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Numerical models of mesoscale DNA dynamics relevant to in vivo scenarios require methods that incorpo-
rate important features of the intracellular environment, while maintaining computational tractability. Because
the explicit inclusion of ions leads to electrostatic calculations that scale as the square of the number of charged
particles, such models typically handle these calculations using low-potential, mean-field approaches, rather
than by considering the discrete interactions of ions. This allows approximation of the long-range, screened
self-repulsion of DNA, but is unable to capture detailed electrostatic phenomena, such as short-range attrac-
tions mediated by ion-ion correlations. Here, we develop a dynamical model of explicitly double-stranded,
sequence-specific DNA in a bulk environment consisting of other polyions and explicitly represented counte-
rions and coions. DNA is represented as two interwound chains of charged Stokes spheres, and ions as free,
monovalently charged Stokes spheres. Brownian dynamics simulations performed at salt concentrations of 0.1,
1, 10, and 100 mM demonstrate this model captures anticipated behaviors of the system, including increasing
compaction of the polyion by the ionic atmosphere with increasing ionic strength. The decay of the distance
dependence of the ion concentrations as one moves away from the polyion approaches their equilibrium values
in quantitative agreement with predictions of Poisson-Boltzmann theory. The simulation results also demon-
strate quantitative agreement with experimental measurements of the persistence length of B-DNA, which
increases significantly at low ionic strengths. The model also captures behaviors intimating the importance of
explicitly representing ionic and polyionic structure. These include penetration of the polyion interior by both
coions and counterions, and counterion-mediated accumulation of coions near the surface of the polyion. Such
phenomena are likely to play an important role in the formation of alternative DNA secondary structures,
suggesting the present methods will prove valuable to dynamic models of superhelical stress-induced DNA

structural transitions.
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I. INTRODUCTION

Biological events involving large-scale structural defor-
mations of DNA occur on microsecond and longer time
scales. An example of such an event is localized,
superhelicity-induced melting of the double helix, in which
the topological stress associated with a linking number defi-
cit (underwinding relative to the helicity of relaxed double-
stranded DNA [dsDNA]) disrupts base pairing, leading to
strand separation at locations (such as gene promoters and
origins of replication) where it is potentially required for
regulatory function [1-4]. Dynamic modeling of such events
requires methods capable not only of following their long-
time evolution, but also of accurately capturing biophysical
features of the physiological environment within which they
occur. These features include interactions with a dielectric
solvent at finite temperature, and the presence of both free
ions and other charged macromolecules.

One method for modeling large-scale, long-time structural
changes in DNA is Brownian dynamics simulation. Brown-
ian dynamics algorithms are based on expressions derived
from integrating Langevin equations of motion in the limit of
overdamping, where the relaxation time is much smaller than
the integration time step. These expressions capture coupling
of the system to a heat bath via the fluctuation-dissipation

* Author to whom correspondence should be addressed.

1539-3755/2008/77(3)/031924(11)

031924-1

PACS number(s): 87.14.G—, 87.15.A—, 87.15.H—

theorem, which ensures that stochastic fluctuations of par-
ticle positions arising from thermal buffeting by solvent mol-
ecules correctly correlate with particle velocity dissipation
[5]. In this formulation, biopolymers must be idealized as
chains of large (relative to implicitly represented solvent
molecules), hydrodynamic objects, which are typically mod-
eled as Stokes spheres, or “beads,” that interact both locally
(via potentials reflecting linear elasticity and excluded vol-
ume interactions) and nonlocally (via potentials reflecting
long-range electrostatic interactions). In the case of DNA,
this approach has been invoked to study a wide range of
phenomena, including the effect of intrinsic curvature on
ring closure [6], the role of superhelicity in site juxtaposition
prior to recombination [7], and the mechanical response of
torsionally constrained DNA to dynamically imposed super-
helicity [8—10].

To minimize computational cost, Brownian dynamics
simulations that model DNA in solution commonly calculate
electrostatic  interactions using Debye-Hiickel theory
[6,11,7,12], which arises from linearization of the Poisson-
Boltzmann equation when the electrostatic potential energy
is much smaller than the Boltzmann energy, qU < kgT.
(Here, ¢ is charge, U is electric potential, kg is Boltzmann’s
constant, and T is the temperature.) Because DNA is highly
charged, this requires renormalization of Debye-Hiickel po-
tentials so they agree with nonlinear Poisson-Boltzmann
theory for simple geometries at large distances (see, for ex-
ample, Ref. [11]). By assuming that pair interactions between
segments of DNA resemble those between charged, colloidal
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cylinders surrounded by a Gouy double layer [13], this renor-
malized Debye-Hiickel approach (and mean-field approaches
generally) allow mesoscale DNA models to approximate
long-range repulsive forces, but cannot account, e.g., for at-
tractive forces, such as those due to correlations in the posi-
tions of ions [14,15]. Such phenomena can only be captured
through a discrete-particle representation of ionic species.

Here, we describe methods for simulating the Brownian
dynamics of double-stranded DNA in a bulk environment
containing both free ions and other polyions (represented as
identical images in a periodic lattice). In the present model,
the former are represented explicitly as positively or nega-
tively charged, monovalent Stokes spheres in quantities suf-
ficient both to balance the negative polyion (DNA) charge,
and to produce electrolytic environments of specified ionic
strength. (In what follows, we will refer to the modeled DNA
alternately as “DNA,” a “macroion,” or a “polyion.”) DNA is
represented as an explicitly double-helical object using an
hydrophobic potential that permits specification of base se-
quence and a detailed account of topological stress [9,10].
The counterions, coions, and polyions occupy a cuboid simu-
lation box under periodic boundary conditions. Long-range
electrostatic interactions between particles in the unit cell
(simulation box) and those in a lattice of image systems are
evaluated using a Lekner summation strategy that allows for
accurate, efficient calculation of force expressions and inter-
action energies [ 16]. Results from simulations at salt concen-
trations spanning four orders-of-magnitude, including physi-
ological, demonstrate the capacity of the model to provide
reliable mechano-dynamical information about both DNA
and the electrolytes with which it interacts in solution.

