantial effect on the failure process of the creeping fiber
bundle both on the micro- and macrolevels. When a fiber
fails, its load has to be overtaken by the remaining intact

fibers. Assuming global load sharing, under an external load
�0 the macroscopic constitutive equation of the system can
be cast in the form

�0 = ��t��1 − P���t��� + �b�t�P���t�� , �3�

where ��t� denotes the time dependent load of intact fibers,
furthermore, �1− P���t��� and P���t�� are the time dependent
fraction of intact and broken fibers, respectively. Equation
�3� expresses that the external load �0 is not only carried by
the intact fibers but the broken ones also have a finite load-
bearing capacity. It follows from Eq. �3� that due to the time
dependent relaxation of the broken elements the load on the
intact fibers � becomes also time dependent. We assume that
the bundle is loaded between two stiff plates which ensures
the boundary condition for the strain rates �̇= �̇b. For the
illustration of the model construction see Fig. 1. The equa-
tion of motion which describes the time evolution of the
system can be obtained by expressing �b�t� with � from Eq.
�3� and substituting it into Eq. �2�. Using the boundary con-
dition of strain rates we get

�̇	 1

Ef
−

1

Eb

1 −

1

P���
+

p���
P���2 �� − �0���

= B
�0 − ��1 − P����
P��� �m

. �4�

This is a first order differential equation which should be
solved at a constant external load �0 for the load of intact
fibers ��t�. Since the intact fibers are linearly elastic, the
macroscopic deformation-time history of the bundle can sim-
ply be obtained as ��t�=��t� /Ef.

We have shown that for the solution ��t� of the equation
of motion Eq. �4� and hence for the macroscopic deformation
��t� of the bundle, two regimes can be distinguished depend-
ing on the value of the external load �0 �20�: there exists a
critical load �c below which Eq. �4� has a stationary solution
�s In this load regime the bundle suffers only partial failure
and relaxes to a constant deformation �s �see Fig. 2�. Exceed-
ing �c, however, no stationary solution exists which implies
complete breakdown at a finite time defining the lifetime tf
of the system. Approaching the critical load �c from above,
the lifetime tf of the bundle has a power law divergence with
an exponent which depends on m but is independent of the
threshold disorder of fibers �20�

tf � ��0 − �c�−�m−1/2�. �5�

In order to capture the role of the disordered microscopic
strength of fibers in the rupture process, we developed an
event driven Monte Carlo simulation technique which makes
possible the study of finite systems up to N=108 fibers with
moderate computational costs �20�. The simulation technique
is based on the fact that due to the global load sharing the
fibers break in the increasing order of their breaking thresh-
olds �th

i , where i=1, . . . ,N. For more details of the model
and of the simulation techniques see Ref. �20�. Recently, we
have also generalized the model to the case of localized load
sharing of fibers after failure events �22�. In the present cal-
culations, for the disorder distribution of the failure thresh-

. . . . .

FIG. 1. The disordered solid is modeled as a parallel bundle of
fibers loaded between two stiff plates. Intact fibers are assumed to
be linearly elastic �springs�, while the broken ones undergo a slow
relaxation described by a Maxwell element �serial coupling of a
spring and a dashpot�.
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olds we consider a uniform distribution between 0 and 1, and
a Weibull distribution with the distribution function

P��th� = 1 − exp
− 
�th

�
�	� . �6�

In order to vary the amount of disorder, simulations were
carried out at several different values of the exponent 	,
while �=1 was fixed throughout the calculations. State vari-
ables of the model system can be made dimensionless using
their characteristic scale parameters. The dimensionless
stress, strain, and time can be defined as �̃=� /�, �̃=�Ef /�,
and t̃= tEfB�m−1, respectively. In the following, the numeri-
cal results obtained by computer simulations will be pre-
sented in dimensionless form. The Young modulus character-
izing the relaxing broken fibers was set to Eb=Ef /2.

