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We study the spatiotemporal properties of coherent states �peaks, holes, and fronts� in a bistable activator-
inhibitor system that exhibits biochemical saturated autocatalysis, and in which fronts do not preserve spatial
parity symmetry. Using the Gierer-Meinhardt prototype model, we find the conditions in which two distinct
pinning regions are formed. The first pinning type is known in the context of variational systems while the
second is structurally different due to the presence of a heteroclinic bifurcation between two uniform states.
The bifurcation also separates the parameter regions of counterpropagating fronts, leading in turn to the growth
or contraction of activator domains. These phenomena expand the range of pattern formation theory and its
biomedical applications: activator domain retraction suggests potential therapeutic strategies for patterned
pathologies, such as cardiovascular calcification.
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Reaction-diffusion �RD� systems display many kinds of
pattern formation, ranging from diverse stationary patterns to
breathing and/or replicating spots and spiral waves �1�. One
important application of RD systems is to biological pattern
formation and morphogenesis, as originally suggested by
Turing: reaction and diffusion of two chemical substances
�“morphogens”�, at different diffusion rates, can induce the
spontaneous symmetry breaking of a homogeneous state and
thus form patterns �2�. Turing described a simple activator-
inhibitor system; since then, many model equations in physi-
cal, chemical, and biological contexts have been shown to
form periodic patterns via a Turing-type instability �1,3,4�.
There is a significant difference between chemical systems
and biological media: In biology, the formation of labyrin-
thine patterns, for example, has been attributed to the phe-
nomenon of saturation �3,5�.

Coherent states are another important property of spatially
extended media �6�; we distinguish between heteroclinic or-
bits �fronts� and homoclinic orbits �localized states� in one-
dimensional �1D� physical space. In the past, the formation
of localized states in bistable systems was often linked to
interactions between two front solutions �7�. However, this
approach requires a large separation between two interacting
fronts and thus is not valid for the analysis of spatial ho-
moclinic orbits. By a different method, it was recently shown
that localized states in variational systems are intimately re-
lated to Maxwell points, and thus nonpropagating fronts,
connecting either two uniform states �8� or a uniform and a
periodic �9� state. In the second case, there can be an effec-
tive broadening of the Maxwell point so that stationary fronts
exist over a finite parameter range �10�; this phenomenon is
referred to as pinning.

While biological patterns have been extensively studied in
the context of periodic patterns �3�, there is no unified theory
of coherent states �localized and fronts� and the resulting
spatiotemporal dynamics in systems that involve autocata-
lytic saturation �11�. On the other hand, the effect of front
asymmetry in the context of formation mechanisms of local-
ized states is also unclear �6�. To advance these issues, we
study the formation and the interaction mechanisms of co-

herent states, holes, peaks, and fronts, in a biological
activator-inhibitor prototype model. We show that the known
phenomenon of continuous branch pinning �CBP� can also
be found in dissipative systems. In addition, we present a
distinct type of pinning, to which we refer as discontinuous
branch pinning �DBP�. In the case of CBP, the existence
region of holes, which is below the Turing onset, is disjunct
from the region of peaks, which is near the bistability saddle-
node of the uniform states. As the control parameter is var-
ied, the Turing onset approaches the saddle-node, and the
regions of holes and peaks overlap. This overlap results in
the formation of a DBP structure of holes via the time-
independent front �heteroclinic bifurcation�, which in turn
also separates regions of counterpropagating asymmetric
fronts. As a consequence, front counterpropagation and the
existence of localized states give rise to an intriguing behav-
ior: activator domain growth or contraction accompanied by
a simultaneous formation of embedded localized axisymmet-
ric or striped states, as shown in Fig. 1.

