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We investigate in detail the model of a trophic web proposed by Amaral and Meyer �Phys. Rev. Lett. 82,
652 �1999��. We focus on small-size systems that are relevant for real biological food webs and for which the
fluctuations play an important role. We show, using Monte Carlo simulations, that such webs can be nonviable,
leading to extinction of all species in small and/or weakly coupled systems. Estimations of the extinction times
and survival chances are also given. We show that before the extinction the fraction of highly connected
species �“omnivores”� is increasing. Viable food webs exhibit a pyramidal structure, where the density of
occupied niches is higher at lower trophic levels, and moreover the occupations of adjacent levels are closely
correlated. We also demonstrate that the distribution of the lengths of food chains has an exponential character
and changes weakly with the parameters of the model. On the contrary, the distribution of avalanche sizes of
the extinct species depends strongly on the connectedness of the web. For rather loosely connected systems, we
recover the power-law type of behavior with the same exponent as found in earlier studies, while for densely
connected webs the distribution is not of a power-law type.
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I. INTRODUCTION

Food webs describe the resources and trophic relation-
ships among species within an ecosystem. The first semi-
quantitative descriptions of food webs were given by biolo-
gists at the end of the 19th century �1,2�. Later on prey-
predator relationships between species were defined in terms
of oriented graphs with hierarchical or layered structures �3�.
The problem of describing such food webs was then taken
over by mathematicians and physicists, and different model-
ing levels and types of models have been proposed.

A first group of models is constituted by the so-called
static models in which the links between different species are
assigned once and for all, according to different scenarios
�random, scale-free, or small-world graphs �4,5�, for ex-
ample�. Some properties of these food webs were analyzed
and compared with available biological data, and the com-
parison usually turned out to be quite poor.

The second group of models contains the so-called dy-
namic food web models. The novelty consists in recognizing
that the links between the species are generally not arbitrary
and quenched, but emerge as the result of some intrinsic
biological dynamics. There are then many possibilities for
modeling the evolutionary dynamics �6�. The simplest one
concerns two-layered systems with prey-predator Lotka-

Volterra type of dynamics �for a short review, see �7��. A very
large body of work has been devoted to the study of popu-
lation dynamics equations for more than two species �8,9�. In
such cases, the links among the species can be modified ac-
cording to the evolutionary dynamics. One important issue is
the control of the robustness of such models when the com-
plexity of the system is increased. Moreover, at a more re-
fined level of description, the Lotka-Volterra mean-field dy-
namics can be replaced by individual-based models �10,11�,
taking into account the particularities of the interacting indi-
viduals and thus offering the possibility of including stochas-
tic fluctuations. These dynamic food webs models allow
therefore both the micro- and the macroevolution of an eco-
system to be treated on an equal footing �12,13�.

The richness of the models mentioned above has its own
drawbacks. Indeed, the number of control parameters defin-
ing the models is usually quite large; moreover, the dynamics
is nonlinear. Thus, it is often impossible to get a global pic-
ture of the properties of the system. Accordingly, it is desir-
able to study some models that are as simple as possible, in
order to clarify the relative importance of the various ingre-
dients, while being able to capture the generic properties
expected for food webs.

Several proposal have been made along this line in recent
years �see, e.g., �14,15��. Williams and Martinez �16� intro-
duced a very simple “niche” model, whose dynamics is con-
trolled by two parameters, the species number and the con-
nectivity. Predictions were made for several observable
quantities such as the fractions of species at different levels,
the vulnerability, and the degree of cannibalism. This model
was reconsidered by Camacho et al. �17,18�. They showed
that for large size and loosely connected food webs this
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model possesses some robust properties. Some characteris-
tics such as the distributions of the number of prey and
predators, or the number of trophic links, can be described
by a scaling function depending only on one parameter, the
connectivity. This universal behavior supports the idea that
the methods of nonequilibrium statistical mechanics are well
suited to approach food web problems. In 1999 Amaral and
Meyer �19� proposed a “minimal” model whose numerical
solution leads to a power-law distribution of extinction ava-
lanche sizes, in good agreement with available data from the
fossil record. It was shown later that this model is self-
organized critical �20� and that the power law can be ob-
tained analytically. Furthermore, taxonomic effects have
been added to the model �21�, but without significant effects.