II. METHODS
A. Explicitly double-stranded DNA model

As was done in previous work [9,10], each of the two
interwound polynucleotide strands of DNA was represented
as a segmented chain with Stokes spheres (beads) of radius
R-=6.5 A placed at its vertices to capture hydrodynamic
properties (refer to Fig. 1). In the simulations discussed here,
the number of beads in each chain was chosen to be N=50.
Then the midpoints between the centers of (touching)
complementary beads define a central axis with N—1=49,
10.2 A (three-base-pair) segments, so the entire structure
corresponds to about 147 base pairs (bp) of B-DNA.

Interbead interaction potentials are described in detail in
Refs. [9,10]. To review, intrachain particles interact via elas-
tic stretching and bending potentials, interchain particles in-
teract via an hydrophobic potential that allows specification
of base sequence, and all particles interact via an excluded
volume potential that prevents intrachain and interchain self-
passage events. In Refs. [9,10], which omit electrostatic in-
teractions, the total interaction potential for the 2N chain
particles is given by the expression
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FIG. 1. Double-chain model. (a) Three-dimensional representa-
tion of the interwound bead chains. One DNA polynucleotide is
black and the other gray. The particles comprising the ith duplex
unit are labeled. (b) Corresponding two-dimensional schematic.
Complementary beads (e.g., i and i+N) touch—i.e., are separated
by 2 times the bead radius, R—at mechanical equilibrium. The in-
trachain separation of particles i and i+1 is labeled as /;. In the
three-dimensional structure, noncomplementary interchain beads
(e.g., i and i+N+1) approximately touch at equilibrium.

N-1 N=2 N1 2N-2
Uchain= 2 U(1) + 2 Up(B) + 2 U1+ 2 Uy(B)
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The individual contributions to this potential are
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Here, Eq. (2) expresses the potential energy associated with
elastic stretching of intrachain segments, [;=|r;,;—r,| is the
length of segment i, and /,=14 A is the equilibrium separa-
tion of intrachain particles. The stretching force constant is
assumed to be given by K=k,7/ 8, where kgT is the thermal
energy (T was set at 293 K) and & corresponds to the fluc-
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tuation of the average segment length (we used the value &
=0.025[, in accordance with previous work [17,8,9]). Equa-
tion (3) expresses the potential energy associated with elastic
bending of intrachain segments. The angle B;=cos™!(r,.
—ti1/ Fia=Ti| * ¥—r/ |rig-r ) represents the deviation of seg-
ment i+1 from colinearity with segment i. Bending is as-
sumed to be isotropic, with B,=0, for all segments. The
bending force constant is assumed to be given by A
=kgTr, /1, [18], where P,=12.7 A is the persistence length
of single-stranded DNA [19].

Equation (4) [20] is an expression for the potential energy
associated with the hydrophobicity-driven stacking and base
pairing of two polynucleotides to form double-stranded
DNA. For a given particle, say i in one chain, the interchain
potential is given by the sum of pairwise interactions with
particles (i+N)—1 and (i+N)+1 in the other. Then compo-
nents of the force parallel to the molecular axis are assumed
to correspond to stacking forces, and those transverse to the
axis to H-bonding forces. Examination of Eq. (4) shows that
Uio(rij) ~ =€icAGun2 for r;;<1.60 and Ujc(r;;) ~0 for rij
>2. Zcrlc, where r;; is the dlstance between partlcles iand j.
The parameter O'IC is determined by 1.60,,=13.0 A, the in-
terchain equilibrium separation of noncomplementary neigh-
bor beads (i.e., beads i and i+N+1, or i and i+N—1). The
factor AGg., in Eq. (4) is the free energy of local denatur-
ation, as characterized by Benham e al. [2,3]. In the present
context, the free energy of denaturation associated to each
3-bp duplex unit is given by

3

AGden(a’b)za"'Ebi’ (6)
i=1

where a is the free energy needed to nucleate the strand
separation transition, and b is the free energy needed to sepa-
rate the ith base pair. In the investigation reported here, we
used the approximately sequence-independent value a
=10.2 kcal/mol [3], and the copolymeric value appropriate
for G+ C base pairs, b=1.73 kcal/mol, for all base pairs,
making all model structures G+ C copolymers. Because the
structures were unconstrained, no stress-induced melting (de-
viation from equilibrium secondary structure) was observed.
The presence of this term enables the analysis of constrained
DNA in future studies.

Equation (5) is an expression for excluded volume poten-
tial energy, which prevents the overlap and interpassage of
both neighbor and non-neighbor intrachain and interchain
bead pairs, thereby preserving the topological constraint. The
parameter o, is determined by 2R.=0,,{2, where o,,$2 is
the pairwise separation corresponding to the minimum of

Ue(r;j), and R is the bead radius. We impose the cutoff,
Ue(r;j)=0 for r;;= 0.,$2, so that the potential is strictly re-
puls1ve Cons1stent with Ref. [9], ensuring that the model
DNA maintains a stable double-helical structure that is linear
when relaxed requires setting e, /e, ~ 1073k 7.

