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We study the microrheology of nanoparticle shells �A. D. Dinsmore et al., Science 298, 1006 �2002�� and
viral capsids �I. L. Ivanovska et al., Proc. Natl. Acad. Sci. U.S.A. 101, 7600 �2004�� by computing the
mechanical response function and thermal fluctuation spectrum of a viscoelastic spherical shell that is perme-
able to the surrounding solvent. We determine analytically the damped dynamics of bend and compression
modes of the shell coupled to the solvent both inside and outside the sphere in the zero Reynolds number limit.
We identify fundamental length and time scales in the system, and compute the thermal correlation function of
displacements of antipodal points on the sphere and the mechanical response to pinching forces applied at these
points. We describe how such a frequency-dependent antipodal correlation and/or response function, which
should be measurable in new AFM-based microrheology experiments, can probe the viscoelasticity of these
synthetic and biological shells constructed of nanoparticles.
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I. INTRODUCTION

Understanding the mechanical properties of soft, nano-
porous materials will be an important area of research both in
biophysics and in the materials science communities. This
emerging field of study is being driven by new atomic force
microscope �AFM�-based mechanical or rheological mea-
surements of supramolecular biological materials �1,2� and
even entire cells �3,4�. Perhaps the prototypical examples of
such a material are found in the plethora of viral capsids.
Such shells are constructed from a small set of proteins or
their oligomers �capsomeres� arranged in an ordered struc-
ture forming roughly a spherical shell. The packing of these
capsomeres generically leaves at least nanometer scale pores
through which solvent may flow. In addition, there is a wide
variety of similarly nanoporous synthetic structures such as
linked networks of nanoparticles �5� and colloids �6–8� as-
sembled into two-dimensional shells. In both the biological
and synthetic cases, the material making up the thin shell or
membrane is constructed from identical nanoscale tiles that
incorporate holes of comparable size through which the sol-
vent may flow. Other examples of porous membranes include
lipid bilayers containing pore-forming transmembrane pro-
teins �9,10� and even the large
��100 nm� cytoplasmic ribonucleoprotein vaults �11�,
which make up a rather ubiquitous but enigmatic component
of eukaryotic cells.

The frequency-dependent mechanical properties of these
various shells can be considered in two lights. First, these are
fundamental material parameters necessary to elucidate the
dynamical properties of these biological and biomimetic
structures. Knowledge of their mechanics will allow one to
understand how, e.g., a viral capsid or a vault will deform
under applied stress. Second, as is well known in the theory
of complex fluids �12� the frequency-dependent mechanics
of these objects provides a new window into the interactions
between the constitutive elements making up these struc-
tures. For example, by examining the frequency-dependent

response of a viral capsid, one learns from the dissipative
�out of phase� response about internal modes of the structure
that become relevant at different frequency scales. At low
frequencies, one might access slower dynamics involving the
larger scale rearrangements of the capsomeres, while at suf-
ficiently high frequencies one might observe dissipative
stresses coming from internal motions of the constituent pro-
teins themselves. Thus the frequency-dependent mechanics
of these spherical shells is not only a basic material param-
eter, but also gives some insight into the intermolecular and
intramolecular dynamics of these structures in their physi-
ological state �i.e., capsomeres forming a capsid� under an
applied force. Such information will inform molecular scale
theories of these interactions.

Examining the mechanics of porous nanoscale shells is a
more complex problem than the rheological study of bulk
materials since one cannot impose a deformation that iso-
lates, e.g., shear response of the shell. The response of a
porous spherical shell to a time-varying external stress nec-
essarily involves a nontrivial combination of geometry and
solvent flows, in addition to the viscoelastic response of the
shell material. In this paper we determine the finite-
frequency deformation response of viscoelastic porous shells
to applied stress, and show how one can interpret that mea-
sured response function in terms of the frequency-dependent
bending, shear, and compression moduli of the shell material.

We focus on elucidating the mechanical linear response of
such a permeable shell to a set of sinusoidally time-varying
“pinching” forces applied at antipodal points on the sphere—
see Fig. 1�a�. Such forces represent the simplest character-
ization of an AFM-based nanoindentation experiment per-
formed at finite frequency. By applying known forces at a
fixed frequency and observing the in-phase and out-of-phase
response of the diameter D of the spherical shell, one should
be able to extract the viscoelastic properties of the shell ma-
terial. Such an experiment is the finite-frequency generaliza-
tion of the work of Michel et al. �13� and can be considered
to be an active microrheological measurement. Alternatively,
one may imagine that the AFM tip can be used in a passive
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manner to monitor the thermal fluctuations of this diameter.
Since a number of the physically relevant shells are rather
incompliant, their thermal fluctuations are likely to be unre-
solvable. In such cases passive microrheology �i.e., the
monitoring of thermally fluctuating variables� must be sup-
planted by active techniques. This distinction is of little im-
portance for our analysis provided that the mechanical per-
turbation in the active technique is small enough so that the
system remains in its linear response regime. In the passive
technique, one has direct access to the power spectrum of the
fluctuating quantity determined �via the fluctuation dissipa-
tion theorem� by the imaginary part of the response function.
The real part is then obtained by a Kramers-Krönig relation
�14�. In the active measurement, the real and imaginary parts
of the response function are found directly from the in-phase
and out-of-phase response of the shell, respectively. In this
paper we will compute the full, frequency-dependent, com-
plex response function as well as the expected thermal power
spectrum of ��D����2� of each shell studied.

To understand the mechanics/dynamics of such nanoscale
objects in solution, one must consider the coupled dynamics
of soft membranes or shells and the surrounding solvent. The
case of viscous shells that are impermeable to the surround-
ing solvent has been well studied in the context of micro-
emulsions and vesicles �15�. The focus of our current study,
however, is the dynamics of membranes or shells that are
permeable to the surrounding solvent on time scales relevant
to the experiment. The effect of solvent permeation, which
we quantify below, is to create a new dissipative stress on the
shell related to solvent permeation. These dissipative �out-of-
phase� stresses associated with fluid permeation must also be
taken into account for the quantitatively correct interpreta-
tion of such measurements as described above. In particular,
in the case of a membrane or shell that has an inherent vis-
coelastic response, one may ask whether it remains possible

to distinguish the dissipative stresses due to the material
from those associated with fluid permeation.

In this paper we quantify and explore the effects of mem-
brane permeability on the dynamics of both flat and spherical
membranes. We parametrize the continuum mechanics of the
shells by a permeation coefficient, a bending modulus, an
area compression modulus, and a two-dimensional, in-plane
shear modulus. These latter two moduli we will allow to be
viscoelastic, i.e., complex and frequency dependent. We dis-
cuss the interpretation of this generalization below. We show
that solvent permeability leads to a new dissipative stress in
the system that changes the relaxation rates of each deforma-
tion mode of the system. We show also that, on a spherical
shell, these normal modes are superpositions of compression
and bending deformations. We then consider four test cases
to explore the interrelated roles of shell porosity and vis-
coelasticity in determining the mechanical response.

First, we examine the expected response of a purely elas-
tic, porous shell to isolate the dissipative effects of the inter-
action of the porous shell with the surrounding solvent. We
then consider the case of a highly incompressible, but purely
viscous membrane of varying porosity. Such systems are
reminiscent of giant unilamellar vesicles �GUVs� �16–18�
containing pore-forming proteins �19–21�.

Finally, we consider two simple models of a viscoelastic
shell inspired by viral capsids. In the first case we assume
that the shell has a purely elastic response to compression
but a viscoelastic response to in-plane shear stresses. Such a
viscoelastic response to in-plane shear may result from plas-
tic rearrangements of capsomere proteins under applied
stresses. Thus the proteinaceous shell of a virus may deform
like an amorphous solid. In the second case we assume an
elastic response to in-plane shear stress, but the dissipative
relaxation of in-plane compressional stress. Such stress re-
laxation should occur in cases where the capsomeres have
internal degrees of freedom associated with allosteric confor-
mational transitions �22–24� that change their cross-sectional
area or packing density. To model this effect we assume a
compressional stress relaxation time on a scale typical of
known allosteric transitions in proteins. In both cases we
employ the simplest model of viscoelasticity, the Maxwell
model �25�, which has a single stress-relaxation time scale.

The central question we address is whether it is possible
to extract the dissipative mechanics of the capsid proteins
from the proposed AFM-based microrheological experiment.
It is possible that the dissipative stresses associated with in-
ternal rearrangements of the capsomeres or plastic deforma-
tions of the shell will be lost against the background of dis-
sipative forces associated with solvent flow through the
porous membrane. In both cases, owing to a separation of
time scales, the nanoindentation experiment should be able
to resolve the expected viscoelastic response of the shell. We
show, however, that in the former case of a viscoelastic shear
response, the mechanical signature is quite subtle in the real
part of the response function due to the dominance of the
bending and compression moduli in the response function.
However, the imaginary or out-of-phase part of the response
function is capable of recording this effect. In the latter case,
the effect of compressional stress relaxation on time scales
typical of protein conformational change should give a dra-

FIG. 1. �Color online� �a� A schematic illustration of an AFM-
based rheological experiment on a nanoscale shell. The �red� arrows
depict the applied stresses �1=−�2 that deform the �blue� shell of
radius R from a sphere on the left into an oblate object shown on the
right. The total change in the sphere’s diameter along the line of
force application is �D. This deformation can be resolved into a
linear superposition of two sets of normal modes. In �b� we show
the Lennon-Brochard �=2 mode while in �c� we show the compres-
sion dominated longitudinal sound �=2 mode. In each figure the
�black� arrows represent the velocity field of the sphere.
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matic mechanical signature in the imaginary part of the re-
sponse function so that finite-frequency nanoindentation
studies should be an excellent probe of these complex me-
chanics.

