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We studied how the inhomogeneity of a sequence affects the phase transition that takes place at DNA
melting. Unlike previous works, which considered thermodynamic quantities averaged over many different
inhomogeneous sequences, we focused on precise sequences and investigated the succession of local openings
that lead to their dissociation. For this purpose, we performed transfer-integral-type calculations with two
different dynamical models: namely, the heterogeneous Dauxois-Peyrard-Bishop model and the model based
on finite stacking enthalpies we recently proposed. It appears that, for both models, the essential effect of
heterogeneity is to let different portions of the investigated sequences open at slightly different temperatures.
Besides this macroscopic effect, the local aperture of each portion indeed turns out to be very similar to that of
a homogeneous sequence with the same length. Rounding of each local opening transition is therefore merely
a size effect. For the Dauxois-Peyrard-Bishop model, sequences with a few thousand base pairs are still far
from the thermodynamic limit, so that it is inappropriate, for this model, to discuss the order of the transition
associated with each local opening. In contrast, sequences with several hundred to a few thousand base pairs
are pretty close to the thermodynamic limit for the model we proposed. The temperature interval where a
power law holds is consequently broad enough to enable the estimation of critical exponents. On the basis of
the few examples we investigated, it seems that, for our model, disorder does not necessarily induce a decrease
of the order of the transition.
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I. INTRODUCTION

This article is the last one of a series of three papers
aimed at investigating the statistical physics of DNA
denaturation—i.e., the separation of the two strands upon
heating �1–6�—on the basis of dynamical models like the
Dauxois-Peyrard-Bishop one �6–8� and models we recently
proposed to take the finiteness of stacking interactions �9�
explicitly into account �10,11�. In the first article of the series
�12�, we analyzed the denaturation of homogeneous se-
quences at the thermodynamic limit of infinitely long chains.
We calculated the six fundamental exponents which charac-
terize the critical behavior of the specific heat, the order pa-
rameter, the correlation length, etc., by using the transfer
integral �TI� technique �13,14�. We showed that for the two
investigated models the exponent for the specific heat is sig-
nificantly larger than 1, which indicates that, within the va-
lidity of these models, denaturation is a first-order phase
transition. We also checked the validity of the four scaling
laws which connect the six exponents and observed that
Rushbrooke and Widom identities are satisfied, but not
Josephson and Fisher ones. While the invalidation of the
Fisher identity is without any doubt a consequence of the
dimensionality d=1 of the investigated models, we argued
that the failure of the Josephson identity may well be due to
the divergence of the-order parameter—i.e., the average
separation between paired bases. The purpose of the second
article of the series �15� was to describe how the finite length
of real sequences affects their critical properties. We charac-
terized in some detail the three effects that are observed

when the length of homogeneous sequences is decreased:
namely, the decrease of the critical temperature, the decrease
of the peak values of all quantities �like the specific heat and
the correlation length� that diverge at the thermodynamic
limit but remain finite for finite sequences, and the broaden-
ing of the temperature range over which the critical point
affects the dynamics of the system. We furthermore per-
formed a finite-size scaling analysis of the models and
showed that the singular part of the free energy can indeed
be expressed in terms of a homogeneous function. We how-
ever pointed out that, because of the invalidation of Joseph-
son identity, the derivation of the characteristic exponents
which appear in the expression of the specific heat requires
some care.

The investigations performed so far �12,15� therefore
dealt with homogeneous sequences. The reason is that homo-
geneous sequences display only one phase transition; that is,
the whole sequence opens at a single well-characterized tem-
perature on which theoretical investigations can focus. In
contrast, an examination of UV absorption spectra revealed a
long time ago that the denaturation of sufficiently long inho-
mogeneous sequences occurs through a series of local open-
ings when temperature is increased �16�, which makes this
problem substantially more difficult to analyze. However,
since all real DNA molecules display a heterogeneous, al-
most random-looking, distribution of A, T, G, and C bases, a
statistical physics description of the denaturation of such in-
homogeneous sequences appears as a necessity.

In the language of statistical physics, a heterogeneous dis-
tribution of the individual components constituting a com-
plex system is called disorder. One distinguishes field disor-
der, where heterogeneity concerns the distribution of the
external field coupled to every component of the system,
from bond disorder, which accounts for a heterogeneous dis-*Marc.JOYEUX@ujf-grenoble.fr
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tribution of the interactions between the elementary compo-
nents of the system. No external field is considered in the
present paper, which therefore focuses on bond disorder. The
consequences of the introduction of disorder in a homoge-
neous system which displays a second-order phase transition
have been characterized by Harris �17�. According to the
Harris criterion, disorder does not affect the critical behavior
of the homogeneous system if the correlation length critical
exponent � fulfills the inequality ��2 /d, where d is the
dimensionality of the system, because this implies that the
correlation length is large enough to smear out heterogene-
ities close to the critical point. If the Harris criterion is in-
stead violated, then a new critical point generally sets in. The
exponents of the power laws that are observed in the neigh-
borhood of this new critical point satisfy the Harris criterion.
Harris’ work was extended a few years later by Imry and
Wortis �18� to systems with a sharp first-order phase transi-
tion at the homogeneous limit. On the basis of a heuristic
argument, Imry and Wortis suggested that all first-order tran-
sitions of homogeneous systems could well be rounded and
transformed to second-order transitions upon the introduc-
tion of disorder, except if the dimensionality of the system is
larger than a certain critical dimensionality dc and its corre-
lation length sufficiently large. Note, however, that Imry and
Wortis’ argumentation explicitly assumes a finite correlation
length at the critical temperature, while DNA melting corre-
sponds to a somewhat peculiar first-order phase transition
with diverging correlation length. More recently, Hui and
Berker �19,20� and Aizenman and Wehr �21� showed on the
basis of general arguments that if a temperature-driven first-
order phase transition involves a symmetry breaking, then it
converts to a second-order phase transition upon the intro-
duction of disorder. Otherwise—i.e., if the critical point in-
volves no symmetry breaking—it is simply eliminated by
disorder. Since DNA denaturation, as described by the mod-
els we investigate, does not involve symmetry breaking, this
would imply that the denaturation of heterogeneous DNA
sequences is associated with neither a phase transition nor a
succession thereof.