In this work we are reconsidering the Amaral-Meyer
�AM� model with the aim of investigating several of its prop-
erties which are relevant for real food webs and which have
not been addressed in the previous work. The paper is orga-
nized as follows. In Sec. II, the model is described and sev-
eral technical details concerning the Monte Carlo simula-
tions, as well as the values of the control parameters, are
given. Section III contains the main results. First, the depen-
dence of the survival chance and of the average extinction
time on the number of niches N and on the maximum num-
ber of feeding species k is studied. The problem of extinction
due to stochastic effects is also discussed. Then the question
of the pyramidal structure of the food web is approached.
Time correlations between the occupied niches at different
levels are investigated. The time evolution of the ratio of
omnivores is also computed, for both viable and nonviable
food webs. The distribution of food-tree sizes as a function
of the values of N and k is found to exhibit different regimes.
Finally, the problem of avalanches of species extinctions is
reconsidered. In contradiction with previous results, it is
found that strong deviations from simple power laws for the
size distribution of these avalanches can be observed for
large values of k. Some of our predictions are compared with
real biological data and are found to be in good agreement.
Conclusions are relegated to Sec. IV.

II. MODEL

A. Original AM model

The AM food web model consists of L trophic levels,
each of them containing the same number N of niches, which
can be either empty or occupied by a single species. Each
species from level l=2,3 , . . . ,L feeds on at most k �k�1�
species that are randomly selected from the level below, �l
−1� �see Fig. 1�. Therefore a species from level l is a preda-
tor for some species at the level �l−1�, and at the same time
it may be a prey for species from the level �l+1� �except for
the species on the top level L, which have no predators, and
the species on the bottom level l=1 which have no prey�.

The dynamics of the web is driven by the extinction and
creation of species, as well as by the dynamically related
evolution of the trophic links between the species. That is, at
each time step �Monte Carlo step �MCS��, one starts by ran-
domly removing species from the basal level 1, with a given
extinction probability p. When a species goes extinct, all the

links from it to species at the level 2 are removed. If as the
result of these link removals a species at the level 2 loses all
its prey from level 1, then it becomes extinct as well. This
procedure of checking existing links and removal of species
which lost all their food sources is then followed on each
level up to the top level L. Hence an avalanche of extinctions
of species can be generated.

Apart from extinctions, the AM model considers also the
creation of species in free niches. Each species �which re-
mains after the decimation procedure described above� at
level l can repopulate, with a probability �, an empty niche
either at level l, �l−1�, or �l+1�. Newly created species re-
ceive at most k links, at random, to species from the adjacent
lower level.

Extinction and creation of species are thus stochastic pro-
cesses that differ from one realization of the food web to
another, and one can address the question of the statistical
properties of various characteristics of the system, like, for
example, the size of the extinction avalanches, the extinction
time �or, equivalently, the survival chance�, the populations
at all levels, the correlations between the different trophic
levels, the density of the trophic links, etc. The dependence
of these elements on the parameters of the model L, N, k, p,
and � is also an important aspect to be considered.

In this respect, the main result of the original paper �19�
addressing the AM model was that the distribution of the
sizes of the extinction avalanches can be fitted over about
three decades by a power law with an exponent a�−1.98;
this exponent was corrected to the value a=−2 in later work
�20,21�, which is supported by mean-field theoretical argu-
ments. Moreover, it was argued that this power-law behavior
is in agreement with available fossil data records. In Ref.
�21� it has also been shown that the avalanche size distribu-
tion exhibits a maximum for small-size events, before devel-
oping the power-law behavior. However, most of the charac-
teristics of the food web that were enumerated above were
not addressed in the previous papers on the AM model and
our work is therefore intended to fill this gap.

B. Reconsidering the model

We shall investigate here the AM model in more detail, by
considering the canonical set of parameters used in �19�,
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FIG. 1. Schematic representation of the AM food web model,
for L=6 and N=5. The occupied niches are represented by the
black rectangles and the interactions between species are depicted
by the directed links.
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namely, L=7 trophic layers, the extinction probability p
=0.01, and the probability of creation �=0.02. We shall
moreover investigate how the system characteristics depend
on the number of niches N and on the highest possible num-
ber of links k that a predator may have. The results obtained
will be compared to experimental data coming from investi-
gations of some contemporary food webs �16,22,23�. Since
the total size—i.e., the product of the number of layers and
the mean number of occupied niches—of the experimentally
observed food webs does not exceed 1000, we have decided
to focus on N values that are smaller than the value of 1000
that was used in Refs. �19,21�, and to work with N�100,
occasionally 200 and 500. As a consequence, the role of
fluctuations in our systems becomes more important and
many of the reported effects are clearly noise induced and/or
noise affected, which actually makes them more relevant for
real biological food webs. This choice of small N also al-
lowed us to run the simulations for longer times than those
considered in �19,21�, which unveiled new aspects of the
food web viability. In general, we performed simulations
over �106 MCS and the averaging was done over 100 runs
�i.e., random realizations of the food web stochastic dynam-
ics�. In some cases, in order to check the viability of the
system, we even went to �107 MCS. Mean extinction times
for the whole web were obtained by averaging over 500 runs.