The remainder of the paper is organized as follows. In
Sec. II A we calculate the effect of porosity on the undula-
tion dynamics of a flat membrane in a viscous solvent. We
also discuss expected values of the permeation coefficient for
a variety of physically important systems. The calculation of
these coefficients is discussed in Appendix A. In Sec. II B we
consider the deformations of a spherical membrane where
the curvature of the undeformed structure couples the previ-
ously studied bending mode to in-plane compression. To in-
corporate the mechanical effects of solvent hydrodynamics
in the case of spherical shells, we recount and apply the
pioneering work of Lamb �26� and Brenner �27� on low-
Reynolds number flows inside and outside a sphere in Sec.
II C. Using the results of the previous calculations, we plot
and discuss the decay rates of the linearly independent
modes of the shell in Sec. II D. In Sec. III we use the dy-
namics of these linearly independent modes to construct the
complex, frequency-dependent response function of the shell
to antipodal pinching forces. In Secs. III A–III C we plot the
response functions and predicted thermal power spectra of
elastic, viscous, and the two classes of viscoelastic shells
introduced above. Finally, in Sec. IV, we compare these re-
sults and discuss the implications of our work for future
nanoindentation-based rheology measurements. We also
compute typical force and frequency scales describing the
mechanics of various nanoporous shells listed in Table I.

II. CALCULATION

A. The plane permeable membrane

The overarching feature of these systems is that fluid flow
through the shell or membrane �permeation� can occur on
time scales comparable to the relaxation of surface deforma-
tions. Thus the velocity of the fluid at the membrane surface
in the direction along the local normal of that surface will not
be equal to the normal velocity of the membrane. In the limit
of high membrane porosity, the fluid will essentially pass
through the membrane undisturbed. Consequently the hydro-
dynamic interaction of the membrane with itself, which is
known to qualitatively alter the spectrum of the decay rates
of membrane undulations �28�, is suppressed, and replaced
by dynamics consistent with local drag. As the porosity or

permeability of the membrane is reduced, the system con-
tinuously recovers these well-known hydrodynamic self-
interactions that control the structure of the spectrum of un-
dulatory decay rates. To better understand this feature we
address the dynamics of a plane porous elastic membrane in
a viscous Newtonian solvent. We assume that the dynamics
are all occurring at a low Reynolds number. For a flat mem-
brane or interface the normal modes of the coupled interface
and solvent system involve bending, in-plane shear, and
compression �29�. Since we will concentrate on indentation-
based measurements, we consider only the undulation mode
of the flat membrane.

A zero-tension membrane is characterized by a single
bending modulus � so that free energy of the membrane may
be written as

F =
�

2
	 ���

2 w�2dxdy , �1�

in terms of normal displacement w. Here �� is the in-plane
gradient operator acting on membrane coordinates x ,y. In the
above we implicitly assume small deformations of the sur-
face from its flat equilibrium shape. The restoring stresses
acting on the deformed membrane are given by

f = −
�F
�w

= − � ��
4 w . �2�

The equation of motion for the fluid of viscosity � in the
limit of vanishing Reynolds number is the linearized Navier-
Stokes equation for an incompressible fluid:

� · v = 0, �3�

�
�v

�t
= � �2v − �p , �4�

where p is the pressure. The interaction between the fluid and
the membrane is governed by three boundary conditions en-
forced at the membrane lying in the xy plane. First, we re-
quire Darcy’s law to be obeyed so that the flux of the fluid
through a unit area of the membrane is proportional to the
pressure difference between the two sides �30�. Thus

�
�vz�z=0 −
dw

dt
� = p− − p+, �5�

where p+,− are the pressures above �z	0� and below �z

0� the membrane, respectively. We discuss the estimation
of the Darcy coefficient � in terms of the microscale struc-
ture of the membrane in Appendix A. Expected values of the
permeation coefficient for a variety of systems are given in
Table I. This first boundary condition relates the normal ve-
locities of the membrane and fluid at the membrane surface
by equating the normal stress difference across the mem-
brane to the fluid flow through it. In addition, we must insist
upon the continuity of the normal component of the fluid
velocity so that

TABLE I. Dimensionless permeation coefficients �̄ �Eq. �A6��,
Young’s moduli Y, and radius to thickness ratios R /h for nanoscale
capsules.

System Y �MPa� R/h �̄ Ref.

Rotavirus �100 �10 50 �31�
S-layer shell �103 �103 104 �32�

Colloidosome 1–10 2–90 104–105 �6�
GUV �5 �103 10–� �9,10�

Polymer membrane 0.1–1 �102 104–105 �8�
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vz
+�0� = vz

−�0� , �6�

where vz
��0�=limz→0� vz�z�. For the tangential velocities, we

enforce a no-slip boundary condition on the fluid at the upper
and lower boundaries of the membrane:

vx
+�0� = vx

−�0� = 0. �7�

Finally, we require the fluid velocity field and pressure to
vanish infinitely far from the membrane so that

v���� = 0, p���� = 0. �8�

Imposing an external stress �e and requiring force balance
at the membrane, we relate the elastic restoring stress f from
Eq. �2� to the external stress and viscous stresses 
zz

+ and 
zz
−

exerted by the fluid on both sides of the membrane so that

��
zz
− − 
zz

+ ��z=0 + �e = � �4w . �9�

Here and elsewhere we ignore the inertia of the membrane.
To compute the decay rate of membrane undulations having
wave vector q, we consider a sinusoidally applied normal
stress �e,

�e = � eiqx−i�t, �10�

and look for solutions of the membrane deformation taking
the form of

w = w0eiqx−i�t. �11�

Details of the calculation are presented in Appendix B. In the
limit that viscous stresses dominate inertial ones in the fluid,
i.e., �� � �q2, we find that the amplitude of the driven un-
dulations is given by

w0 = −
�� �

2q� + 2�
2i � � − � q4� �

2q� + 2� . �12�

The poles of the response function shown in Eq. �12� deter-
mine the relaxation rate of the freely decaying surface. We
find that the decay rate takes the form

� = − i �
q3

4�
− i

�q4

�
. �13�

In the limit of an impermeable membrane, i.e., �→�, we
recover the Lennon and Brochard result �28�. As � becomes
smaller reflecting the increasing permeability of the mem-
brane, the decay rate that scales as q3 crosses over to q4

scaling. This small-� dynamics is consistent with a “free-
draining” assumption that the fluid merely exerts a local drag
on the membrane, but does not contribute to a long-ranged
hydrodynamic interaction between distant parts of the sur-
face. For any finite permeability, one may note from Eq. �13�
that there is a crossover length l� � /� above which the
decay of surface undulations is controlled by long-range hy-
drodynamic interactions, while undulations of a wavelength
less than l experience the free-draining dynamics.

Given this intuition gained from the more simple question
of small undulations of a planar, permeable membrane, we
now turn to the problem of a spherical shell that is a more
appropriate model of a viral capsid or its synthetic mimics.

B. Mechanics of a porous spherical shell

Extending our analysis of the dynamics of a plane porous
membrane to the case of spherical ones involves two sepa-
rate complications. The first is due to the spherical geometry
of the undeformed membrane. In the case of a flat interface,
the in-plane shear and compression modes of the material
decouple from the out-of-plane bending modes to linear or-
der in the bending deformation �33�. This is not the case for
the sphere. For small deformations of surfaces having finite
curvature, out-of-plane deformation is coupled at first order
to in-plane dilatation and shear �34�.

We write the elastic bending free energy Fb of the spheri-
cal shell using the well-known Helfrich form �15,34,35�

Fb =
�

2
	 d2s�K�

� − c0�2, �14�

where d2s is an element of area on the surface, � is once
again the bending rigidity, K�

� is the trace of the curvature
tensor, and c0 is the spontaneous curvature. The Greek indi-
ces run over the �angular� coordinates of the undeformed
sphere. The curvature tensor on the spherical membrane of
radius R may be written in terms of the out-of-plane defor-
mation w as

K�
� = D�D�w + ��

�w/R2 + ��
�/R . �15�

In order to address out-of-plane deformation on the
sphere, we must include the in-plane elastic stresses associ-
ated with the dilatation and shear of the membrane. To do
this we introduce a two-dimensional �2D� covariant strain
tensor given by

E�
� =

1

2
�D�t� + D�t�� + ��

�w/R , �16�

where t is a displacement vector in tangent space of the
sphere. Using this decomposition of the deformation into in-
plane and out-of-plane motion, the most general displace-
ment of material elements of sphere can be expressed by

� = wr̂ + t . �17�

The in-plane elastic energy of the sphere can be written as a
surface integral of a scalar elastic energy density

Fe =	 d2s��E�
�E�

� +
�

2
�E�

��2
 , �18�

where � and � are the two 2D Lamé coefficients required to
describe the elasticity of isotropic materials. It is not clear a
priori that the isotropic elasticity is sufficient to accurately
describe the mechanics of a viral capsid or other ordered
structures, but this choice introduces the minimal set of un-
known parameters and greatly simplifies the analysis. In dis-
cussions of the equilibrium spectrum of shape deformations
of these membranes, we will consider the viscoelastic gener-
alization of Eq. �18� where the Lamé coefficients are com-
plex functions of frequency so that the strain energy involves
an integral over the history of prior deformations.

Combining Eqs. �16� and �18�, it is clear that the strain
energy contains a term bilinear in out-of-plane and in-plane
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deformation. This shows that the curvature of the surface
does indeed induce a linear order coupling of the in-plane
deformation to forces along the local membrane normal. The
total elastic free-energy Fel of membrane is then expressed
as the sum of Eqs. �14� and �18�, i.e., it is given by Fel
=Fb+Fe.