The main focus of the present work is the addition of
explicit electrostatic interactions to this model. The methods
by which this was achieved are described next.
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B. Electrostatic interactions with periodic boundary conditions

Electrostatic interactions within a bulk environment were
included by defining simulation boxes containing free ions
and one free (unconstrained) 50-mer of model DNA, impos-
ing periodic boundary conditions, and then invoking a sum-
mation strategy for calculating long-range (Coulomb) forces
in periodic systems [16]. Tons were explicitly represented as
spheres of radius R;=4 A (to account for hydration), at the
centers of which were placed the monovalent charges *e,
where e is the elementary charge. We note that ion size can
influence the outcome of electrostatic interactions in
discrete-particle simulations, but point out that, R;=4 A is
within the range of experimentally known values for hy-
drated, monovalent ions, and the results discussed below are
in good agreement with experimental data and theoretical
predictions. For all interactions, the dielectric constant (see
also Sec. IT E) was set at the value appropriate for water at
293 K: D=Dy,0=47€,06=8.923X10" C*N"' m™,
where we have assumed uniform EH20=80.2.

The volumes of the simulation boxes (unit cells defining
the lattices of periodic image systems), and the numbers of
counterions and coions, were chosen so as to allow simula-
tions at four bulk concentrations: 0.1 mM, 1 mM, 10 mM,
and 100 mM. Here and throughout, the bulk (or characteris-
tic) concentration (or ionic strength) is taken to refer to the
concentration of 1:1 salt characterizing the volume occupied
by the corresponding box, and is assumed to represent the
salt concentration that would characterize the solution in the
absence of macroions. We note that the ionic strength is
equal to the molar concentration for 1:1 salt solutions. Simu-
lations at 0.1 mM required 107 1:1 salt particles (i.e.,
107 counterions+ 107 coions=214 total ions) in a cuboid
unit cell with sides of length L,=L,=L.=1210 A. Simula-
tions at I mM required 100 1:1 salt particles (200 total ions)
in a unit cell with sides of length L,=L,=L_=550 A. Simu-
lations at 10 mM required 250 1:1 salt partlcles (500 total
jons) in a unit cell with sides of length L =L =275 A, L,
=550 A. Simulations at 100 mM required 2500 1:1 salt par-
ticles (5000 total ions) in a unit cell with sides of length L,
=L,=275 A, L.=550 A.

In addition to the ions required for salt, electroneutrality
of the system requires counterions in a quantity sufficient to
balance the negative polyion charge, —294¢ (2N=100 beads
at —5.88¢ per bead, or —6¢ per three-base-pair axis segment)
for all simulations. Therefore, in each case, 294 extra coun-
terions were included. As might be anticipated, these addi-
tional ions lead to an overestimation of bulk counterion con-
centrations within the simulation boxes. This issue is
addressed further in Secs. III and IV.

C. Simulation method

Dynamic evolution of the system was described by
Brownian dynamics [21],

A e el + ) @

Here, r;(¢) is the position and 7, is the isotropic friction co-
efficient of the ith particle; F{[r(z)]} is the total deterministic
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force acting on particle i due to the positions [r(z)] of all the
particles; and F;(7) is a random force acting on particle i due
to its interaction with the heat bath. For particles i and j, this
random force is characterized by the fluctuation-dissipation
theorem as [5]

(F{(1))=0, (8)

(F;(0) - Fi (1)) = 6k T (1) 5. ©)

The friction coefficient can be related to the translational
diffusion constant, D,, according to the Stokes-Einstein rela-
tion, D, ;=kgT/y,;, where y;=6mnR;, in which 7 is the sol-
vent viscosity, and R; is the particle radius (R; or Ry). One
integration scheme for the resulting equation yields an itera-
tive procedure for the Brownian dynamics of system par-
ticles,

r;(t+ 81 =r, 1) + &Fi{[r(t)]}ﬁt +S,(6). (10)
kg T

Here, S,(6r) is a random Gaussian displacement with (S;)
=0 and (S?)=6D,6t, and &t is the time step. The determinis-
tic force was obtained from the interaction potentials. The
degree of discretization required for numerical stability was
determined by the curvature of the potential characterizing
charged, finite-size particle collisions. For purposes of calcu-
lating excluded volume forces, because the corresponding
interactions are relevant only to particles in close proximity,
a cell indexing procedure was implemented.

All simulations began with 294 counterions in a uniform
configuration surrounding the macroion, aligned along the z
axis at the center of the simulation box. At each ionic
strength, after this counterion-only system was iterated ~ 107
times, an appropriate number of coions and additional coun-
terions was randomly distributed throughout the box. Finally,
the systems inclusive of both salt and 294 surplus counteri-
ons were iterated until the time-averaged concentrations of
ions surrounding the macroion were approximately constant
(see below). The additional number of iterations required
was approximately 2.2 X 107 in the 0.1 mM case, 2.0 X 107 in
the 1 mM case, 4.0 X 10° in the 10 mM case, and 2.0 X 10° in
the 100 mM case.

Because their calculation significantly increases computa-
tion time, hydrodynamic interactions were omitted from the
simulations reported here. Since these simulations sample
equilibrium phase space, where system configurations de-
pend only on the temperature and the potential energy sur-
face, omission of these interactions does not affect the
present results. However, previous work in the context of
superhelical DNA has suggested hydrodynamic interactions
may facilitate writhing deformations [11,22], indicating that
these interactions likely play an important role in nonequi-
librium phenomena, such as the mechanical response of
DNA to dynamically imposed superhelical stress.