III. RESULTS

A. Viability of the food web

A first result refers to the viability of the food web, i.e., to
its capacity to survive in the long-time limit. The mecha-
nisms leading to the collapse are connected with the stochas-
tic nature of the extinction and proliferation events. Indeed,
when the system is small, it may happen rather easily that at
the lowest level, which is crucial for the survival of the web,
only very few species survive. If, moreover, as is the case in
the AM model, the values of both the creation and extinction
probabilities are very low, then two scenarios are almost
equally probable, namely, �i� either some empty niches at
level 1 are repopulated and the web is, at least temporarily,
safe, or �ii� existing species are all removed from this level,
as illustrated in Fig. 2. This is the end of the food web, since
without species at the basal level an avalanche containing all
species is created and the web collapses. This stochastic ex-
tinction in small populations is a well-known effect in ecol-
ogy �24�.

By performing much longer simulations than in �19,21�,
we have found that small-size �e.g., N=50 or 70� and weakly
coupled �k=3–6� systems are not viable and disappear in the
long-time limit t�106 MCS. Figure 3 illustrates how the
chance that a web will survive to a given time t depends on
N and k. The survival chance at time t is defined here as the
ratio of the number of realizations �runs� for which the sys-
tem was still existing at time t to the total number of trials.

The web of N=100 and k=3 turns out to be nonviable,
too �out of 100 runs, none has survived to 107 MCS�; how-
ever, increasing k to 4 stabilizes the system. The dependence
of the mean extinction time on the number of niches N and
on the maximum number of links k is illustrated in Fig. 4. It

is obvious that an increase in k, i.e., the connectedness, sta-
bilizes the web. Small, sparsely coupled webs cannot exist
for a longer time.

B. Structure of the web

The next set of figures �see Fig. 5� illustrate the temporal
evolution of the normalized populations at the different lev-
els �i.e., the number of species at a given level divided by the
total number of species in the web, at a given time�. For the
sake of clarity, only parts of the levels are shown. The AM
model leads in a natural way to a pyramidal form of the food
web, where the upper levels are less populated than the lower
ones �see the upper panel of Fig. 5�. This effect is less pro-
nounced when the system is close to its collapse, as shown
by the lower panel of Fig. 5. Comparison with Fig. 6 indi-
cates that the pyramid effect almost disappears for systems
with many niches �high N�, and this is the reason it was not
observed either in �19� or in �21� for which N=1000. Note
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FIG. 2. Temporal evolution of the number of species on the
basal level for N=50, k=3. Single run, exhibiting the complete
extinction of the species on this level.
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also that the pyramidal structure has been best observed by
biologists in rather small food webs �22�.

C. Correlations between trophic levels

As seen from both Figs. 5 and 6, the numbers of occupied
niches at different levels are randomly oscillating in time. In
order to check the degree of correlation of these oscillations,
and whether there is some systematic time lag between them,
we have calculated the correlation functions from the corre-
sponding discrete-time series of the populations on the dif-
ferent levels, using the formula �25�

Cij�t� = Ci��
�=0

T−t

�Ni�� + t��Nj��� for t � 0,

�
�=0

T−	t	

�Ni����Nj�� + 	t	� for t � 0. 
 �1�

Here Ni��� is the population of level l= i at time � �which is
an integer number of MCSs� and �Ni��� is its fluctuation
around the mean value,

�Ni��� = Ni��� − T−1 �
��=0

T

�Ni����; �2�

t is the time lag �which can be positive or negative�, and T is
the total simulation time. The coefficient Ci was chosen such
that the autocorrelation functions at zero lag are equal to 1,

Ci = ��
�=0

T

��Ni����2�−1

. �3�

The results for N=100 and 200 are illustrated in Fig. 7.
We see that the time series at neighboring levels are

highly correlated with each other at zero time lag. In other

words, species at a given level adjust immediately to the
changes at the level below, which is a feature that could be
expected in view of the constitutive dynamics of the model.
The correlation of course decreases with increasing distance
between the levels, but the peak at zero time lag remains. It
should be noted that in the N=100 case �upper panel of Fig.
7�, apart from the very narrow zero-lag correlation peak,
there is also a rather broad structure centered around it. This
structure is practically absent in the case of the larger system
with N=200 �lower panel in Fig. 7� and is to be related to the
long-time instability of the system with N=100 and k=3, and
to the strong fluctuations that accompany its collapse.