We now look for the normal modes of the deformation of
the sphere. Based on intuition from flat space, we write the
in-plane displacement field t as the sum of an irrotational and
a solenoidal part

t� = D� � + ���D� � , �19�

where � and � are two scalar fields defined on the surface of
the sphere and ��� is the alternating tensor. From Eq. �19�
one notes that � determines the dilatational deformation of
the system, while � describes the density-preserving shear
modes of the membrane.

Using this decomposition, the elastic free energy of the
spherical shell is given by Fel=F1�w ,��+F2���, where

ℱ1�w,�� =	 d2s��

2
w��� + 2/R2�2w� +

2�

R2 �2/R − c0�w

+
2K

R2 w2 +
2K

R
w����+

1

2
�K + �������2

+
�

R2������� �20�

and

ℱ2��� =	 d2s��

2
������� + 2�/R2��; �21�

�� is the two-dimensional in-plane Laplacian and K= � +�
�34�. Since there is no coupling between �w ,�� and �,
purely radial deformations of the sphere will excite only the
compression modes related to �. Therefore in the interest of
studying microrheological approaches to the measurement of
the membrane mechanics via nanoindentation studies, we
may neglect F2���. Of course, to address the question of the
dynamics of the porous, spherical membrane we must con-
sider the �visco�elastic object described above coupled to the
solvent flows around and through it. In order to do so, we
examine the fluid motions inside and outside the sphere in
the zero Reynolds number or creeping flow regime.

C. Hydrodynamics of the spherical shell

It has long been recognized that studying this hydrody-
namics of a fluid confined to either the interior or exterior of
a sphere is facilitated by recasting the Stokes equation in
spherical coordinates and expanding the solutions in a basis
of the appropriate solid spherical harmonics �26,27,36�.
These results were used �37� to explore the dynamics of an
impermeable elastic shell immersed in a viscous fluid. In the
interests of presenting a self-contained analysis, we recapitu-
late some of the earlier work on the hydrodynamics of the
problem. We then discuss and expand upon the work of
Schneider et al. �37,38� to introduce permeability, and to
correct the mechanical coupling between bending and in-

plane dilatation that is imposed by the curvature of the mem-
brane as demonstrated in Eq. �16�.

To set the boundary conditions in a manner similar to that
discussed for the case of an undulating permeable plane, we
enforce the continuity of the radial components of the fluid
velocity normal to the surface of the membrane so that

�vr
in�r=R = �vr

out�r=R, �22�

where here and in the following we label the field associated
with the fluid in the interior by “in” and on the exterior of the
spherical shell by “out.” We also require a no-slip boundary
condition on the components of the velocity field in the tan-
gent plane of the membrane so that

v�
in = v�

out = V�, �23�

where the velocity of the membrane V is given by

V =
d�

dt
=

dw

dt
r̂ + ��

� �

�t
�24�

using Eqs. �17� and �19�. Here �� is the gradient operator in
the tangent plane of the sphere and r̂ is the local outward unit
normal.

To couple the flow of the fluid through the membrane to
its deformation, we insist on force balance at the membrane
so that

F = Ffluid, �25�

where F is the viscoelastic restoring force acting on the
membrane due to its deformation history, and Ffluid is the
negative of the difference between the viscous stresses 
ij

in,out

on the membrane due to fluid flow inside and outside of it,
respectively,

�Ffluid� j = r̂k�
kj
in − 
kj

out� . �26�

Finally, the local difference in the normal velocity of the
fluid and the membrane is governed by Darcy’s law

���vr�r=R −
dw

dt

 = �
rr

in − 
rr
out� , �27�

where � is the permeation parameter introduced in Eq. �5�.
The rotational symmetry of the problem ensures that the

coupled membrane deformations and fluid motion corre-
sponding to each spherical harmonic decouple from all other
such terms. We can expand the fluid velocity field inside and
outside the spherical membrane in terms of two scalar poten-
tials, � ,�f, and pressure p �26,27,36�. Due to incompress-
ibility and the Stokes equation, one can show that these func-
tions and the pressure field p each satisfy a Laplace equation,

�2p = 0, �2 � = 0, �2�f = 0. �28�

It can be shown that the field �f is the source of fluid vortic-
ity. To analyze the effects of indentation experiments on the
sphere, we will study membrane deformation without in-
plane shear. The remaining deformations do not couple to
fluid vorticity so we may set �f=0 hereafter. We expand the
two remaining functions p, � in terms of solid spherical
harmonics in the interior and exterior of the spherical mem-
brane:
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pin = �
�m

P�m
in �t�r�Y�m�� ,�� , �29�

�in = �
�m

��m
in �t�r�Y�m�� ,�� , �30�

pout = �
�m

P�m
out�t�r−�−1Y�m�� ,�� , �31�

�out = �
�m

��m
out�t�r−�−1Y�m�� ,�� . �32�

In terms of the basis of solid spherical harmonics we may
write the velocity field in the exterior and interior of the
sphere as a sum over angular modes n= �� ,m�,

v = �
n=−�

� �� � �r�n
f � + ��n+

�n + 3�
2 � �n + 1��2n + 3�

r2 � pn

−
n

��n + 1��2n + 3�
rpn
 . �33�

Using Eqs. �33� and �29�–�32� we find that the continuity of
the radial fluid velocity implies

�R�+1

2 � �2� + 3�
P�m

in +
�

R
R���m

in +
�� + 1�R

2 � �1 − 2��
P�m

out

R�+1

+
�� + 1�

R

��m
out

R�+1 = 0. �34�

The tangential velocity of the fluid in the absence of vortic-
ity, on the other hand, is given by

v�
in = ���

�m
���m

in �t� +
�� + 3�r2

2 � �� + 1��2� + 3�
P�m

in �t�
r�

�35�

and

v�
out = ���

�m
���m

out�t� −
�2 − ��r2

2 � ��1 − 2��
P�m

out�t�
r−�−1,

�36�

where we have used Eqs. �29�–�33�.
We now expand the membrane deformations in spherical

harmonics in a manner analogous to our expansion of the
fluid velocity field by writing

w�� ,�,t� = �
�m

w�m�t�Y�m�� ,�� , �37�

��� ,�,t� = �
�m

��m�t�Y�m�� ,�� . �38�

Using Eqs. �37� and �38� along with Eqs. �35� and �36� in Eq.
�23�, we find that the no-slip condition on the tangential ve-
locity field at the membrane gives two equations,

R���m
in +

�� + 3�R�+2

2 � �� + 1��2� + 3�
P�m

in − �̇�m = 0 �39�

and

��m
out

R�+1 −
�2 − ��R2

2 � ��1 − 2��
P�m

out

R�+1 − �̇�m = 0, �40�

where the �·� denotes the time derivative.
We have now accounted for the kinematic boundary con-

ditions on the fluid and membrane velocity at the surface of
the sphere. We also require the balance of radial hydrody-
namic and viscoelastic stresses at this surface to satisfy Dar-
cy’s law. To ensure force balance at the membrane we de-
mand the equality of the vectors in Eq. �25�. Clearly this
results in three scalar equations, but, it is computationally
convenient to choose those scalars in a rather nontransparent
manner �27�. We first set the components of the forces nor-
mal to the membrane equal to each other:

r̂ · Ffluid = r̂ · F . �41�

We then set the divergence of the two force fields equal to
each other at the surface of the membrane using the vector
identity,

��r · ��
 r

r
· Ffluid� − r � · Ffluid


r=R
= − R � · F . �42�

Finally we also set the curls of these vector fields equal to
each other on the surface of the membrane,

�r · � � Ffluid�r=R = r · � � F . �43�

These curls, in fact, vanish since we have excluded in-plane
shear deformations of the membrane and vorticity of the
fluid so this additional boundary condition is automatically
satisfied.

We now enforce Eq. �41�. The radial component of the
forces on the membrane due to the fluid �27� is given by

r̂ · Ffluid = � �
�m
�− 2�� + 1��� + 2�

R2

��m
out�t�

R�+1

+
�2 + 3� − 1

��2� − 1�
P�m

out�t�
R�+1 +

2��� − 1�
R2 R���m

in �t�

+
�2 − � − 3

��2� + 3�
R�P�m

in �t�
Y�m�� ,�� . �44�

The normal component of the viscoelastic forces on the
membrane can be written in terms of w and �, the radial and
in-plane longitudinal deformations of the membrane. These
forces are computed by a derivative of F1:

r̂�F · r̂� = −
�F1

�w
r̂

= r̂�−
2�

R2 �2/R − c0� −
4K

R2 w − � ��� + 2/R2�2w

−
2K

R
���
 . �45�
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For the case of a viscoelastic membrane Eq. �45� involves an
integral over the deformation history of the membrane. In the
frequency domain, however, we incorporate the viscoelastic
case by letting the elastic moduli become frequency-
dependent complex quantities. The same applies to Eq. �49�
below. The spontaneous curvature c0 appearing in the force
law Eq. �45� generates an additional, deformation-
independent normal force on the membrane that is compen-
sated by internal stresses in the membrane. Since we do not
consider the nonlinear response of the elastic material such
internal stresses do not affect the dynamics. Consequently,
we set 2 /R−c0=0 in the remainder of this work.