D. Radial distance-dependent salt concentrations

To characterize the spatial distributions assumed by ions
relative to the finite, approximately cylindrical macromol-
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FIG. 2. Volume elements. Volume elements used to obtain radial
counterion distributions are represented by gray surfaces. These
were defined with respect to local coordinate frames ascribed to the
duplex axis (black line) vertices and end points (see Sec. II). To
vertex i are associated radial (py ), axial (z;), and azimuthal (¢,)
cylindrical coordinates, where k indexes the volume elements, and
an ion is associated to the kth element if its position r, with respect
to the local frame satisfies [O<r <102 A; pr<r, <pk+5 A; 0
<rg,< 24r]. Similarly, to the end pomts (duplex mldpomts 1 and N)
are associated radial (Pena)> azimuthal (¢b,q), and polar (6) spheri-
cal coordinates, where k again indexes the volume elements, and an
ion is associated to the kth element if its position with respect to the
local frame satisfies [-7/2<r,<m/2; p< F e < o5 A 0
<rg. < 2.

ecule, at each ionic strength we calculated the time-averaged
concentrations of both counterions and coions versus radial
distance from the molecular central axis. For this purpose,
we first separately calculated the time-averaged numbers of
counterions and coions in annular shells of volume, centered
at the axis segments, over a range of radial distances. Spe-
cifically, for each configuration generated by each of the
simulations described above, we first defined orthonormal
local coordinate systems at the midpoints between comple-
mentary particles in the double-chain; i.e., at the vertices
and end points of the discretized central axis. These systems
consisted of the normal vectors, 4= (rpiq;s1—Tmid)/
|rmid,i+1 ~Fmid,il» b=(r;;,.yxa)/ |ri,i+ and ¢
=[b X ( , where r4; is the position of the ith
complementary bead-pair midpoint. The vector & was then

chosen as the local z direction, the vector b as the local x
direction, and the vector € as the local y direction for pur-
poses of transforming into cylindrical coordinates, which al-
lowed counting of ions in annular regions at 5-A radial in-
tervals about each axis segment, as follows (refer to Fig. 2).
The positions, r;, of all ions were calculated in each local
coordinate frame If a position satisfied [0<r,;</10.2 A;
Pe<rp; <pi+5 A; 0<rg;<2m|]—where z, p, and ¢ are its
axial, rad1a1 and azimuthal cylindrical components, respec-
tively, and the index k begins at zero (py=0) and runs in 5-A
increments out to approximately L,/2—the number of ions
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in the corresponding volume shell was incremented by one.

In order to include ions occupying regions at the ends of
the polyion, we also counted particles in hemispherical shells
of volume centered at the double-chain axis end points in a
manner analogous to that in which particles in annular shells
were counted; that is, spherical coordinate frames were de-
fined at the end points (refer to Fig. 2), the positions, r;, of
all previously uncounted particles were obtained, and, if po-
sition j is satisfied [-7/2<ry;<m/2; p<r,;<p+5 A;
0<r¢’ j<277]—where 0, p, and ¢ are polar, radial, and azi-
muthal spherical components, respectively, and the index k
begins at zero (py=0) and runs in 5-A increments out to
approximately L,/2—the number of ions in the correspond-
ing volume shell (associated with segment 1 or N—1) was
incremented by one.

To include any ions omitted by segmented-cylindrical and
spherical counting, we assigned all remaining uncounted par-
ticles to the 5-A volume shell associated with the chain seg-
ment to which they were nearest, and within which the dis-
tance of nearest approach lay. It was verified for every
calculation that exactly the number of ions present was
counted. From these axis location-dependent counts, we cal-
culated the total numbers of counterions and coions in all
volume shells at each radial distance out to the value of L,/2
appropriate to the simulation under consideration.

Next, to obtain approximate distance-dependent concen-
trations, we divided these total counts at 5-A intervals by the
volumes [277(500 A)(5 A)+4mr2(5 A)], where r is the ra-
dial distance; i.e., we divided by the volumes corresponding
to perfectly cylindrical shells of 500-A length (the contour
length of the polyion when straight) and 5-A thickness, plus
the volumes corresponding to two hemispherical end shells
of 5-A thickness. Finally, these concentrations were time-
averaged over the last 1 X 10° configurations of each simu-
lation. We reiterate that the resulting concentrations are only
approximate, because the volumes bounding the deformable
polyion are of course unlikely to be perfectly cylindrical in
any given configuration. Nevertheless, it is assumed that the
time-averaged values represent the concentrations with rea-
sonable accuracy. Moreover, the relative values among the
simulations (see below) are expected to be unaffected by the
approximation, because they were calculated by the same
procedure in all cases. Discrepancies in the ion counts arising
from overlap of individual (segmental) volume elements are
also not expected to affect the concentration calculations,
since the latter depend only on the total number of ions at a
given radial distance (and not on specifically which annular
elements the ions are deemed to occupy). Even in cases
where this information is important, it is expected that any
discrepancies will average out over time; the polyion motion
ensures that no elements are systematically favored by the
method relative to the other elements.

E. Cylindrically symmetric Poisson-Boltzmann theory

We compared the ion concentrations obtained from the
simulation results with numerical solutions of the Poisson-
Boltzmann equation obtained using the procedure described
in Ref. [23], where the system is assumed to consist of a
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cylindrical particle of radius a, length [>>a (negligible end
effects), uniformly distributed surface charge Qe, and surface
potential ¢, immersed in a 1:1 electrolyte solution with di-
electric constant D and temperature 7. The potential in the
ionic atmosphere surrounding the cylinder is assumed to be
described by the Poisson-Boltzmann equation for the case of
cylindrical symmetry,

1d{( d
——(x—y) =sinh y.