In the present paper, extending our former work, we focus
on the process of creep rupture of the bundle of slowly re-
laxing fibers and characterize how the system approaches
macroscopic failure on the macro and micro levels. Our ana-
lytic calculations and computer simulations of finite bundles
revealed several interesting aspects of the rupture process
which can be exploited in forecasting techniques of immi-
nent failure.

III. MACROSCOPIC BEHAVIOR

Under a constant external load �0, the macroscopic evo-
lution of the creeping system is characterized by the defor-
mation ��t� and deformation rate �̇�t� diagrams, which are
accessible experimentally up to macroscopic failure. One of
the most challenging problems for theoretical studies on
creep rupture of disordered materials is to derive observables
and scaling laws which allow for an accurate prediction of
the lifetime of samples from short term measurements. Our
computer simulations showed that the rupture life tf of finite
bundles has large sample-to-sample fluctuations which can

be attributed to the quenched disorder of fiber strength. In
order to characterize these fluctuations, we determined the
probability distribution of lifetime p�tf� which proved to
have a log-normal form, i.e., the logarithm of tf has a normal
distribution with the form

p�ln tf� =
1

s�ln tf��2

exp
−

�ln tf − �ln tf��2

2s2�ln tf�
� , �7�

where �ln tf� and s�ln tf� denote the mean and standard de-
viation of the logarithmic lifetime ln tf. In order to numeri-
cally demonstrate the validity of Eq. �7�, in Fig. 3 we plotted
the standardized distribution, namely, s�ln tf�p�ln tf� is pre-
sented as a function of �ln tf − �ln tf�� /s�ln tf� together with
the standard Gaussian p�x�=1 /�2
 exp�−x2 /2�. It can be
seen that an excellent agreement is obtained between the
numerical results and the standard Gaussian for all the stress
exponents m considered. The inset of Fig. 3 demonstrates
that both the mean �tf� and standard deviation s�tf� of the
rupture life increase exponentially with the stress exponent
of the material. The result implies that in the case of high m
values relevant for experiments, large fluctuations of tf arise.
Consequently, the lifetime estimation for finite samples re-
quires the development of methods which provide reliable
results for single samples without averaging.

Based on the evolution of the rate of deformation �̇�t�, the
creep rupture process can be divided into three regimes: In
the primary creep regime, �̇�t� rapidly decreases with time
which can be well approximated by a power law for a broad
class of materials �̇�t�� t−p �also called Andrade law
�13,28,29��. The secondary creep is characterized by a
slowly varying, almost steady deformation rate, which is
then followed by a strain acceleration in the tertiary regime

�t

� ε

σ0 > σc

σ0 < σc

�εc

�tf

�t

� ε

σ0 > σc

σ0 < σc

�εc

�tf

FIG. 2. �̃ as a function of t̃ for a bundle of 107 fibers with
uniformly distributed breaking thresholds between 0 and 1 at sev-
eral values of �̃o below and above �̃c. The stress exponent m was
set to m=2.0.

(ln �tf − �ln �tf�)/s(ln �tf)

p(
ln

� t f
)s

(l
n

� t f
)

m = 1.5

m = 2.0

m = 3.0

m = 4.0

m = 5.0

m = 6.0

m

��tf
�

s(�tf)

FIG. 3. Distribution of the logarithm of lifetimes p�ln t̃ f� res-
caled by the mean �ln t̃ f� and standard deviation s�ln t̃ f� for different
values of m. Simulations were carried out using Weibull distributed
failure thresholds with 	=2. The continuous line indicates the stan-
dard Gaussian. The inset shows that with increasing m both �ln t̃ f�
and s�ln t̃ f� increase exponentially. Averages were made over 103

samples.
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for high enough external loads �6,7�. Therefore the stain rate
will exhibit a minimum at a value �̇m as it is illustrated in
Fig. 4 for different load values above the critical point. In
laboratory experiments, the failure time tf of the specimen is
usually estimated from the variation of the deformation rate
�̇ based on the so-called Monkman-Grant �MG� relationship
�30�. The Monkman-Grant relation is a semi-empirical for-
mula which states that the time-to-failure of the system tf is
uniquely related to the minimum creep rate �̇min the form of
a power law

tf � �̇m
−�, �8�

where the exponent ��0 depends on material properties; for
metallic materials its value is close to unity �3,6�. The advan-
tage of Eq. �8� is that once the relation is established from
short term tests, the rupture life tf can be determined just
following the system until the minimum of �̇ is reached.
Since tf diverges when approaching the critical load from
above, such estimates are of high relevance for the load re-
gime �c��0. The Monkman-Grant relation of our model
system can be derived starting from the equation of motion
Eq. �4�: making use of the property that the term ��1
− P���� on the right-hand side has a maximum of value �c