We start with a phenomenological activator-inhibitor
model introduced by Gierer and Meinhardt �12� to study bio-
logical pattern formation. Our interest in this model stems
from calcification in vascular-derived mesenchymal stem cell
�VMSC� cultures �13�, cells that are considered to be respon-
sible for cardiovascular calcification �14�. In particular, it is
assumed from biochemistry that the activator obeys a satu-
rated autocatalytic reaction �15� and promotes production of
the inhibitor �16�. The cells also express a rapidly diffusing
inhibitor �13�. This biochemical activator-inhibitor dynamics
therefore qualitatively rationalizes the framework of Gierer-
Meinhardt model �5,12�, which in its dimensionless form
reads �17�

�u

�t
= D�2u +

u2v−1

1 + u2 − u ,

�v
�t

= �2v + Pu2 − Ev + S , �1�

where u�x ,y� is activator, v�x ,y� is the inhibitor, D is the
diffusion ratio, P represents the generalized cross reaction
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rates ratio, E is the degradation ratio, and S is the generalized
inhibitor source term. Due to the interest in vascular calcifi-
cation �14�, we chose here the parameters estimated in �13�
�see supporting online supplement�, i.e., P�O�1�, D
�O�10−2–10−3�, and focus on the two remaining parameters
S and E, which are experimentally accessible. We note that
localized peaks have also been studied in other forms of Eq.
�1�, in 1D and 2D �11,18�.

Equation �1� admits three uniform solutions, one of which
�u ,v�= �0,v0���0,S /E� is trivial, and two nontrivial �u ,v�
= �u� ,v�� �19�. Uniform �u− ,v−� states appear as unstable
states from S=0 and annihilate with the stable �u+ ,v+�
branch at a saddle-node bifurcation, S=SSN, creating asym-
metric bistability between �0,v0� and �u+ ,v+� for 0�S
�SSN. A primary requirement for both stable localized and

front solutions is the linear stability of the uniform solutions
to nonuniform perturbation. Standard linear analysis of
�0,v0� and �u+ ,v+� yields that only the nontrivial state goes
through a Turing instability at S=ST. The unstable Turing
region ST�S�SSN shrinks by approaching the saddle-node
bifurcation, S=SSN, as the degradation ratio E is increased
�see Fig. 1�. Consequently, stable front solutions connecting
the uniform �u+ ,v+� and �0,v0� states exist below S=ST.

Next, we study the properties of localized states via spa-
tial dynamics �20� followed by the numerical branch con-
tinuation method �21� and temporal eigenvalue analysis to
determine stability. We set �tu=�tv=0 and analyze �1� as a
reversible fourth order ordinary differential equation due to
the x→−x invariance. Linearizations about the uniform
states result in steady-state solutions which are proportional
to exp��x�, where the spatial eigenvalue � satisfies a fourth
order algebraic equation. For the �u+ ,v+� case, three possible
solutions for � in complex phase space arise: �i� for S�ST
the eigenvalues split on the imaginary axis; �ii� for S�ST
they split and form a complex quartet; and �iii� at the Turing
onset, S=ST, a double multiplicity of pure imaginary eigen-
values �= � ikT is present, where kT is the critical Turing
mode. Thus, localized states that exponentially asymptote to
�u+ ,v+� can be expected to arise for S�ST �9�. On the other
hand, linearization about �0,v0� yields four real eigenvalues,
�= ��E and �= ��D−1. Thus, localized states that expo-
nentially asymptote to �0,v0� are expected to arise every-
where. For finite values of E, effective bifurcation of these
states is at the transcritical onset, S=0 �the mechanism will
be discussed elsewhere�. In the following, we refer to L+ as
“holes” while to L0 as “peaks” in the background of the
nontrivial and trivial activator fields, respectively.

To study the localized solutions far from the onset, we
implement a numerical branch continuation method �21�; the
results are presented as a function of S in terms of the norm

N =�1

L
�

0

L

�u2 + v2 + ��xu�2 + ��xv�2�dx , �2�

where L is the spatial period; the domain size used in our
numerical calculations is much larger than the spatial period
2� /kT. We distinguish between two qualitatively distinct re-
gions �see Fig. 1�: E�Ec, where the holes and peaks do not
overlap, and E�Ec �see Fig. 2�, where peaks and holes re-
gions do overlap, and reconnect at S=SM via the stationary
heteroclinic cycle between �u+ ,v+� and �0,v0� �see Fig. 3�.