11
xdx\ dx (1)

Here, y=ey/kgT is the dimensionless potential and x=«r is
the dimensionless distance. In the latter expression, r is the
radial distance from the center of the cylinder and «
=\8me?l/ DkgT is the Debye parameter, for which all values
were chosen to be consistent with the simulations: 7T
=293 K, D=Dy =8.923x 10" C*N~'m™, and the bulk
electrolyte concentrations /=0.1 mM, 1 mM, 10 mM, and
100 mM, resulting in the values «=0.003280 A~!,
0.010 37 A~',0.03280 A~', and 0.1037 A~!, respectively,
for the four simulations. At the cylinder surface, x=x,=ka
and y=yg=eyy/kgT. The radius a was set at 12 A so that it
approximately corresponds to the radius of B-DNA.

At each ionic strength, Eq. (11) was solved using a fourth-
order Runge-Kutta procedure with fixed space step, dx
=¢%%!. The boundary conditions were chosen so that the pre-
dicted counterion and coion concentrations reached their
bulk values at distances that produced a good overall fit to
the respective data when the predicted surface potential, ¢,
agreed with that obtained from the simulations. (For this pur-
pose, a space- and time-averaged potential at a radial dis-
tance of 12 A was calculated.) The predicted concentrations
are given by o=I1e# for the counterions and o=1Ie™# for the
coions, where we have incorporated the cofactor, ¢, in order
to parametrize the potential to account for differences be-
tween the system assumed by the dynamic model and that
assumed by the theory. In particular, the former introduces
discretization of (both ion and polyion) charge, ion finite
size, and polyion finite length (end effects), flexibility, and
penetrability; certainly the presence of counterions and
coions within the polyion can be expected to alter its “sur-
face” potential. These differences notwithstanding, the simu-
lations and parametrized theory agree quite well in regions
where the concentrations are decaying, as shown below. For
the counterions, we used the value ¢=1.0, except in the 100
mM case, in which ¢=0.33. For the coions, we used the
values ¢=0.085, 0.45, 0.38, and 0.09 in the 0.1, 1, 10, and
100 mM cases, respectively.

F. Persistence lengths

Because we sought to compare our simulation results di-
rectly with the experimental results reported in Ref. [24],
persistence lengths were calculated using the approximate
expression of Hagerman and Zimm [18],

R,=1.0120-0.248 13X + 0.033 703X> - 0.001 917 7X>.
(12)

Here, R,=17,/ 75 expresses the ratio of the approximate rota-
tional relaxation time to the Broersma rotational relaxation

031924-5



MIELKE, GRONBECH-JENSEN, AND BENHAM

time (see below), and X=L/P, where L is the molecular
contour length (the value L=500 A was used throughout)
and P is the persistence length. The approximate rotational
relaxation time, 7, was calculated according to 1/7,
=3((Dy)+(Dy)), where (D3) and (Dy) are time-averaged ro-
tational diffusion coefficients obtained from the expression
[25]

kgT
Di=|——
6TNRS;

48;: )% j#i Tij Tij

(13)

where S,2=E,-(yf+zi2), and the appropriate corresponding ex-
pressions were used to calculate D;. In Eq. (13), i and j index
the positions of beads in the double-chain relative to a coor-
dinate system whose origin is the center of mass, and whose
principal axes diagonalize the inertia tensor. The r;; are sepa-
rations between bead centers, and the other parameters were
defined previously. Our procedure was, for a given configu-
ration generated by the simulations, to calculate the center of
mass of the double-chain particles, diagonalize the moment
of inertia tensor to define the principal axes, and then calcu-
late D; and D; using Eq. (13). For each simulation, the dif-
fusion coefficients thus calculated were averaged over the
same 1 000 000 configurations used to calculate the aver-
aged, distance-dependent concentrations, and 7, was then
calculated using these (D;) and (Dy). Next, the Broersma
relaxation time was calculated from 1/73=6Dp, where [26]

3kgT L 1 2
Dp=|——5 || In--1.57+7 -0.28 .
L b In(L/b)

Here, L is the axial length of the Broersma cylinder, b is its
transverse radius, and the other parameters were defined pre-
viously. For L we used the value 500 A, and for b the value
7.5 A, corresponding to the radius of a cylinder occupying
the same volume per unit length as one pair of complemen-
tary beads in the double chain. Finally, at each ionic strength,
with all other variables determined, Eq. (12) was solved for
P.

(14)

III. RESULTS

Figures 3(a), 3(b), 3(c), and 3(d) display frames rendered
from the 0.1 mM, 1 mM, 10 mM, and 100 mM simulations,
respectively, after at least 2.0 X 10° iterations in the presence
of salt (see Sec. II). In each case, the periodic simulation cell
is represented as a box, with dimensions indicated, and
double-helical DNA entirely of G+ C content as interwound,
black and white bead chains. Counterions and coions are
depicted as gray and white spheres, respectively. The sizes of
the particles are chosen for clarity, and do not accurately
reflect relative scale. In Figs. 3(a)-3(c), a fraction of the ions
is seen to associate with the negatively charged macroion,
and the remaining ions to be distributed approximately uni-
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formly throughout the cell. In the 100 mM case [Fig. 3(d)],
the macroion is largely obscured by the counterions and
coions. Inspection of the figures additionally reveals that the
macroion is significantly straighter in the 0.1 mM case [Fig.
3(a)] than in the 1, 10, and 100 mM cases. This is suggestive
of the ionic strength dependence of the persistence length,
which will be addressed below.