Expanding Eq. �45� in spherical harmonics and equating
these normal viscoelastic forces to the hydrodynamic ones
from Eq. �44� as required by Eq. �41� leads to

− 2
K

R3��� + 1���m + 
 �

R4 �� + 2�2�� − 1�2 + 4
K

R2�w�m

−
�2 + 3� − 1

�1 − 2��
P�m

out

R�+1 −
2 � �� + 1��� + 2�

R2

��m
out

R�+1

+
�2 − � − 3

�2� + 3�
R�P�m

in + 2 �
��� − 1�

R2 R���m
in = 0. �46�

Using the same analysis to demand force balance for the
tangential components of the forces, we determine the left-
hand side �LHS� of Eq. �42� to be

��r · ��
 r

r
· Ffluid� − r � · Ffluid


r=R

= � �
�m
�2�� + 1��� + 2�2

R2

��m
out�t�

R�+1 +
2��� − 1�2

R2 R���m
in �t�

+
�3 + 3�2 + 5� − 3

��1 − 2��
P�m

out�t�
R�+1

+
�3 + 2� + 6

��2� + 3�
R�P�m

in �t�
Y�m�� ,�� . �47�

The right-hand side �RHS� of Eq. �42� can be written in
terms of the deformation field of the membrane,

r̂ � �r̂ � F� = −
�F1

����

= ��
2K

R
w + �K + ����

2 � +
2�

R2 ��
�48�

and

− R � · F =
8K

R2 + 2 � 
��
2 +

2

R2�2

w − 2K��
2 w

− R�K + ����
4 � −

2�

R
��

2 � +
4K

R
��

2 � .

�49�

Expanding Eq. �49� in spherical harmonics and equating it to
Eq. �47� we find

�3 + 2� + 6

�2� + 3�
R�P�m

in +
2 � ��� − 1�2

R2 R���m
in

+
�3 + 3�2 + 5� − 3

�1 − 2��
P�m

out

R�+1 +
2 � �� + 1��� + 2�2

R2

��m
out

R�+1

− 
2
�

R4 �� + 2�2�� − 1�2 + 2
K

R2��� + 1� + 8
K

R2�w�m

+
1

R3 ��K + ���2�� + 1�2 − 2 � ��� + 1�

+ 4K��� + 1����m = 0. �50�

We use Darcy’s law to set the normal velocity difference
between the fluid and the membrane, Eq. �27�. This generates
an ordinary first-order differential equation. We look for so-
lutions having a time dependence of the form �e−i��mt. Us-
ing this assumption in Eq. �27�, we find our sixth and the last
relation between the dynamical variables,

�i��m � − 
 �

R4 �� + 2�2�� − 1�2 + 4
K

R2�
w�m

+ �
�R

2 � �2� + 3�
R�P�m

in + �
�

R
R���m

in

+ 2
K

R3��� + 1���m = 0. �51�

We now have a set of six algebraic equations governing the
six dynamical variables �� ,w ,�in , Pin ,�out , Pout�. These six
variables are governed by Eqs. �34�, �39�, �40�, �46�, �50�,
and �51�. In this damped system, we expect to find solutions
having a negative imaginary part of ��m, which we will in-
terpret as the decay rate of a mode describing the coupled
dynamics of the spherical membrane and fluid system in the
case of vanishing in-plane membrane shear and fluid vortic-
ity.

Since we want to focus on the dynamics of the membrane,
we use Eqs. �34�, �39�, �40�, and �46� to eliminate the four
variables p ,� associated with the fluid dynamics inside and
outside the membrane. As a result we find a system of two
algebraic equations for w�m and ��m describing the bending
and compression of the membrane, respectively:

A
w�m

��m
� = 0. �52�

The ��m-dependent components of the A matrix are listed in
Appendix C. The condition for the existence of nontrivial
solutions to Eqs. �52� determines the decay rates of the de-
formation modes of the membrane coupled to the surround-
ing fluid.

To discuss these decay rates of the membrane deformation
modes, it is convenient to introduce the following dimen-
sionless variables. We measure the frequencies scaled by the
relaxation rate � / ��R3� so that

�̄� �
�� � R3

�
. �53�

We scale all elastic moduli by � /R2:
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�̄ �
�R2

�
, K̄ �

KR2

�
. �54�

The permeation coefficient is similarly nondimensionalized
by � /R so we can introduce

�̄ �
�R

�
. �55�

In this way we scale all energies by the bending modulus,
which has dimensions of energy.

D. The modes of the shell

In Fig. 2 we plot the decay time �̄�
�1�=1 / i�̄�

�1� of the first
mode as a function of the order of the spherical harmonic
��1. To demonstrate the effect of permeation on these de-
cay rates, we show three curves corresponding to a highly
permeable membrane ��̄=0.1�, one of intermediate perme-
ability ��̄=25�, and a completely impermeable one ��̄=��.
All three cases correspond to a perfectly elastic membrane so

that �̄ and K̄ are real and frequency independent. For ��1
the characteristic wavelength of the deformation is much
smaller than the radius of curvature of the sphere so we
should expect to recover the flat membrane result of Lennon
and Brochard �28�. Indeed, for large �, we find that �̄�

�1�

��−3 so that the decay rate ��̄�
�1��−1��3�� R / � �3�q3 where

� is the wavelength of the mode. As expected based on our
analysis of the plane permeable membrane, the transition to
the Lennon and Brochard behavior is more apparent for the
impermeable case ��̄=�� and becomes less distinct as �̄ de-
creases. It is not possible to consider the case �̄=0 when
discussing the relaxational dynamics of the Lennon-
Brochard �LB� mode as the decay rate of this mode becomes
infinite as �̄→0 for all �.

We parametrize the relative degree of bending vs com-
pression associated with these modes by introducing their
ratio

w�m/��m = Z�p���� , �56�

where p=1,2 indexes the two linearly independent modes of
the system. We plot in Fig. 3 this ratio Z�1���� for the first
mode whose corresponding decay times are shown in Fig. 2.
Examining this plot it is clear that this mode is, indeed, the
analog of the Lennon-Brochard bending mode since
�Z�1������1. This identification of the first mode with bend-
ing becomes more exact at higher � where the curvature of
the membrane becomes less significant for the dynamics.
The overall negative sign for this result is due to the fact that
where the membrane bends outward the material expands
and where it curves inward the material compresses. Due to
the overwhelming bending character of this mode, we will
refer to it as the Lennon-Brochard �LB� mode.

We now turn to the second mode and plot in Fig. 4 its
dimensionless decay time �̄�

�2�=1 / i�̄�
�2� as a function of �. We

use the same elastic parameters �̄ and K̄ as in the plot of the
decay times of the LB mode and show curves corresponding
to an impermeable case ��̄=��, one of intermediate perme-
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FIG. 2. �Color online� Dimensionless relaxation times of the
Lennon Brochard mode �̄�

�1� for an elastic membrane vs the mode
number � for various permeation parameters �̄. The dimensionless

elastic parameters of the membrane are �̄=75 and K̄=225, which
corresponds to the Poisson ratio 
=0.5 and the radius to thickness
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FIG. 3. �Color online� Ratio of bending to stretching Z�1���� in
the Lennon-Brochard mode vs mode number � of a perfectly elastic
membrane. The membrane elasticity parameters are identical to
those used in Fig. 2. The values of the dimensionless permeation
coefficient are listed in the figure legend.
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ability ��̄=25�, and a case where the fluid passes through the
membrane without any resistance ��̄=0�. When ��1 all
these cases converge onto a single curve so that �̄�

�2���−1

independent of �̄.
As �̄�

�2���−1 for large �, this mode cannot be controlled
by membrane bending at a high wave number. Turning to
Z�2����—see Eq. �56�—which we plot in Fig. 5, we see that
this mode is dominated by the in-plane compression of the
membrane. In fact, this mode is the remnant of longitudinal
sound �LS� mode in the elastic membrane that is overdamped
due to its coupling to the surrounding solvent. It is interest-
ing to note that, only at large �, the �LB� mode becomes
strongly bending dominated, while the longitudinal sound
mode �LS� only loses its bending character at large �. It is
well known that bending and longitudinal sound are orthogo-
nal normal modes of the linearized membrane or solvent
system in the case of a flat membrane �29�. Examining the
results for the sphere, we find that geometry couples these
deformations, but, at a high wave number �or large �� where
the wavelength of the deformation is much less than the
radius of curvature R, the two orthogonal modes of the
sphere approach the simple mode structure of the flat mem-
brane.

Before closing our discussion of the mode structure of the
spherical elastic membrane, we must consider the �=0 mode
of the membrane, which corresponds to purely radial motion
of its surface. This mode must be handled independently of
the others because of the incompressibility of the solvent.
Because of that incompressibility, there can be no corre-
sponding radial motion of the solvent so that the membrane
relaxes against a background of quiescent fluid. In this mode
the radial deformation obeys

�w

�t
= −

keff

�
w , �57�

with no angular dependence, and with an effective spring
constant of

keff = 4�� + R2K

R4 
 . �58�

The dimensionless relaxation rate of the �=0 LB mode is
then given by Eqs. �57� and �58�. We find

�̄0
�2� =

�̄

4

1

1 + K̄
. �59�

It is clear that the decay rate of this mode vanishes in the
limit of an impermeable ��̄=�� sphere as volume changing
deformations are not allowed. As the sphere becomes more
permeable the decay rate increases becoming infinite in the
limit of a “ghost membrane” ��̄=0� since we have neglected
the membrane’s inertia.

To compare these results with experiments, it is useful to
recognize that our two-dimensional solid membrane is an
idealization of a thin sheet of thickness h whose material
properties can be defined in terms of three-dimensional
Lamé coefficients �3, �3. Using standard results �33,39� we
may then reexpress our dimensionless elastic parameters in
terms of the geometry of the system and the Poisson ratio of
the membrane material 
. We find

�̄ = 6
R

h
�2

�1 − 
� , �60�

K̄ = 6
R

h
�2

�1 + 
� , �61�

while the bending modulus is given by

� =
�3h3

3

�3 + �3

�3 + 2�3
. �62�

We return to this point with regard to the microrheology of
viscoelastic spherical membranes in Sec. III.