�31–33�, the minimum deformation rate �̇m as a function of
load can be obtained as

�̇m � ��0 − �c�m. �9�

Numerical tests of the above relation can be seen in Fig. 5,
where Monte Carlo simulations were performed with N
=107 fibers of uniformly distributed breaking thresholds
varying the stress exponent m of the Maxwell elements. The
slope of the fitted straight lines is always equal to the corre-
sponding value of m in excellent agreement with Eq. �9�.

Combining Eqs. �5� and �9�, we obtain the lifetime as a func-
tion of the minimum strain rate

tf � �̇m
−�1−1/2m�, �10�

which implies that the Monkman-Grant exponent of our
model system �=1−1 /2m increases from 1 /2 to 1 as m in-
creases starting from 1. Representative examples of �̇�t� ob-
tained by Monte Carlo simulations at different load values �0
can be seen in Fig. 4 for m=2.0. The inset illustrates that the
lifetime tf has a power law dependence on �̇m whose expo-
nent coincides with the analytic prediction Eq. �10�.

Besides the Monkman-Grant relation to predict lifetime of
loaded specimens tf, it has recently been pointed out that tf
can directly be related to the characteristic time tm of the
intermediate creep regime �18�. Here tm is the time where the
system reaches the minimum value of the strain rate �̇m.
Experiments on different types of composites revealed that
tf �3 /2tm holds from which tf can be obtained from a mea-
surement of tm with a significantly shorter duration �8�. For
our model, Fig. 6 presents tf as a function of tm for a uniform
and a Weibull distribution of thresholds varying the stress
exponent m. Note that each symbol in Fig. 6 represents a
single sample with different realizations of the disorder and
different values of the external load above the corresponding
critical point �c. It can be observed that all the points fall on
the same straight line with relatively small deviations imply-
ing a linear relationship

tf = atm �11�

with no additive term. The parameter a has a universal value
a=2.05 independent of the type of disorder and of the stress
exponent m. At high load values �in the regime of short life-
times in Fig. 6� the large fluctuations of the deformation rate
make difficult the precise determination of tm, which may
give rise to a weak systematic deviation from the simple

�t

˙� ε

�tf
�̇εm

�̇εm

� t f

FIG. 4. Semi-log plot of the rate of deformation as a function of
time for different load values in the range �̃0��̃c at m=2.0 using
Weibull distributed failure thresholds with 	=2.0. The inset shows a
log-log plot of the lifetime t̃ f of the system as a function of the

minimum strain rate �̇̃m. Excellent agreement is obtained with the
analytic prediction Eq. �10�.

�σ0 − �σc

˙� ε m

m = 1

m = 1.5

m = 2

m = 2.5

m = 3

FIG. 5. Log-log plot of the minimum strain rate �̇̃m as a function
of �̃0− �̃c for several values of the stress exponent m with uniformly
distributed breaking threshold. The slope of the fitted straight lines
is equal to the specific value of m in each case in agreement with
Eq. �9�.
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linear form Eq. �11�. It is important to emphasize that the
results obtained at different values of the ratio Eb /Ef fall on
the top of each other in Fig. 6, which implies that the Young
modulus of the relaxing broken fibers does not affect the
qualitative behavior of the system. Note that the creep rup-
ture model of Ref. �18� also provided a=2.0 with the Eyring
rheology of representative volume elements. This result
means that above �c the deformation-time diagrams ��t� of
the system presented in Fig. 2 are symmetric with respect to
the inflection point of the curves. It is interesting to note that
the fractions of fibers which break before and after the char-
acteristic time tm of the intermediate creep regime, are only
equal to each other when the quasistatic constitutive curve
�0��s� of the system is a symmetric function. For instance,
for the specific case of uniformly distributed breaking thresh-
olds, the constitutive behavior of the fiber bundle is symmet-
ric with respect to the maximum, however, it does not hold
for the Weibull distribution �25,33,34�. The general relation
of the lifetime tf and characteristic time tm Eq. �11� implies
that the symmetry of the creep rupture process is indepen-
dent on the symmetry properties of the constitutive curve.