To characterize the ion spatial distributions, we calculated
the time-averaged concentrations of counterions and coions
as a function of radial distance from the macroion central
axis, as described in Sec. II. Our results are shown in Fig. 4,
where Parts (a), (b), (c), and (d) correspond to the 0.1, 1, 10,
and 100 mM simulations, respectively (these concentrations
are indicated by solid horizontal lines in the figure). The
distance axes terminate at one-half the corresponding short-
est box dimension, where there is a symmetry point associ-
ated with the periodic boundary conditions. Counterion and
coion concentrations are distinguished by solid and dashed
error bars, respectively. The solid curves in Fig. 4 are con-
centrations calculated from numerical solutions of the
Poisson-Boltzmann equation for the case of cylindrical sym-
metry, under the boundary conditions described in Sec. II.
The dashed vertical lines in the figure indicate end points of
these curves at 12 A (the radius of the charged cylinder
assumed by the theory) and at the distances at which the
counterion Poisson-Boltzmann curves reach their bulk val-
ues. It is assumed that, beyond these distances, analytical
solution of the theory would yield concentrations for both
counterions and coions that are asymptotically close to their
bulk values. The fit between the concentrations predicted by
Poisson-Boltzmann theory and those obtained from the simu-
lations is generally quite good in the region intermediate to
these points, where simulated concentrations of both counte-
rions and coions are converging from extremal to bulk val-
ues.

For both counterions and coions, the theoretical and simu-
lated concentrations deviate at distances just beyond the
theory curve end point at 12 A, which coincides with the
excluded volume surface of the dynamic macroion (2R,
=13 A). This is no doubt primarily a consequence of the
ionic penetration of the interior (interstitial) region of the
double-helix accommodated by the dynamic model, but not
the theory, as evidenced in Fig. 4 by data points (but no
predictions from the theory) at distances less than 12 A.
Figure 4 shows that in all cases (within the error) the con-
centrations of counterions between 0 and 20 A increase with
increasing distance and molarity (ionic strength characteriz-
ing the simulation). In all cases, the fourth (15-20 A) coun-
terion data point underestimates the theoretical concentra-
tion, but represents the maximum simulated concentration,
with the wvalues 0.130+0.003 M, 0.231*=0.003 M,
0.329+0.004 M, and 0.469 =0.004 M in the 0.1, 1, 10, and
100 mM cases, respectively. The coion concentrations are
seen to reach local maxima between O and 15 A, and to
overestimate the theory in the 15-20 A region. Both the
maxima and degree of overestimation increase proportion-
ally with the ionic strength. The values of these local
maxima are 0.0524+0.0510 mM, 0.101 £0.0979 mM,
5.13%x1.04 mM, and 145+3.21 mM at 0.1, 1, 10, and 100
mM, respectively. Certainly the accumulation of coions near
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the surface of (and within) the highly negatively charged
macroion is a consequence of the presence of counterions,
indicating the potential importance of modeling ions as dis-
crete particles of finite size.

The theoretical and simulated counterion concentrations
also deviate where the former terminate at their bulk values,
and the latter approach equilibrium values influenced by the
additional 294 counterions present in all cases to satisfy elec-
troneutrality. In particular, in the 0.1 mM and 1 mM cases
[Figs. 4(a) and 4(b)], where the deviation from bulk values
near and beyond the bounding distance of the theory is most
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FIG. 3. Configuration snap-
shots and system geometries. The
pictured unit cells (dimensions in-
dicated) correspond to simulations
at 0.1 mM (a), | mM (b), 10 mM
(c), and 100 mM (d) 1:1 salt con-
centrations. ~ Counterions  and
coions are represented as gray and
white spheres, respectively. In
each case, a free, 147 base pair,
G+ C copolymeric DNA molecule
is represented as interwound,
black and white bead chains.
Relative sizes of the particles are
chosen for clarity. All four snap-
shots were taken after at least 2.0
X 10° configurations with salt had
been generated.

apparent (in part because emphasized by the logarithmic
scale), the 294 additional counterions alone constitute con-
centrations of 0.28 mM in the “0.1 mM” simulation [i.e., the
simulation with 214 balanced counterions and coions in a
box of volume (1210 A)?] and 2.9 mM in the “1 mM” simu-
lation [i.e., the simulation with 200 balanced counterions and
coions in a box of volume (550 A)3]—280% and 290% of
the respective assumed bulk values. In the 0.1 mM case,
counterion concentrations in this region are characterized by
significant fluctuations around a value of approximately 0.2
mM, suggesting the additional ions may generally preclude

031924-7



MIELKE, GRONBECH-JENSEN, AND BENHAM

g T i
L1 1 ]
(a) Ll : .
E ! 3
E ! i
F ! ]
0.1 ! ES
: i 2
: | iE
001¢ | EE
E ! ] E
F ! 18
0.001¢ i 38
F ek e rgiﬂimm“ﬁmmmmnfi °
7 o Py Fhtngs,
0.0001 ””JJ‘MWH Hl ‘: Wi T Ferg T R gyt
-
! ]
) | L | L | L
0.00001 100 200 300 400 500 600
Distance (A)
(b)
1 3 i E
F L 5
0.1k - 3is
F-! e
£ i 18
001¢ | IE
= - 15
0.001 )
T 19
L !
0.0001 | | E
i ’
r |
! | . | | | !
0.00001 0 50 100 150 200 250

Distance (A)

PHYSICAL REVIEW E 77, 031924 (2008)

(c) |

0.1

0.01 > I T I I e |
lll}k”X//

0.001

Concentration (M)

0.0001

| | . | . |
0.00001 0 25 50 75o
Distance (A)

| |
100 125

(d)

1

01— R

"
"

0.01

0.001

Concentration (M)

0.0001

0.00001

. | . | | |
0 25 50 75 100 125

Distance (:&)