III. THE NANOINDENTATION RESPONSE FUNCTION

Using the above analysis of the mechanics of porous, vis-
coelastic spherical shells, we now determine the microrheo-
logical signature of viscoelastic, porous shells. As discussed
above, these results are relevant to the study of the mechan-
ics of viral capsids, colloidosomes, and porous lipid bilayers
such as those that contain membrane-bound pore-forming
proteins.

In a typical AFM experiment, an AFM tip pushes a viral
capsid to a substrate wall. However, for small enough defor-
mations, the forces acting on the shell can be treated as an-
tipodal, directed radially toward the center of the shell, and
the extra hydrodynamic forces associated with flows gener-
ated by the motion of the tip toward the substrate can be
ignored. We explore this issue in Appendix E where we show
that the error that we make by treating the forces as pointlike
is minimal. To discuss an AFM-based measurement, we de-
termine the change in the distance between the point of force
application at the antipodal point on the sphere. This distance
measures the degree to which the sphere becomes oblate un-
der the applied force. In response to a sinusoidally varying
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FIG. 5. �Color online� Ratio of bending to stretching Z�2���� in
the longitudinal sound mode vs mode number � of a perfectly elas-
tic membrane. The membrane elasticity parameters are identical to
those used in Fig. 4. The values of the dimensionless permeation
coefficient are listed in the figure legend.
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stress of amplitude �0=F0 /a2 �where F0 is the applied force
and a2 is the area of the AFM tip�, this distance will oscillate
with an amplitude

D��� = 2R − H����0. �63�

This defines the response function H���. In the passive mi-
crorheological experiment, on the other hand, the thermally
excited fluctuations of 2R−D give the same information via
the fluctuation-dissipation theorem �40,41�.

To calculate H��� we apply equal and opposite forces to
the “north” and “south” poles of the sphere, i.e., at polar
angles �=0,�. The force balance boundary condition Eq.
�41� then becomes

r̂ · Ffluid + �1��� + �2��� = r̂ · F , �64�

where �1,2 are the external normal stresses on the surface,

�1��� = − � ���e−i�tr̂F0/a2, �65�

�2��� = � ��− ��e−i�tr̂F0/a2. �66�

As shown above we will consider point forces so that the
area of the sphere contacted by the AFM tip a→0 at constant
F0 /a2=�0. Using the completeness of spherical harmonics
on the unit sphere we express these externally applied
stresses in terms of spherical harmonic modes:

��t, � ,�� = − r̂�0�
�,m

�Y�0
� �0,0� + Y�0

� �� ,0��Y�m�� ,��e−i�t.

�67�

Thus the AFM-induced pinching of the shell couples to all
the spherical harmonic modes of the system discussed above.
The effect of the finite size of the AFM tip can be accounted
for by putting in a large-� cutoff in the sum shown in Eq.
�67�. For a reasonably small tip, this effect must be negli-
gible. Using these previous results we compute the radial
deformation amplitude associated with each � mode at the
north pole of the sphere. In terms of the dimensionless fre-
quency �̄= � �R3 /� this radial displacement of the sphere at
the north pole is given by

w���̄� =
R4

�
�0�1 + �− 1���Y�0

� �0,0�����̄� , �68�

where ����̄� is the frequency-dependent complex radial com-
pliance of the shell for a radially applied normal stress dis-
tributed over the sphere as Y�0���. This compliance results
from both the Lennon-Brochard �LB� and longitudinal sound
�LS� modes of the shell discussed above. The complex,
frequency-dependent response function can be expressed in
terms of five dimensionless functions of the angular momen-
tum of the mode �:

����̄� =
�1��� + i�̄�2���

�3��� + i�̄�4��� + �̄2�5���
, �69�

where, due to their length, these functions �1��� , . . . ,�5���
are reported in Appendix D. As shown there, it is through
these functions that the �-dependent response function ac-
quires its dependence on the dimensionless permeation pa-

rameter �̄ and on the elastic constants �̄ and K̄.
Summing over the � modes using Eqs. �67� and �68�, we

find the radial displacement of the shell at �� ,�� to be

w��̄ , � ,�� =
�0R4

�
�
�=0

�

Y�0�� ,���1 + �− 1�������̄�Y�0
� �0,0� .

�70�

Thus the amplitude of oscillations of the diameter is given by

D��̄� = 2R + w��̄ ,0,0� + w��̄ , � ,0� . �71�

Using the definition in Eq. �63� and Eqs. �69�–�71�, we solve
for the response function in terms of the point force response
of the shell. We find that the diameter response function is
given by

H��̄� =
2R4

�
�
�=0

�

�1 + �− 1�������̄��Y�0�0,0��2. �72�

The dimensions of the response function in terms of length
and energy are H�L4E−1. In the following we report a di-
mensionless response function of the form H�R−4.

A. An elastic shell

We plot in Fig. 6�a� the real �in phase� and imaginary �out
of phase� parts of the diameter response function H��̄� for
purely elastic shells of varying porosity. In anticipation of
future fluctuation-based microrheology experiments we plot
in Fig. 6�b� the predicted power spectra for the thermal fluc-
tuations of this variable, computed using the fluctuation-
dissipation theorem �14�. Examining the figure we note that
the response function can be characterized as having a low-
frequency elastic plateau followed by a crossover to a
viscous-dominated decay at high frequencies. As the dimen-
sionless permeation coefficient is varied from that of an im-
permeable shell ��̄=�� to one that allows fluid permeation
with no resistance ��̄=0�, the dimensionless crossover fre-
quency moves from �10 to �102. We return to predicted
values of this crossover frequency for various physical sys-
tems in Sec. IV. Within the low-frequency plateau where
much, if not all, of the dynamical data are likely to be taken,
the main effect of permeation is to shift the value of the
response function by approximately a factor of 2. Thus in
order to correctly extract the bending and compression
moduli of the shell to better than this factor of 2, an accurate
account of the permeation must be made. In the passive mi-
crorheology experiment, the effect of permeation on the ther-
mal power spectrum of diameter fluctuations is more pro-
nounced. Ignoring permeation in this sort of measurement
leads to quantitative inaccuracies on the order of 4 as shown
in Fig. 6�b�.

In Fig. 7 we show the dependence of the response func-
tion on the ratio of the radius of the shell to its thickness.
Under the assumption that material making up the shell is
essentially incompressible, we fix the Poisson ratio to be 1/2.
Thus as can be seen from Eqs. �60� and �61�, only the ratio of
the shell’s radius to its thickness determines its effective di-

mensionless elastic moduli: K̄ and �̄ As might be expected,
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Fig. 7 shows that the response function decreases in magni-
tude for bigger and for thinner shells. For example, the real
part of the response function �̄ in the low-frequency plateau
decreases by about 102 when the ratio of R /h is increased by
a factor of 10 from R /h=5 to R /h=50. In Sec. IV we con-
sider further the quantitative effect of changing the elastic
moduli of the shell. There we explicitly calculate the force
scale necessary to generate a radial deformation of 10% of
the undeformed shell’s radius using the elastic moduli re-
ported in Table I.

B. A viscous shell

A porous viscous shell can be physically realized by giant
unilamellar vesicles �GUVs� containing pore-forming trans-
membrane proteins or protein complexes. This system allows
for the largest variation of permeation coefficients of any that
we study. By varying the number of such proteins in these
protein or lipid complexes, one may vary the porosity param-
eter from essentially �̄=� �no pore-forming protein� to finite

values. Using the solution for the permeation coefficient
found in Appendix A, it should be possible to reach values of
�̄=10 for the lipid vesicle systems.

To determine the dynamics of a purely viscous shell we
replace the real, frequency-independent shear modulus of the
shell by a viscous response: �→−i��m, with �m being the
two-dimensional surface viscosity of the membrane or bi-
layer. To allow any radial deformations of the impermeable
bilayer, there must be some area change of the surface. One
may imagine that the surface of a tensed GUV is essentially
inextensible, however, even such tensed structures contain a
reservoir of extra area hidden in the �small-scale� thermal
undulations of the surface �15,42�. Thus the two-dimensional
bulk modulus of the viscous shell is dominated by a large,
but finite elastic component. We expect that there may also
be a dissipative or viscous response of the shell to area-
changing deformations, but we ignore these subdominant
corrections. In Figs. 8�a� and 8�b�, we plot the real and
imaginary parts of the response function for a porous, purely

viscous shell with a finite area compression modulus K̄. In
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FIG. 6. �Color online� The response function of a porous, elastic shell. In panel �a� we plot the real, Re�H��̄�� �solid lines�, and
imaginary, Im�H��̄�� �dashed lines�, parts of the response function vs dimensionless frequency �̄ for various values of the permeation
parameter �̄. The remaining material parameters are R /h=5, Poisson ratio 
=0.5. In panel �b� we show the thermal power spectrum,
Im�H��̄�� / �̄, using the same material parameters.
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FIG. 7. �Color online� The response function of a porous, elastic shell. In panel �a� we plot the real, Re�H��̄�� �solid lines�, and
imaginary, Im�H��̄�� �dashed lines�, parts of the response function vs dimensionless frequency �̄ for various values of the radius to thickness
ratio R /h. The Poisson ratio was set to 
=0.5. In panel �b� we show the thermal power spectrum, Im�H��̄�� / �̄, using the same material
parameters.

NANORHEOLOGY OF VISCOELASTIC SHELLS:... PHYSICAL REVIEW E 77, 031921 �2008�

031921-11



Fig. 8�c�, we calculate the power spectrum of thermal fluc-
tuations of the diameter of such an object.

The low-frequency response of the porous, viscous mem-
brane exhibits an elastic plateau due to its elastic response to
both bending and compression. The viscous shell, however,
admits a new intermediate-frequency response regime asso-
ciated with viscous dissipation within the fluid membrane. In
this intermediate-frequency regime, the real part of the re-
sponse function decays as �̄−0.66 over about two decades in
frequency. Examining these results we note that there are
dramatic qualitative differences between the response func-
tions of viscous and elastic shells at least within this
intermediate-frequency range.