Figure 4 also demonstrates that during damage enhanced
creep processes, the macroscopic failure of the specimen is
approached by an acceleration of the strain rate and breaking
rate of fibers. An analogous effect has been observed in rup-
ture experiments on disordered materials with increasing ex-
ternal load, where the acoustic emission rate has a power law
singularity at catastrophic failure which also allowed for the
possibility of predicting imminent failure events
�2,11–13,17,35–37�. We carried out computer simulations
analyzing the strain rate �̇ of our bundle of slowly relaxing
fibers in the vicinity of the failure time tf. The numerical
calculations revealed a power law divergence of �̇ as a func-
tion of the distance from tf �see Fig. 7�

�̇ � �tf − t�−�, �12�

with an exponent � which does not depend on the external
load �0 and on the disorder distribution, but is a decreasing
function of the stress exponent m governing the relaxation of
broken fibers.

IV. MICROSCOPIC DYNAMICS

On the microlevel, during the creep process the fibers
break in a single avalanche which either stops and the bundle
stabilizes after the breaking of a finite fraction of fibers ��0


�c�, or the avalanche continues until macroscopic failure
occurs ��0��c�. Inside this avalanche, due to the disordered
breaking thresholds, fibers may break in faster or slower se-
quences leading to fluctuations of the breaking rate. The
waiting times �t between consecutive fiber breakings and
their distribution characterize the microscopic evolution of
the rupture process providing information also on the cascad-
ing nature of breakings. In laboratory experiments, single
fiber breakings can be recorded by means of the acoustic
emission techniques. Representative examples of waiting
times �t obtained by computer simulations of the slowly
relaxing fiber bundle are shown in Fig. 8 for loads below
�Fig. 8�a�� and above �c �Fig. 8�b��. We observe that in both
cases at the beginning of the creep process a large number of
fibers breaks which results in short waiting times, i.e., all the
�ts are small at the beginning. Below the critical load �

�c, at the macrolevel a stationary state is attained after a
finite fraction of fibers broke. Approaching the stationary
state �t becomes larger �see Fig. 8�a�� and reaches a maxi-
mum value on the plateau of ��t� �compare to Fig. 2�. Above
the critical load ���c, however, the slow plateau regime
with long waiting times is followed by a strain acceleration
�Fig. 2� accompanied by a large number of breakings result-

�tm

� t f Eb/Ef = 0.5

uniform, m = 1.5

Weibull, ρ = 2.0, m = 1.5

uniform, m = 2.0

Weibull, ρ = 2.0, m = 2.0

uniform, m = 4.0

Weibull, ρ = 5.0, m = 4.0

Eb/Ef = 0.3
uniform, m = 1.5

Weibull, ρ = 2.0, m = 1.5

uniform, m = 3.0

Weibull, ρ = 2.0, m = 3.0

FIG. 6. �Color online� Log-log plot of the lifetime t̃ f of the fiber
bundle as a function of the characteristic time t̃m of the intermediate
creep regime for different threshold distributions. A linear fit is also
given. Logarithmic scales are used due to the broad ranges of t̃m and
t̃ f. Two sets of calculations are presented at two distinct values of
the ratio Eb /Ef of the Young moduli of broken and intact fibers.

m

γ

�tf − �t

˙� ε

FIG. 7. The exponent � characterizing the divergence of the

deformation rate �̇̃ when approaching the time-to-failure t̃ f. Inset:

Log-log plot of �̇̃ as a function of t̃ f − t̃ for two different stress
exponents m. The dashed straight lines are guides to the eye with
slope 1.75 and 1.19 for m=1 and m=3, respectively. The breaking
thresholds are Weibull distributed with 	=2.0.
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ing again in small �ts �Fig. 8�b��. Varying the stress expo-
nent m, the qualitative behavior of �t in Fig. 8 does not
change.