First, we discuss the E�Ec case. Localized hole solu-
tions, L+, and periodic Turing states �not shown� bifurcate
subcritically as unstable small amplitude states �17�, from the
Turing onset, S=ST, and form a CBP region �shaded region
in Fig. 2�, as also happens in variational systems �9�. Since
the localized holes bifurcate from a nontrivial state, only two
even parity solutions with phase shifts of � can form. Thus,
we termed a branch with an odd number of holes as L0

+ �Fig.
2�a�� and the one with an even number as L�

+ �Fig. 2�b��.
Each stable branch of odd and even hole solutions �inside the
shaded region� indicate increasing �with N� number of holes
�9�. Here we used a relatively small domain which limits
further excursions of the two branches �Fig. 2�, while on an
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FIG. 1. �Color online� Top panel: Bistability region, S�SSN, of
uniform solutions �0,v0� and �u+ ,v+� in the E-S plane �shaded re-
gion�. The dark shaded region, ST�S�SSN, marks the linear insta-
bility of the uniform �u+ ,v+� state to nonuniform perturbations,
where ST is the onset of Turing instability. The dashed line S=SM,
for E�Ec	3.54, represents the stationary front between �0,v0�
and �u+ ,v+� states �heteroclinic bifurcation�. For S�SM, �u+ ,v+�
invades �0,v0� while for SM �S�ST �0,v0� invades �u+ ,v+�. Bot-
tom panel: Demonstration of the activator �a� expansion and �b�
contraction process at marked locations in the left panel, stationary
front S=SM 	3.35 for E=9, via numerical integration of Eq. �1� on
x=y= �0,15� domain with periodic boundary conditions. The
frames show a gray-scale map of the u field, where black denotes a
high value of u. The initial condition is either uniform �a� u=0.01 or
�b� u=1 in the left half of the domain, while the right half is a
uniform random distribution between 0.01 and 1. Parameters: �a�
S=3.3, �b� S=3.4, and for both P=1, D=0.005.
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infinite domain, the branches contain an infinite number of
saddle node points. On the other hand, the localized states
that are homoclinic to the �0,v0� state effectively bifurcate
from S=0 and do not form a pinning region, due to real
eigenvalues. These states contain only a single stable branch
of L0

0 while the other even branch L�
0 is unstable �see profiles

in Figs. 2�c� and 2�d��, denoting a repulsive interaction be-
tween two neighboring peaks. Here the subscripts 0 and �,
are artificial notations.

Next, we turn to a discussion of the second case, E�Ec.
We showed in Fig. 1 that an increase in E results in ST
→SSN. Above E=Ec	3.54, this shift causes an overlapping
between the CBP region of hole states and the peak states
that are present near the saddle-node S=SSN. This hole-peak
interaction allows formation of a time-independent asymmet-
ric front �heteroclinic bifurcation� at S=SM, connecting the
trivial and the nontrivial states �see Fig. 3�. All the localized
state branches that were present in the E�Ec cases, now
effectively collapse nonmonotonically at S=SM. The single

and the double hole state, L=L+, still bifurcate from the Tur-
ing onset �see Fig. 3�, but all other branches �not shown here
for simplicity� arise from and reconnect after a single excur-
sion, back to S=SM. This DBP region is structurally different
from the classical CBP, described for E�Ec and in �9�. The
L0 branches also go through a significant change: while L�

0

remains unstable, the L0
0 branch exhibits decreasing oscilla-

tions around S=SM �see inset of Fig. 3�. This behavior is
known to give rise to additional localized states �8,22�, with
weak spatial oscillations around the primary peak �see Fig.
3�b��.