FIG. 4. Salt concentrations versus radial distance. Averaged concentrations of counterions (solid error bars) and coions (dashed error
bars) in volume shells of 5-A radial width surrounding the central macroion are plotted (on logarithmic scale) at radial distances out to the
half-width of the simulation boxes. The bulk concentration of 1:1 salt is indicated in each figure by a solid horizontal line: (a), (b), (c), and
(d) correspond to the simulations at 0.1 mM, 1 mM, 10 mM, and 100 mM, respectively. The solid curves represent concentrations predicted
by numerically solving the Poisson-Boltzmann equation for a cylinder with uniform surface charge density and a radius of 12 A. This radius,
and the distances at which the predicted counterion concentrations reach their bulk values, are indicated by dashed vertical lines. The latter
decrease with increasing ionic strength, suggesting that the ionic atmosphere becomes increasingly compact, as anticipated. The simulations
overestimate the counterion concentrations in the bulk region owing to the 294 additional counterions required to satisfy electroneutrality.

the simulated counterion concentrations reaching bulk val-
ues. In the 1 mM case, the counterion concentrations first
decay in this region, and then level off at a value just above
1 mM between 225 and 255 A, beyond which they taper off
(likely as a consequence of symmetry at L/2 arising from the
periodic boundary conditions [see also Fig. 4(d)]). Although
the coion concentrations more closely approximate the as-
sumed bulk values in the distant region, they, like the coun-
terion concentrations, fluctuate. This may be indicative of
incomplete sampling of configuration space.

Finally, we point out that the distance at which both coun-
terion and coion concentrations are deemed to have reached
their equilibrium values—the bulk boundary of the theory, as
determined by fitting to the counterion data—decreases with
increasing characteristic ionic strength, having the values
170 A, 90 A, 65 A, and 60 A in the 0.1, 1, 10, and 100
mM cases, respectively. Both this result, and the observation
that the ion concentrations close to the model DNA increase
significantly with increasing ionic strength, indicate that the
ionic atmosphere enshrouding the DNA generally becomes
increasingly compact as salt is added, consistent with the
well-known behavior of electrolytes in solution with macro-
ions or polyelectrolytes [27].

The foregoing suggests that the simulated ion distribu-
tions form three qualitatively distinct regions, indicated by
the theory boundaries (dashed vertical lines) in Fig. 4: An
interior region occupied by particles that penetrate the effec-
tive hydrodynamic surface of the polyion; a near region,
within which the concentrations decay from large, ionic
strength-dependent values close to the surface to relatively
small, equilibrium values at an intermediate distance; and a
far region, where the concentrations fluctuate near these val-
ues out to the half-width of the simulation cell. We note the
similarity between these regions and those characterizing the
electrical double-layer model of Schellman and Stigter [28],
in which a Stern layer within the hydrodynamic shear surface
of DNA (represented as a cylinder with uniform surface
charge) is surrounded by a diffuse ionic atmosphere consist-
ing of an inner Gouy layer, where the potential is described
by the full, nonlinear Poisson-Boltzmann equation, and an
outer Debye-Hiickel layer (often associated with the Debye
length), where the electrostatic potential has been attenuated
to the extent that the Debye-Hiickel approximation becomes
valid (see Fig. 1 in Ref. [28]).

To begin investigating the effects of discrete ions on the
structural properties of DNA in our simulations, we have
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FIG. 5. Persistence lengths. Mean values of the persistence
length and their standard deviations calculated from simulations at
four salt concentrations, 0.1 mM, 1 mM, 10 mM, and 100 mM
(plotted on logarithmic scale). At 1, 10, and 100 mM, P=500 A, in
agreement with the familiar value associated to B-DNA. At 0.1
mM, the persistence length is seen to be significantly larger (P
~4700 A), consistent with the experimental results described in
Ref. [24].

calculated time-averaged persistence lengths of the model
polyion at each concentration, as described in Sec. II. Our
results are shown in Fig. 5, where it is evident that the cal-
culated values agree well with the generally accepted value
for B-DNA (450-500 A) at 1, 10, and 100 mM, and deviate
markedly from this value at 0.1 mM. These results are in
excellent agreement with the experimental work of Hager-
man, which has shown that 587-bp fragments in NaCl have a
persistence length of around 1800 A at 0.1 mM, but main-
tain a value of around 500 A at concentrations higher than
about 1 mM [24], suggesting there is no significant ionic
contribution to the persistence length in this regime of con-
centrations. Our overestimate of the persistence length at 0.1
mM (4709 + 15 A) is consistent with the model polyion be-
ing smaller than the DNA fragments used in the experiments;
its smaller size renders it more susceptible to stiffening from
the self-repulsion of phosphate charges in the regime of con-
centrations where there is little screening, and ionic contri-
butions to the persistence length are significant. We point out
that for longer molecules (e.g., the 40 000-bp T7 DNA used
in the experiments reported in Ref. [29]) these contributions
are known to extend to higher ionic strengths, likely as a
consequence of a more pronounced contribution from ex-
cluded volume effects.

IV. DISCUSSION

DNA structural transitions related to underwinding of the
double-helix (negative superhelicity) have been implicated in
all fundamental biological events involving DNA—the tran-
scription of genes, the replication and recombination of chro-
mosomes, and the repair of DNA damage—in organisms at
all levels of complexity [1-4]. The overarching goal of the
research effort described here is to provide a reliable and
efficient dynamic modeling framework for biologically rel-
evant scenarios involving superhelical DNA. This requires
incorporating as many features of the intracellular environ-
ment influencing those scenarios as possible, while maintain-
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ing computational tractability. An important example of such
a feature is long-range electrostatic interactions between free,
monovalent and polyvalent ions and highly charged macro-
molecules. Other dynamic, mesoscale DNA models that cap-
ture near-equilibrium effects of superhelicity have included
electrostatic interactions using procedures that assume a
mean field of ions separates distant, linearly charged seg-
ments of a single polymer chain. This approximates long-
range, screened self-repulsion of the chain, but does not al-
low these models to capture effects arising from the presence
of discrete ions; for example, the aforementioned ion-ion
correlations that can produce attractions between like-
charged polyions in close proximity [15], and local effects,
such as those due to ionic penetration of the hydrodynamic
surface of the polyion, which can play an important role in
the formation of alternative secondary structures.