In Fig. 8�b� we see the low-frequency peak in the imagi-
nary part of the response function associated with these in-
ternal �to the membrane� shear modes. At still higher fre-
quencies, both the real and imaginary parts of the response
function are dominated by dissipative stresses due to solvent
flow and permeation through the pores. This can be most
easily seen in the correspondence of the high-frequency peak
of the imaginary part of response function of the viscous
membrane with the only peak in the corresponding part of
the response function for the purely elastic shell. In this high-

frequency limit, a viscous membrane and an elastic shell
show essentially an identical mechanical response—see the
�black� lines in Fig. 8. This is reasonable since the high-
frequency dynamics of both systems are dominated by sol-
vent flow and permeation.

Passive microrheological measurements at low frequen-
cies can easily distinguish between a viscous and an elastic
shell as can be seen by the difference between their power
spectra shown in Fig. 8�c�. The effect of permeation, seen by
comparing the curves, is principally in shifting the height of
the plateau region and slightly altering the transition fre-
quency to the solvent-dominated, high-frequency regime.

C. Viscoelastic shells

To explore the role of viscoelasticity in the mechanics of
a porous spherical shell, we consider two archetypal cases.
We first calculate the response function for a viscoelastic
shell where the shear modulus has a single relaxation time �s.
This Maxwell model �25� of the shear modulus can be writ-
ten as
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FIG. 8. �Color online� Response function of a GUV containing pore-forming protein complexes. In panels �a� and �b� we show the real,
Re�H��̄��, and imaginary, Im�H��̄��, parts of the response function vs dimensionless frequency �̄, respectively, using various values of the

permeation parameter �̄. The other dimensionless parameters are R /h=20, 
=0.5, �m /R� =0.1�̄0, �̄0, and K̄ defined in Eqs. �60� and �61�.
For comparison, the black solid line shows the real part of the response function for an elastic shell with R /h=20, 
=0.5, �̄=50. The black
dashed line corresponds to the imaginary part of the response function of an elastic shell with the same material parameters as in panel �a�.
In �c� we plot the thermal power spectrum, Im�H��̄�� / �̄, as a function of the dimensionless frequency �̄ using the same material parameters
as in panel �a�. Black line: elastic shell.
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�̄��̄� = �̄0
− i�̄�̄s

1 − i�̄�̄s

, �73�

where �̄s is the dimensionless shear stress relaxation time.
Deformations occurring at a frequency scale much lower
than the inverse stress relaxation time relax viscously. The
high-frequency dynamics, on the other hand, see an elastic
shear response of the material with shear modulus �̄0.

In Figs. 9�a� and 9�b� we plot the real and imaginary parts
of the response function, respectively, for a viscoelastic shell
having a complex, frequency-dependent shear modulus of
the Maxwell form. We take the shear stress relaxation time �̄s
taken to be within the range of decay times of the various �
modes of the system. Thus the small �-modes of the shell
have long decay times relative to the stress relaxation time
and thus experience viscous relaxation dynamics, while the
higher � modes of the system decay fast enough to be af-
fected by the elastic shear response of the system.

For a viscoelastic shell the intermediate-frequency re-
sponse regime associated with the viscous system remains,
but the frequency dependence of the real part of the response
function is weakened: ��̄−0.44. This appears reasonable as

the viscoelastic case effectively interpolates between the re-
sponse of an elastic shell �high � modes� and a viscous one
�low � modes�. The slope of the real part of the response
function �see Fig. 9�a�� in the intermediate-frequency regime
now is �̄ dependent. Thus to use the response function to
extract properties of the viscoelastic response of the shell is
difficult without an accurate model of solvent permeation
through it.

In Fig. 9�c� we plot the thermal power spectrum for this
model. We note that both the real and imaginary parts of the
response function contain two features. At lower frequencies
we see a peak in the dissipative �imaginary part� of the re-
sponse function and a change in slope of the real part at a
frequency corresponding to the shear stress relaxation time
in the material. The second such feature corresponds to the
crossover from the low-frequency mechanics controlled by
the elastic response of the shell to the high-frequency me-
chanics where the response function is dominated by the vis-
cous dissipation associated with the fluid flow. The position
of the low-frequency peak in the relaxation spectrum will
simply move with the stress relaxation time of the material.
As long as that shear stress relaxation time is long compared
to the inverse of the large frequency at which there is a
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Re[H ], ᾱ = 50
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Im[H ], ᾱ = 50
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Im[Hel], ᾱ = 50
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FIG. 9. �Color online� The response function of a shell with a viscoelastic shear modulus. In panels �a� and �b� we show the real,
Re�H��̄��, and imaginary parts of the response function vs dimensionless frequency �̄, respectively, using various values of the permeation

parameters �̄. The other dimensionless parameters were R /h=20, 
=0.5, �̄s=0.1, �̄0, and K̄ defined in Eqs. �60� and �61�. For comparison,
the black lines shows the real �solid� and imaginary �dashed� parts of the response function for an elastic shell with R /h=20, 
=0.5, �̄
=50. In �c� we plot the thermal power spectrum, Im�H��̄�� / �̄, as a function of the dimensionless frequency �̄ using the same material
parameters as in panel �a�. Black line: purely elastic shell.
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crossover to the viscous-dominated behavior of the system,
these two peaks will be well separated; it is then possible to
extract the viscoelastic response of the shell by examining
the data. This identification, however, relies on a separation
of time scales. As we discuss in Sec. IV, the crossover fre-
quency to viscous dominated behavior is predicted to be in
the range of 105−108 Hz depending the system studied �the
stiffer the shell, the higher the frequency�. If the stress relax-
ation time is associated with rearrangement of the constituent
elements making up the shell, i.e., the nanoparticles, col-
loids, or capsomere proteins, we expect this time scale to be
longer than the inverse crossover frequency.

Finally, we study perhaps the most potentially interesting
example of a viscoelastic shell on the nanoscale. In some
viral capsids the individual capsomeres can undergo a con-
formational change that changes their effective cross-
sectional area. These internal degrees of freedom related to
volume-changing allosteric transitions of the proteins mak-
ing up the shell of the virus allow for new dissipation asso-
ciated with area-changing deformations.

A simplified description of protein allostery is to suppose
that the two conformations of the protein represent local free
energy minima separated by a barrier. Applied stress or ther-
mal fluctuations can drive the protein between these two
well-separated minima corresponding to the two conforma-
tions of the molecule. This description leads immediately to
two observations: applied stress can drive the protein from
one minimum to the other by shifting the free energy land-
scape; thermal fluctuations can also create spontaneous fluc-
tuations between these two minima. The first effect contrib-
utes to the nonlinear elastic response of the system since
applied stress will change the subsequent mechanical re-
sponse of the material. The thermal transitions between the
two minima contribute to the linear elastic response of the
material, which we study in this work.

To model the linear elastic response of the allosteric sys-
tem, we include a complex frequency-dependent two-
dimensional bulk modulus of the form

K̄��̄� = K̄0�1 + g
− i�̄�̄B

1 − i�̄�̄B

 , �74�

where K̄0 sets the overall modulus scale, �̄B is the inverse
rate of conformational change in the equilibrium system, and
gK̄0 sets the maximum of the dissipative part of the modulus
at �̄�̄B�1. This model includes the effect of new dissipative
modes of the constituent proteins associated with an unspeci-
fied internal conformational change that modifies the area of
the capsid protein.

Examining Fig. 10, we note again two peaks in the imagi-
nary part of the response function. The position of the low-
frequency peak is set by �̄B, the time scale for allosteric
transitions, while the high-frequency peak corresponds to the
crossover to the viscous-dominated dynamics. The typical
time scale for allosteric transitions in proteins is on the order
of microseconds to milliseconds. As discussed above in the
case of the viscoelastic shells, we then expect the low-
frequency peak of the imaginary part of the response func-
tion �associated with allosteric transitions� to be well sepa-
rated from the high-frequency peak since the inverse of the
crossover frequency to the viscous-dominated dynamics is
expected to be significantly shorter than the allosteric transi-
tion time scale.

The ratio of the zero-frequency elastic part of the area
modulus K̄0 to the dissipative contribution at the frequency
of these allosteric transitions is controlled by the constant g.
Since we know of no quantitative measurement of these pa-
rameters, we sweep the value of g from zero, which corre-
sponds to a purely elastic shell as shown in Fig. 6, to g=1,
where this dissipative contribution to the stress dominates
the zero-frequency elastic contribution to the area modulus.
It is clear from Fig. 10 that even a small dissipative response
to compressive stresses at time scales associated with allos-
teric transitions leads to a clear and measurable change in the
response function of the shell.

IV. SUMMARY AND DISCUSSION

We have developed a theoretical model for the dynamics
of a porous spherical shell immersed in a viscous solvent and
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FIG. 10. �Color online� A simple mechanical model of a viral capsid in which the capsomers undergo a cross-sectional area changing
allosteric transition. In panel �a� we plot the real and imaginary parts of the response function for different Maxwell solid models of the
shell—see Eq. �74�. In panel �b� we plot the expected thermal power spectrum, Im�H��̄�� / �̄. In all cases the material parameters of the shell
are given by R /h=5, �̄B=1.2�105, �̄=50.
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used it to examine the utility of nanoindentation-based rheo-
logical measurements. For the case of a flat, porous mem-
brane immersed in a viscous solvent, we calculated the re-
laxational dynamics of the bending or undulatory modes of
the surface. These modes are well understood in the limit of
an impermeable surface. In that limiting case, the long-range
hydrodynamic flows introduce a nonlocal coupling of the
stress and displacement along the surface. It has long been
known that the hydrodynamic coupling shifts the dispersion
relation of the undulation modes of wave vector q from their
expected “local drag” form of ��−iq4 to the correct answer
of ��−iq3 incorporating the hydrodynamic cooperativity of
the system as proposed by Lennon and Brochard �28�. For
the case of a permeable membrane, the dispersion relation of
the undulatory modes smoothly crosses over from the local
drag form to the usual Lennon-Brochard solution as the wave
number is varied. The crossover length is set by �� � /�. At
lengths much larger than � the solvent permeation generates
a subdominant correction to the usual dynamics of the undu-
latory modes of a membrane. Below this length, however,
permeation effectively destroys the hydrodynamic coupling
along the membrane leading to a new dynamics consistent
with the naïve, local-drag approximation.