Besides the overall tendencies described above, the wait-
ing times �t show quite an irregular local pattern with large
fluctuations and have a nontrivial distribution. We deter-
mined the distribution function f��t� on both sides of the
critical point �c varying the stress exponent m within a broad
range. Examples of f��t� are presented in Fig. 9 for m=2.0,
where a power law form of f��t� can be observed on both
sides of the critical point �c. For �0
�c, no cutoff function

can be identified, the power law prevails over 6-7 orders of
magnitude in �t up to the largest values. For �0��c the
power law regime is followed by an exponential cutoff
which shifts to higher �t values when approaching the criti-
cal load from above. Hence, f��t� can be cast into the func-
tional form

f��t� � �t−�e−�t/�t0, �13�

where the cutoff �t0 is a decreasing function of the external
load �0 for �0��c. The value of the exponent � is different
on the two sides of �c but inside one regime it is independent
on the actual value of �0. It is interesting that computer
simulations revealed a strong dependence of � on the stress
exponent m. The inset of Fig. 9 demonstrates that with in-
creasing m the value of � decreases both in the under-critical
and over-critical cases and tend to the same limit value �
→1 at large m.

In Fig. 10 we present the cutoff �t0 as a function of �0
which was determined numerically by assuming to be pro-
portional to the largest waiting time �t0��tmax. It can be
seen in Fig. 10 that approaching the critical load from above,
�t0 rapidly increases and has a power law divergence as a
function of �0−�c,

�t0 � ��0 − �c�−�, �14�

which is demonstrated by the inset of Fig. 10. This behavior
implies that in the limit �0→�c, the exponential cutoff dis-
appears and f��t� becomes a pure power law. The cutoff
exponent � can be calculated analytically as a function of the
stress exponent m of the Maxwell elements: since the cutoff
�t0 is proportional to the inverse of the minimum strain rate
�̇m

−1, it follows from Eq. �9� that

FIG. 8. Waiting times �t̃ between consecutive fiber breakings
for two different load levels. �a� �̃0
�̃c and �b� �̃0��̃c for the
stress exponent m=2.0 with uniformly distributed breaking thresh-
olds. For clarity, in �a� only every 10th breaking event is shown and
the maximum of the vertical scale is adjusted to a relatively low
value to be able to see also small �t̃s.

∆t̃

f
(∆

t̃)

σ0 < σc

σ0 > σc

m

α

σ0 > σc

σ0 < σc

FIG. 9. Log-log plot of the distribution of waiting times f��t̃� at
different load levels on both sides of the critical point �̃c for m
=2.0 with the same disorder as in Fig. 8. Power law distributions
are obtained with different exponents � below and above �̃c. Inset:
� as a function of the stress exponent m below and above �̃c.

10-5 10-4 10-3 10-2
10-4

10-3

10-2

10-1

1

10

102

103

�σ0

∆
� t 0

�σc

�σ0 − �σc

∆
� t 0

m = 1
m = 2

FIG. 10. The cutoff of the waiting times �t̃0 as a function of
load �̃0 below and above the critical point for uniformly distributed
thresholds with stress exponent m=1.0. The location of �̃c is indi-
cated by the arrow. Inset: log-log plot of �t̃0 as a function of the
distance from the critical load for two stress exponents. The slope
of the fitted straight lines � is always equal to the corresponding m
value, in agreement with the analytic prediction.
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� = m . �15�

The numerical results presented in the inset of Fig. 10 are in
an excellent agreement with this analytic prediction. In order
to check the validity of the functional structure Eq. �13� we
carried out a data collapse of the distributions f��t�, i.e.,
plotting f��t��t� as a function of �t /�t0, the curves ob-
tained at different values of �0 in the regime �0��c should
fall on the top of each other if Eq. �13� holds. The high
quality collapse obtained in Fig. 11 confirms the validity of
the functional form Eq. �13�.