D. Fraction of omnivores

Another biologically interesting feature is the fraction of
omnivores, which are predators feeding on more than one
prey �26�. Figure 8 shows the distribution of the number of
links per predator for a nonviable �upper panel�, and a viable
�lower panel� system, at several times. The distribution re-
mains virtually the same throughout the simulation time for a
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�data from single runs�. Note the pyramidlike structure of the web
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viable web. However, for a nonviable one approaching ex-
tinction, the fraction of highly connected predators grows. In
other words, close to the collapse, only predators feeding on
many different kinds of prey will survive. In this sense, the
presence of omnivores stabilizes the web, as documented
experimentally in �26�.

The average fraction of omnivores in a stationary state of
the food web depends on the maximum value of links k, but
it is rather insensitive to the number of niches N, as illus-
trated by the data in Table I. This feature also agrees with
experimental results reported in �16�.

In a stationary state of the web, the average number of
links corresponding to different levels l has a similar type of
profile; however, for high values of k we observe a maxi-
mum at intermediate levels, as illustrated in Fig. 9.

Food webs are also often characterized by the length of
the food chains �or “trees”� that form the web �16,22�. We
define them in the following way. Each species with no
predators is the root of a new tree. Starting from the root we
go along its links to the lower level and mark all species the
root is preying on. Then we check their links to find their
prey species and so on. Since different predators do not re-
ally compete for food in the model �i.e., if they are linked to

the same prey, they all get enough food�, we can treat the
partially overlapping trees as independent ones. The size of a
tree is then simply the total number of species that belong to
that tree.

As can be seen from Fig. 10, the food tree size distribu-
tion depends on the number of niches N in the system. The
maximal tree size increases with N, as could be expected.
Moreover, in a bigger system there is more space for trees of
similar sizes and that is why the curves in Fig. 10 shift up-
ward with increasing N. The linear dependence of the distri-
bution of chain lengths on the semilogarithmic plot in Fig. 10
indicates an exponential decrease with increasing tree size.

The maximum number of links k between species also
plays an important role on the food tree size distribution. The
results for N=100 niches at two different time steps are dis-
played in Fig. 11. When k increases, small trees become less
likely and bigger structures in the system are preferred in-
stead. We can thus distinguish two regimes with different k
dependence, namely, the regime of “small trees” �of size
�10�, whose number decreases with increasing k, while the
number of “big trees” is an increasing function of k. More-
over, the maximal size of a food tree varies strongly with k.
It is also interesting to note that for sufficiently large N there
is a well-pronounced peak in the distribution of tree sizes at
a size of 7, which is simply the number of trophic levels in
the system.
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FIG. 6. Time dependence of the normalized populations of dif-
ferent levels for k=3. Upper panel: N=200. Lower panel: N=500
�data from single runs�. The pyramid effect disappears for systems
with many niches �high N�.
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Biologists �1,16� often describe food webs in terms of
fractions of basal, intermediate, and top species. In this
model these categories correspond to occupied niches at lev-
els 1, 2–6, and 7, respectively. For viable systems the values
we obtain for these fractions are not too sensitive to the
values of N and are presented in Table II.

These results agree very well with biological data for a
food web from Little Rock, Arkansas, USA; see �16� for
further details.

E. Avalanches of species extinctions

Finally, we analyzed the distribution of avalanche sizes of
species extinctions. We observed the maximum in the distri-
bution that was mentioned in �21�, which becomes more pro-
nounced with increasing number N of niches. For k=3,
which was the value considered in �19,21�, we recovered the
known power-law behavior, extending over nearly three de-
cades, with an exponent equal to a=−2, as calculated in
�20,21�. This value does not seem to depend on N, and even
for nonviable systems we got the same good fit to a power-
law type of behavior, with the same exponent �see Figs. 12
and 13�.