In order to consider the mechanics of spherical permeable
membranes �of radius R�, we examined both compression
and bending deformations of the material since curvature
couples these linearly independent modes of the flat mem-
brane. The hydrodynamic interactions of the membrane are
also less simple in this geometry. Using a solution for the
solvent dynamics both inside and outside the spherical shell,
we determined the overdamped normal modes of the system.
Owing to the spherical symmetry of the problem, these
modes are proportional to the spherical harmonics and thus
can be indexed by the usual angular momentum variables
�� ,m�. At small angular momentum, i.e., ��1, the two lin-
early independent modes of the membrane each combine an
undulatory and compressional character. At a higher angular
momentum corresponding to higher wave vectors on the sur-
face q�� /R, the dynamics approach those of the flat inter-
face where these two modes acquire a dominantly undulatory
or compressional character, respectively. Using this short
length scale behavior, we label the modes as either the
Lennon-Brochard �i.e., undulatory� or compressional type.

We use these dynamical calculations to study the expected
finite-frequency response of a variety of porous spherical
shells that are either viscous, elastic, or viscoelastic. Such
systems include colloidosomes, nanoparticle networks,
vesicles containing membrane-bound pore-forming protein
complexes, polymer membrane capsules, and viruses. The
principal questions that we address are how does porosity
affect the mechanical response of viscous, elastic, and vis-
coelastic spherical shells and specifically, for the case of viral
capsids, is it possible to mechanically detect allosteric tran-
sitions in the capsomeres making up the proteinous outer
shell of a virus?

To address these questions, we need only determine the
characteristic frequencies associated with the nondimension-
alized curves shown in Figs. 6–10. We can express the fre-
quencies f in dimensional form by the relation

f = �̄� Y

24 � � �1 − 
2�
�h/R�3, �75�

where Y is the 3D Young’s modulus of the shell material.
Putting back the appropriate dimensional parameters, we

can also predict the typical force scales necessary to cause a
fixed amplitude deformation equal to 10% of the shell’s ra-
dius. The size of the tip in the AFM experiment can vary
from tens of nanometers �13� to 5 �m �8�. Thus we use
different values of the tip radius �a� in the following esti-
mates.

A few general comments are in order. First, we will refer
to the characteristic frequency associated with the transition
between the low-frequency plateau and the high-frequency,
viscously dominated decay of the response function as the
corner frequency. The general trends are simple to under-
stand from Eq. �75�. Larger �large R� and thinner-walled
�small h� spheres have a lower corner frequency, while those
spheres made of less elastically compliant materials �i.e.,
higher Young’s modulus Y� have higher ones. For viruses
and other elastically incompliant shells, the corner frequency
is typically large enough to render the high-frequency region
unobservable using current methods. For the more compliant
shells that we considered �i.e., GUVs and polymer mem-
brane capsules�, the corner frequency should be experimen-
tally resolvable. The force scales in question range from nN
to pN and can vary considerably over the frequency range of
any proposed experiment when the corner frequency lies in
the experimentally accessible window. Below we give some
estimates of these force scales and corner frequencies for
shells for which we have estimates of their elastic moduli.
All the numerical values used for these estimates are re-
ported in Table I.

For rotavirus probed by an AFM tip of radius 10 nm, we
find that the force scale is �1 pN over a frequency range of
10 Hz to at least 106 Hz. The corner frequency for this shell
�capsid� is on the order of 108 Hz. For CCMV virus �13�, we
predict similar force and frequency scales.

For colloidosomes �6� we predict, for a tip radius of
5 �m, the force scale to be in the range of 10 nN over all
frequencies from 1 to 105 Hz. The corner frequency is pre-
dicted to be approximately 105 Hz so that, above this fre-
quency scale, significantly larger forces will be needed to
generate the same deflection amplitude.

For a much more elastically compliant GUV and a tip size
of 1 �m, we find that the force scale is 1 nN at a frequency
of 1 MHz and decreases to �10 pN at 1 Hz. The corner
frequency for these lipid vesicles is on the order of 100 kHz.
Using an even smaller probe tip, one should be able to access
the thermally driven motion of the surface. Thus a mi-
crorheological measurement should be possible for such
elastically compliant objects. Our prediction for the observed
thermal correlation spectrum is shown in Fig. 8�c�.

Polymer membrane capsules are in some sense similar to
colloidosomes. These composite membrane spherical struc-
tures are constructed from a polymer network stabilized by
the adsorption of colloids. We consider the capsules con-
structed by Gordon and collaborators �8� using poly-L-lysine
and polystyrene colloids. Considering a 5 �m radius tip as
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reported by Gordon et al., we find that the force scales are in
the range of 10 nN, with corner frequency occurring in the
range of 103−104 Hz depending on the precise value of the
Young’s modulus for the shell. The low-frequency force
scale that we calculate is quantitatively consistent with the
data of Gordon et al. �8�, whose measurements were made at
low frequencies. In this system the dynamics above the cor-
ner frequency should be experimentally observable.

We expect, based on the above estimates, that the transi-
tion to a permeation-dominated response �i.e., above the cor-
ner frequency� is not observable in viral capsids. One advan-
tage of this point is that an observed increase in the
imaginary �out-of-phase� response function for viral capsids
implies the existence of internal dissipative modes of the
structure that are likely related to allosteric transitions of the
capsomeres or to their rearrangement relative to one another.
We show in Figs. 9 and 10 two possible rheological signa-
tures of such internal dissipative modes. In the former we
suppose that there is a large elastic response of the shell to
area-changing deformations, but that the shear response of
the material is viscoelastic. One might expect such a me-
chanical response if the individual capsomeres irreversibly
rearrange in response to applied stress. In the latter case we
explore a system having a Maxwell solid response to area
compression, but an elastic response to shear. Such a mate-
rial response might be expected if the individual capsomeres
undergo allosteric transitions that change their effective
cross-sectional area.

In Fig. 9, we see that the Maxwell shear response leads to
measurable corrections to the rheological spectrum of the
object. The AFM-based mechanical probe is also highly sen-
sitive to a viscoelastic response of the area compression
modulus as might be due to allosteric transitions in the cap-
someres. The expected separation of time scales between the
lower frequency allosteric transitions �103−106 Hz� and
transition to permeation dominated dynamics �108 Hz� dem-
onstrates that this measurement is well suited to exploring
such capsomere conformational changes. These mechanical
measurements made at a variety of frequencies are suitable
for distinguishing between capsomere rearrangement and al-
lostery.

Accounting for permeation is necessary for making quan-
titative measurements. This parameter shifts the value of the
elastically dominated low-frequency plateau of elastic shells
�such as viruses� by as much as a factor of 4. This dynamical
response function is principally controlled by the bending
modulus of the shell so that AFM-based measurements of
that quantity can be in error by as much as a factor of 10 if
permeation is neglected in the interpretation of the data. The
effect of solvent permeation is generically more important in
systems that are both larger and mechanically more compli-
ant. Thus the effect of solvent permeation can play a large
role in the mechanical response of large GUVs containing
pore-forming proteins.

The combined effects of solvent permeation and vis-
coelasticity remains to be fully explored in a wide variety of
biological and synthetic nanoscale shells and vesicles. Based
on our present work, accounting for solvent permeation will
be important for the quantitative interpretation of such rheo-
logical data. By taking such effects into account, it should be

possible to make sensitive measurements of the collective
effects of protein conformational change in viral capsids and
to probe the mechanics of a number of other similar struc-
tures.
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APPENDIX A: THE PERMEATION COEFFICIENT

To determine the permeation coefficient we treat the po-
rous membrane of thickness t as having an array of pores or
radius r0. We use the well-known result for the fluid flux Q
through such a tube of length t and radius r0 due to a pres-
sure difference �P across the tube to write �26�

Q =
�r0

4

8�

�P

t
. �A1�

We then suppose that the number of such tubes is k per unit
area of the membrane and assume that the total flux through
these tubes is simply additive. Then the total flux through the
area L2 is thus given by

total flux = kL2Q , �A2�

and the average velocity of fluid coming out of the mem-
brane is

vav = k
�r0

4

8�

�P

t
. �A3�

On the other hand, we assert from Darcy’s law that

vav =
�P

�
. �A4�

From Eqs. �A3� and �A4� we find the permeation coefficient
to be given by

� =
8 � t

�r0
4k

. �A5�

Expected values of the permeation coefficient for a vari-
ety of micron and nanoscale hollow, porous shells are given
in Table I. In the text we introduce a dimensionless form of
the permeation coefficient �̄ that is defined by

�̄ �
�R

�

8Rt

�r0
4k

, �A6�

where R is radius of the sphere and � is the viscosity of the
surrounding solvent.