Below the critical point �c, the distribution of waiting
times does not have a cutoff function, furthermore, changing
the load in this regime �0
�c only reduces the statistics of
the results �at lower loads less fibers break� but the functional
form of f��t� does not change �see Fig. 9�. The behavior of
�t0 as a function of �0 in Fig. 10 shows that for �0
�c the
system is always in the state of �t0→� so that in Eq. �13� a
pure power law remains. Note that the finite value of �t0 in
Fig. 10 is due to the finite system size.

V. DISCUSSION AND OUTLOOK

We presented a detailed study of the creep rupture process
of disordered materials focusing on observables which can
be relevant to forecast the failure event. Analytical calcula-
tions and computer simulations were carried out in the
framework of a fiber bundle model for creep rupture where
time dependence is introduced by the slow relaxation of bro-
ken fibers represented by Maxwell elements. The intact fi-
bers have linearly elastic behavior up to failure with identical
Young modulus but random breaking thresholds. The most
important dynamic parameter of the model is the stress ex-
ponent m of the Maxwell elements, characterizing the
strength of nonlinearity in the relaxation process.

We showed that above the critical load the bundle suffers
macroscopic failure at a finite time, which diverges when
approaching the critical point. Due to the strength disorder of
fibers, the lifetime of the bundle has strong sample-to-sample
fluctuations described by log-normal distributions indepen-
dent of the type of disorder. The mean and standard deviation
of tf increase exponentially with the stress exponent, which
requires forecasting techniques of the imminent failure based
on measurements of single samples. We derived the
Monkman-Grant relation of the model, i.e., we proved ana-
lytically that the lifetime of the system has a power law
dependence on the minimum strain rate, and additionally, we
showed that a universal relation exists between the charac-
teristic time of the intermediate creep regime and the lifetime
of the system. Both relations allow for reliable lifetime esti-
mates of samples based on short term measurements. Ap-
proaching macroscopic failure, the deformation rate proved
to have a power law divergence with an exponent depending
on m.

On the microlevel, the failure process is characterized by
the distribution of waiting times between consecutive fiber
breakings, which has a power law behavior on both sides of
the critical load but with different exponents. Computer
simulations revealed that the exponents are decreasing func-
tions of the stress exponent m, furthermore, the cutoff wait-
ing time has a power law divergence when approaching the
critical point from above. The cutoff exponent was found to
be equal to the stress exponent of Maxwell elements m.

Our model calculations give a reasonable description of
the time dependent response, for instance, of strongly
bonded long fiber metal matrix composites, where fiber fail-
ure is followed by a slow relaxation due to the yielding ma-
trix �7�. A qualitatively similar relaxation process occurs also
in bio-materials after local rupture events �5,26� and in ran-
dom mats of short fibers with frictional contacts �paper, tex-
tile� �2,27,38,39�. In metal matrix composites, the stress ex-
ponent typically has high values m�10. Hence, in these
cases our calculations predict for the Monkman-Grant expo-
nent �→1, for the exponent of the diverging strain rate �
→1, for the exponent of the waiting time distribution �
→1 on both sides of �c, while the cutoff exponent � takes
large values �=m. Recent experiments on various types of
fracture processes revealed a power law distribution of wait-
ing times between consecutive local breaking events
�15,18,40–42�. The measured value of the exponent � typi-
cally falls between 1.0 and 2.0 in good agreement with our
model calculations. We propose further experimental tests of
our theoretical predictions.
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FIG. 11. Test of the validity of the functional form Eq. �13� for
the distribution of waiting times f��t̃� above �̃c. The arrow indi-
cates the increasing load. Distributions obtained at different �̃0, are
replotted in the inset by rescaling the two axis. The good data col-
lapse confirms the validity of the scaling.
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