However, when the food web becomes highly connected
�i.e., k=6 or larger� the deviations from the power-law be-
havior are very large, as illustrated in Figs. 13 and 14 for k
=20. One may notice that for highly connected webs the
fraction of larger avalanches increases, simply because the
removal of a prey on which many predators feed is affecting
more species.
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TABLE I. Average fraction of omnivores in a stationary state of
the web, for various k and N. The averages were taken over 100
runs.

k

N 3 4 6 20

50 0.312 0.4185 0.6966 0.8543

100 0.2936 0.4944 0.6567 0.8648
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Thus the power-law behavior, although widely present in
large-N webs, is not universal, but is rather the result of a
particular choice of the parameter values of the food web.

IV. CONCLUSIONS

We have presented a detailed discussion of several aspects
of the AM model �19� of a food web that were neglected in
previous studies. In particular, we concentrated on relatively
small-sized systems and on the role the fluctuations can play
in such systems, since this is the frame that is important in
most real biological food webs. Several comparisons of the
theoretical predictions with experimental data were also dis-
cussed.

Our simulations confirmed the observations of �21� con-
cerning the distribution of avalanche sizes of species extinc-

tions, the value of the power-law exponent a=−2, and the
existence of a maximum depending on N. It is worth noting
here that the same value a=−2 of the exponent of the distri-
bution of extinction avalanches has also been found in two
other different food web models, Refs. �27� and �28�. The
last paper is a generalization of the Bak and Sneppen model
�29�, in which two factors determine the fate of a species—
biotic �“bad genes”� and abiotic �“bad luck”�.

For reference, we have kept the values of some of the
model parameters �number of layers L, and probability of
creation � and of extinction p� the same as in the original
AM model �19,21�. However the dependence of the system
behavior on the number of niches N and on the maximum
number of links per predator k turned out to be quite inter-
esting. We have thus unveiled new features of the model not
found in the earlier papers. A food web may collapse if it is
too small and/or has not enough links between species. Sys-
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FIG. 11. Food tree size distribution at time T=5�104 �upper
plot� and 3�105 �lower plot� MCS as a function of the maximal
number of links between species k �N=100, log-log scale, evalua-
tion from 100 runs�. There are two regimes with different k depen-
dence: the number of “small trees” �of size �10� decreases with
increasing k, while the number of “big trees” is an increasing func-
tion of k. The maximal size of a tree varies strongly with k.

TABLE II. Fraction of species at basal, intermediary, and top
levels �k=6, averages over 100 runs�.

N Basal Intermediate Top

100 0.16 0.79 0.05

200 0.10 0.80 0.10

500 0.12 0.79 0.09
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FIG. 12. Distribution of avalanche sizes for N=200 and 500, for
food webs with k=3 �estimated from 500 runs�. The slopes are all
identical and increasing the size of the web shifts the distribution to
higher frequencies.

10-8

10-7

10-6

10-5

10-4

0.001

0.01

0.1

1

1 10 100 1000

F
re

qu
en

cy

Avalanche size

N = 100

k=3

a = - 2

k=4
k=20

FIG. 13. Distribution of avalanches for N=100 and different k
�estimated from 500 runs�. For small values of k �=3,4� we observe
the same slope as for large food webs �see Fig. 12�. More highly
connected webs do not exhibit a power-law-type distribution.
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tems smaller than N�200 show a pyramidlike structure,
where the top levels are less populated than the bottom ones.
The occupations of the levels are strongly correlated at zero
time lag. When the web is close to a collapse, the fraction of
highly connected predators �omnivores� significantly in-
creases, which may lead sometimes to a �temporary� rescue

of the web. The distribution of the length of food trees has an
exponential character and its type depends rather weakly on
both N and k. Finally, the distribution of species extinctions
shows an unexpected feature, contrary to the previously
claimed universality of the power-law behavior; namely, that
for large k values �i.e., highly connected webs� the distribu-
tion cannot be described any longer as a power law. It should
also be noted that to some extent our investigations are
complementary to those of Amaral and co-workers �18�,
where mostly large and loosely connected food webs have
been studied.

Although several criticisms concerning the applicability
of the AM model to biology have been raised �21,30�, we
have found that some theoretical results, such as the ratio of
omnivores, the fraction of different-type �basal, middle, top�
species, the food chain length, etc., are in very good agree-
ment with experimental data �16,22,23� on food webs. The
significance of this fact is a subject for further analysis.
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FIG. 14. Distribution of avalanches for N=50 and different k
�estimated from 500 runs�. The power-law-type dependence with
the exponent a=−2 is observed only for k=3. For k=4 the distri-
bution still has a power-law character, but with a different exponent.
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