APPENDIX B: UNDULATIONS OF A PLANE PERMEABLE
MEMBRANE

We calculate the fluid flow associated with the undula-
tions of a permeable membrane. We look for solutions of the
incompressible Stokes equation
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� · v = 0, �B1�

�
�v

�t
= � �2v − �p �B2�

driven by sinusoidal membrane undulations of the form

w = wqeiqx−i�t. �B3�

These undulations apply an external normal stress on the
fluid at the membrane located in the xy plane �z=0� of the
form

�e = � eiqx−i�t. �B4�

Correspondingly, we expect a solution for the fluid velocity
field v and pressure p of the form

v = v�z�eiqx−i�t, �B5�

p = p�z�eiqx−i�t, �B6�

but the fluid velocity and pressure fields must vanish far
from the membrane z→ �� and satisfy at the membrane

vx
+�0� = vx

−�0� = 0, �B7�

vz
+�0� = vz

−�0� . �B8�

Additionally, the fluid incompressibility condition gives

�vz

�z
+ vx�z�iq = 0. �B9�

Using these in Eq. �B2� we find

− � i � vx�z� = � 
− q2vx +
�2vx

�z2 � − iqp�z� , �B10�

− � i � vz�z� = � 
− q2vz +
�2vz

�z2 � −
�p�z�

�z
. �B11�

The general form of the solutions to these ordinary differen-
tial equations is

vx�z� = ae�z, vz�z� = be�z, p�z� = ce�z, �B12�

where the incompressibility condition Eqs. �B1� and �B9�
requires that the undetermined constants be related by

b = −
iq

�
a . �B13�

Equations �B10� and �B11� give four solutions:

�2 = q2, q2 − i
� �

�
. �B14�

Using the boundary conditions we find solutions of the form

vx
� = � iqA�e�qz − e�lz�eiqx−i�t, �B15�

vz
� = qA
e�qz −

q

l
e�lz�eiqx−i�t, �B16�

p� = � i � � Ae�qzeiqx−i�t, �B17�

with l=�q2− i� � /�. Knowing the pressure and velocity
fields, we require force balance at the membrane:

�
zz
− − 
zz

+ � + � = � �4w , �B18�

using the fluid stress tensors and membrane bending modu-
lus discussed in the text.

The permeability of the membrane sets the velocity dif-
ference between the fluid and the membrane at z=0. Thus we
also have

�
vz�0� −
dw

dt
� = �p− − p+� . �B19�

These conditions set the two remaining unknown constants
above, A from Eqs. �B15�–�B17� and wq, by requiring non-
trivial solutions to the set of algebraic equations

A��q
1 −
q

l
� − 2i � �
 + wq � i � = 0,

A2i � � − � q4wq = − � . �B20�

Working in the limit where fluid inertia is irrelevant,
�� � �q2, and solving for wq we find

wq = −
�� �

2q� + 2�
2i � � − � q4� �

2q� + 2� �B21�

as discussed in the text.

APPENDIX C: THE A MATRIX

The eigenvectors and eigenvalues of the A matrix defined
by Eq. �52� determine the relaxation times and mode struc-
ture of the coupled membrane deformation and solvent flow
modes. The components of this matrix are listed below:

A11 = �2� + 1��4�3 + 6�2 − � + 3��̄ − �� − 1�2�� + 2�2�2� + 1�

��4�3 + 6�2 − � + 3�
1

i�̄�

− �� − 1�2��� + 1��� + 2�2

��2� + 1�
�̄

i�̄�

− 4�2� + 1��4�3 + 6�2 − � + 3��2� + 1�

�
K̄

i�̄�

− 2��� + 1��� + 2�
�̄K̄

i�̄�

, �C1�

A12 = ��� + 1�
− 3�2� + 1��̄ + 2�2� + 1��4�3 + 6�2 − � + 3�

�
K̄

i�̄�

− 3�� − 1���� + 2�
�̄�̄

i�̄�

� , �C2�

and
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A21 = − 3�2� + 1��̄ + 2�� − 1�2�� + 2�2�2� + 1�
1

i�̄�

− 3�� − 1�2��� + 2�2 �̄

i�̄�

+ 12�2� + 1�
K̄

i�̄�

+ 2��� + 2��2� − 1�
�̄K̄

i�̄�

, �C3�

A22 = ��2� + 1��4�2 + 6� − 1��̄ − 6��� + 1��2� + 1�
K̄

i�̄�

− �2�� + 1��� + 2��2� − 1�
�̄K̄

i�̄�

− �� − 1���� + 2�

��2�2 + 3� + 4�
�̄�̄

i�̄�

. �C4�

APPENDIX D: THE RESPONSE FUNCTION

Here we list the � dependence of each function entering
into the diameter response function shown in Eq. �69�. These
functions depend also on the dimensionless parameters: per-
meation �̄, shear modulus �̄, and area compression modulus

K̄,

�1��� = 2�1 + 2���6 + 7� + 7�2�K̄ + ��� + 1���2 + � + 4��̄K̄

+ �� − 1���1 + ���2 + ���̄�̄ , �D1�

�2��� = − 2�1 + 2���3 + � + �2��̄ , �D2�

�3��� = �� − 1�2��1 + ���2 + ��2�1 + 2���3 + 2� + 2�2�K̄

+ �� − 1�2�2�1 + ��2�2 + ��2�̄K̄ + �� − 1�3�2 + ��3�1

+ 2���3 + 2� + 2�2��̄ + �� − 1�3��1 + ���2 + ��3�̄�̄

+ 4�� − 1��2 + ���1 + 2���3 + 2� + 2�2�K̄�̄

+ 4�� − 1���1 + ���2 + ���̄K̄�̄ , �D3�

�4��� = − �2� + 1���� − 1�2�� + 2�2�2� − 1��2� + 1��2� + 3�

+ 2�� − 1�2��� + 1��� + 2�2�̄ + 4�2� − 1�

��2� + 1��2� + 3�K̄ + ��1 + ���2�2 + 2� − 1��̄K̄

+ �� − 1��2 + ���3 + 2� + 2�2��̄�̄� , �D4�

�5��� = − �2� − 1��2� + 1�2�2� + 3��̄ . �D5�

APPENDIX E: THE EFFECT OF THE SUBSTRATE WALL
ON THE HYDRODYNAMIC FLOW THROUGH

THE SHELL

We have modeled the AFM experiment as squeezing the
shell between two antipodal points. Such an analysis neglects

the fact that in reality the substrate and even perhaps the
AFM tip should be considered to be extended flat plates.
These plates contact the shell at two antipodal points. If we
were to consider the nonlinear response of the system, we
would have to account for the changing contact area under
compression of these plates with the shell; we do not attempt
this here. Nevertheless, one may anticipate that the motion of
such plates generates new hydrodynamic flows in the solvent
and thus can change the stresses on the porous shell in a
frequency-dependent manner. In this appendix we analyze in
a simplified manner this hydrodynamic effect. We conclude,
based on the following analysis, that this hydrodynamic ef-
fect is generically small for all but the softest shells consid-
ered here.

We consider squeezing the shell between two parallel flat
plates of arbitrarily large lateral extent. The solvent flow be-
tween these two plates when they are in steady motion is
then of the typical lubrication type. Taking the normal vec-
tors of the plates to lie along the ẑ axis, and these plates to be
positioned at the antipodes of the spherical shell �at z=−R
and z=R�, we write the Stokes equation for the fluid flow
between the plates away from the stagnation point as

�
�2vx�z�

�z2 =
�p

�x
. �E1�

The solution for the flow of the fluid out from between the
plates takes the form

vx�z� = C1 + C2z +
1

2�
z2�p

�x
, �E2�

where the constants are determined by a no-slip boundary
condition on the wall surfaces:

vx�− R� = vx�R� = 0. �E3�

The resulting solution is

vx�z� = − �R2 − z2�
1

2�

�p

�x
, �E4�

where the pressure gradient above is determined by the con-
dition that the volume of the out-flowing fluid per unit time
matches the volume decrease in the gap between the plates as
they are pushed together. We return to this point at the end of
the calculation to estimate this quantity.

The power dissipated in this flow is the product of the
lubrication forces between the plates and the speed at which
they come together; such lubrication forces will be present in
any finite frequency AFM measurement in a viscous solvent.
We now ask how the presence of the porous shell increases
such forces. To do this, we estimate both the extra power
necessary to push this volume of fluid through the porous
shell and then hydrodynamic forces acting on the shell due to
the plates pumping solvent through the porous structure.

The power required to push the fluid through the shell’s
circular cross section of radius R is given by

W =	 �pvx�z�dA , �E5�

where
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�p = � vx�z� �E6�

and

dA = �R2 − z2dz �E7�

is the elementary cross-section area of the circle of radius R.
Thus

W = 2 � 
 1

2�

�p

�x
�2	

0

R

�R2 − z2�5/2dz =
5�

16
R6 � 
 1

2�

�p

�x
�2

.

�E8�

To evaluate �p /�x we estimate the amount of solvent flowing
through the circular cross-section per unit time as

Q = 2L	
−R

R

vx�z�dz = − L
8R3

3

 1

2�

�p

�x
� = V0A , �E9�

where L is the characteristic size of the plate, V0 is the ve-
locity of the plate, A=L2 is the area of the plate.

Therefore the additional power dissipated due to the en-
hancement of the lubrication forces in the presence of the
porous shell can be estimated as

W =
9 � 5 � �

16 � 64
� V0

2A � 0.1 � V0
2A �E10�

and corresponding additional force on the plate due to the
solvent flow through the pores is

F � 0.1 � V0A . �E11�

Taking ��106 kg/m2 s, the area of the plates to be A
�100 nm2, and the velocity of the plates V0� �R
�10−6 m /s we find that the magnitude of the force is

F � 10−5 pN. �E12�

Thus the additional lubrication force between the AFM tip
and substrate due to the presence of the porous shell is irrel-
evant compared to the forces necessary to generate the me-
chanical deformation of the shell itself. We suspect that the
hydrodynamic forces acting on the shell due to the lubrica-
tion flows are of a comparable, and thus irrelevant, magni-
tude.
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