The activator expansion or contraction and formation of
isolated stripes and axisymmetric localized states �Fig. 1� is
now transparent. The effective merging point, S=SM, sepa-
rates regions of counterpropagating single fronts. Thus, op-
posite front velocities and the simultaneous presence of
stable localized holes, peaks, and stripes, result in a non-
trivial behavior for bistable nonvariational systems with a
broken parity symmetry of fronts �see Fig. 3�c��. In the ab-
sence of localized states, the system converges to a finite

S

N
L+

0

L0
π

(u
−
,v

−
)

1 hole

2 holes

3 holes

4 holes

0 0.1 0.2 0.4 0.6 0.7
0

0.5

1

1.5

2

(a)

(b)

(c)

S
T

L0
0

(u
+
,v

+
)

L+
π

S
SN

(d)

(0,v
0
)

0

0.5

1

u
,v

(a) (b)

0 4 8
0

0.5

1

u
,v

(c)

x
0 4 8

(d)

x

FIG. 2. �Color online� Top panel: Bifurcation diagram for Eq.
�1� in 1D, showing the norm �2� as a function of S for branches of
uniform and localized states: L0

+, L�
+ and L0

0, L�
0 ; solid �dashed� lines

mark stable �unstable� solutions while shaded domain represents
pinning region. ST and SSN correspond to Turing and saddle-node
onsets �see text for details�, respectively. Bottom panels: u �solid�
and v �dashed� profiles at locations indicated in the bifurcation dia-
grams. The saddle-nodes and the profiles along the stable portions
of the branches agree with the standard time integration of �1�.
Parameters: �a� �b� S	0.071, �c� S	0.696, �d� S	0.647, and for
all E=2, D=0.005, P=1.
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FIG. 3. �Color online� Top panel: Bifurcation diagram for E
=4 �solid �dashed� lines mark stable �unstable� solutions�. The inset
in the top panel clarifies the behavior of L0

+ and L0
0 branches at S

=SM 	1.233. Bottom panels: Profiles of u at locations indicated in
the inset. Note the asymmetry of the heteroclinic orbit �half of the
cycle� in �c�. Other parameters as in Fig. 2.
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uniform activator state, a phenomenon that is qualitatively
similar to coarsening in variational systems �7�. An addi-
tional important aspect is the stability of coherent structures
to curvature and transverse perturbations in 2D. While sta-
bility thresholds of localized states may indeed change in
2D, the 1D analysis delimits the regions where stable local-
ized states can also be obtained in 2D �17,22�. By contrast,
instability to transverse perturbations of the front solutions or
large circular domains may lead to the formation of periodic
patterns that resemble periodic patterns arising from the Tur-
ing instability �23�. In our parameter range these fronts are
transversally stable, but we cannot exclude the existence of
transverse instabilities in general.

We have demonstrated a mechanism for the expansion
and contraction of activator domains, and the respective for-
mation of localized states, in a bistable activator-inhibitor
system with saturated autocatalysis �Fig. 1�. This mechanism
stems from the formation of an asymmetric heteroclinic orbit
�at a critical parameter value�, merging the branches of both

hole and peak states. Turing instabilities are found to be im-
portant for such behavior, and also for a discontinuous
branch pinning structure, as shown in Fig. 3. Since we used
global bifurcation methods, we expect similar scenarios to
arise in other bistable systems as well, precisely for the same
reason that pinning �9� is found in variational models and in
our dissipative system. Furthermore, our theoretical results
suggest a distinct spatiotemporal behavior in biological sys-
tems exhibiting saturation �5�. The concept of activator con-
traction has potential biomedical applications, for example,
localized activator-induced “nodules” are common in bio-
medicine, such as spotty formations in atherosclerotic calci-
fication �24�. The ability to produce conditions of “activator
contraction” to reduce or eliminate these localized spots,
therefore, has intriguing therapeutic possibilities.

We thank L. L. Demer, Y. Tintut, K. Boström, E. Knob-
loch, and J. Burke for stimulating discussions.
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