Here, we have sought to incorporate discrete electrostatic
interactions into our explicitly double-stranded, sequence-
specific model that has previously been shown to be capable
of capturing localized, stress-induced melting events within
dynamically superhelical DNA molecules. (Because the
model DNA used in the present study was unconstrained, the
dynamics reported here do not include these events.) Results
from Brownian dynamics simulations carried out at salt con-
centrations spanning several orders-of-magnitude demon-
strate that our computational methods yield expected quali-
tative behaviors of the system; in particular, concentration-
dependent association of ions with the polyelectrolyte that
includes intrusion into its hydrodynamic interior, and stiffen-
ing of the latter in the regime of low ionic strengths, where
reduced screening leads to significant phosphate self-
repulsion. These results further demonstrate quantitative
agreement both with predictions of Poisson-Boltzmann
theory and with experimental measurements of the persis-
tence length of B-DNA.

Time-averaged calculations of coion and counterion con-
centrations versus radial distance suggest that, with increas-
ing ionic strength, the ionic atmosphere associated with the
polyion becomes increasingly compact (small and dense), a
familiar feature of polyelectrolyte systems. At each ionic
strength investigated, both counterion and coion concentra-
tions reach extrema near the hydrodynamic surface, beyond
which they decay nonlinearly with increasing distance from
the molecular axis in a manner that agrees quantitatively
with predictions of cylindrically symmetric Poisson-
Boltzmann theory. The behavior of coions near and within
the molecular surface—in particular, the ionic strength-
dependent elevation of their concentrations—is presumed to
be a consequence of their interactions with the highly con-
centrated counterions, and indicative of the importance of
close-range, finite-size effects. Deviations of simulated coun-
terion and coion concentrations from their assumed bulk val-
ues in regions where the theory predicts those values (i.e.,
beyond the large-distance boundaries depicted in Fig. 4),
likely arise principally from the over representation of coun-
terions required by the electroneutrality condition. We point
out that the periodic boundary conditions fully accommodate
“wrapping” of the polyion across the simulation box, which
could lead to its self-interaction under some circumstances.
This would effectively model the interaction of two polyions
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in solution, but also significantly disrupt the free ion distri-
butions. There is no evidence of such an interaction in the
regions of configuration space explored by the simulations
considered here.

Qualitatively, the simulated ion distributions are charac-
terized by three regions: An interstitial region, containing
ions that penetrate the hydrodynamic surface of the model
DNA; a near region, within which concentrations decay from
extrema near the molecular surface to equilibrium values;
and a far region, within which the concentrations fluctuate
near these values out to the simulation cell boundary. This
indicates that, on average, one fraction of the ions (that de-
fining the interstitial and near regions) associates closely, and
another (that defining the far region) more loosely with the
polyion. However, the stochasticity inherent to the Brownian
system precludes identifying individual ions with either frac-
tion over large regions of phase space. [We compare this
situation to that described in Ref. [28], where it is noted that
there is no physical basis for separating the ionic atmosphere
into Gouy (or “condensed”) and Debye-Hiickel components. ]
It is possible that interactions between the macroion and ions
of the interstitial region more closely approximate true bind-
ing. Because a principal advantage of the present framework
is its ability to model structure and dynamics in this region, it
will be possible to address this issue in future studies.

In addition to the dynamic behavior of finite-size ions, we
have investigated the dynamic and mechanical behavior of
explicitly double-stranded DNA in the present model by per-
forming calculations of the persistence length over the same
four-order-of-magnitude range of ionic strengths considered
for the concentration calculations. At 1, 10, and 100 mM, we
obtain values in excellent agreement with the generally ac-
cepted value for B-DNA (450—500 A), suggesting the me-
chanical parameters characterizing DNA in the model accu-
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rately capture its bending properties. At 0.1 mM, we obtain
the much higher value 4709 + 15 A, in approximate agree-
ment with the value of around 1800 A obtained by Hager-
man using longer molecules [24]. These results suggest the
model accurately captures ionic contributions to the me-
chanical properties of DNA arising in the regime of ionic
strengths where polyion self-repulsion fails to be attenuated
by a high density of ambient counterions. We are currently
performing additional simulations to further investigate this
effect.

Polyelectrolyte solutions remain a subject of intense in-
vestigation, and numerous theoretical descriptions of the
ionic atmosphere have been proposed. These include, to
name a few, the controversial (see, for example, Refs.
[30-33]) Manning condensation model [34-36], the afore-
mentioned Stigter model [23,28,13], cell models [33,37], and
Monte Carlo models [38,39]. The methods described here
will contribute to this effort by capturing electrical phenom-
ena inaccessible to approaches that either model salt as a
mean-field, or model DNA as a line charge or cylinder with
uniform surface charge. These phenomena include correla-
tion effects, which depend on the valence and positions of
finite-size ions, and occupation by the ions of the interstitial
region of double-stranded DNA, where they can, for ex-
ample, influence the formation of biologically significant al-
ternative secondary structures. The model will also comple-
ment ongoing work in other space and time regimes
associated with this multiscale problem, such as that reported
in Ref. [40]. Extension of the model to scenarios involving
longer, torsionally constrained DNA of heterogeneous base
sequence will potentially provide dynamic information about
important superhelical stress-driven structural changes in
Vivo.
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