Beside these general theoretical investigations, the ques-
tion of the introduction of disorder in DNA sequences has
been the subject of recent simulations �22–26�, which dealt
with models inspired from the Poland-Scheraga one �27� in
the regime where the pure model displays a first-order
transition—i.e., for a loop exponent c=2.15�2. These stud-
ies lead to contradictory interpretations. Garel and Monthus
�22,23� indeed concluded that the transition remains first or-
der in the disordered case, while Coluzzi and Yeramian
�24–26� instead expressed the opinion that the random sys-
tem undergoes a second-order transition. It should be empha-
sized that these studies considered disorder-averaged ther-
modynamic observables and agreed on the point that these
observables are not self-averaging at critical points, essen-
tially because of the distribution of pseudocritical tempera-
tures over the ensemble of samples �22,26�. In the present
work, we will tackle a different question: is it sensible to
describe the succession of local openings, which take place
when the temperature of a precise heterogeneous sequence is
increased, as a series of local phase transitions and, eventu-
ally, to specify the order of the local transitions?

The remainder of this paper is organized as follows. The
dynamical models whose physical statistics we investigate
are briefly described in Sec. II for the sake of completeness.
We next derive in Sec. III the TI formulas which enable the
calculation of the thermodynamic properties of finite hetero-
geneous sequences. We discuss in Sec. IV the critical behav-
ior of the specific heat per particle, cV=CV /N, the average
bubble depths �yn�, and the correlation length �, before con-
cluding in Sec. V.

II. NONLINEAR HAMILTONIAN MODELS FOR
INHOMOGENEOUS DNA SEQUENCES

The Hamiltonians of the two DNA models whose critical
behavior is studied in this paper are of the form

H = �
n=1

N � pn
2

2m
+ VM

�n��yn� + W�n��yn,yn−1�	 , �1�

where yn is the transverse stretching at the nth pair of bases,
VM

�n��yn� describes the energy that binds the two bases of pair
n, and W�n��yn ,yn−1� stands for the stacking interaction
between base pairs n−1 and n. The superscripts �n� in these
terms indicate that both the on-site and stacking interactions
may be site dependent for inhomogeneous sequences.
The two models agree in representing the interbase bond
VM

�n��yn� by Morse potentials, but the expressions for the
stacking interactions are rather different. Moreover, the het-
erogeneous Dauxois-Peyrard-Bishop �DPB� model �8,14� as-
sumes that heterogeneity is essentially carried by different
Morse parameters for AT and GC base pairs, while the mod-
els we proposed �10,11� are based, like thermodynamic ones
�9�, on a set of ten different finite stacking enthalpies �Hn
corresponding to all possible oriented successions of base
pairs. More precisely, for the heterogeneous DPB model
�8,14�,

VM
�n��yn� = Dn�1 − e−anyn�2,

W�n��yn,yn−1� = W�yn,yn−1� =
K

2
�yn − yn−1�2�1 + � e−��yn+yn−1�� ,

�2�

while for our model �10�, hereafter called the Joyeux-
Buyukdagli �JB� model,

VM
�n��yn� = VM�yn� = D�1 − e−ayn�2,

W�n��yn,yn−1� =
�Hn

2
�1 − e−b�yn − yn−1�2

� + Kb�yn − yn−1�2.

�3�

The nonlinear stacking interaction in Eqs. �2� has the particu-
larity of having a coupling constant which drops from
K�1+�� to K as the paired bases separate. This decreases the
rigidity of DNA sequences close to dissociation and results
in a sharp first-order transition �7�. The first term in the ex-
pression of W�n��yn ,yn−1� in Eq. �3� describes the finite stack-
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ing interaction and the second one the stiffness of the
phosphate/sugar backbone. The introduction of finite stack-
ing enthalpies �Hn in the model is by itself sufficient to
ensure a first-order denaturation transition �14�.

We used two sets of numerical values for the DBP Hamil-
tonian. For the calculation of the melting profiles discussed
in Sec. III, we used the set of parameters of Zhang et al. �14�:
that is, Dn=0.038 eV for AT base pairs, Dn=0.042 eV for
GC base pairs, an=4.2 Å−1 for both AT and GC base pairs,
K=0.042 eV Å−2, �=0.5, and �=0.35 Å−1. For the discus-
sion of the specific heat critical exponent in Sec. IV, we
instead used values that coincide, except for Dn, with those
we used in our work on critical exponents �12�. More explic-
itly, Dn=0.027 eV for AT base pairs, Dn=0.033 eV for GC
base pairs, an=4.5 Å−1 for both AT and GC base pairs, K
=0.06 eV Å−2, �=1.0, and �=0.35 Å−1. The ten values of
the stacking enthalpies �Hn of the JB model were taken from
Table I of Ref. �9� and the other parameters of this model are
those of Ref. �10�: that is, D=0.04 eV, a=4.45 Å−1, Kb
=10−5 eV A−2, and b=0.10 Å−2. Finally, the reduced mass
of each base pair was considered to be m=300 amu in the
molecular dynamics simulations reported in the next section.

III. TRANSFER INTEGRAL CALCULATIONS
FOR INHOMOGENEOUS DNA SEQUENCES

When ignoring the dissociation equilibrium S2↔2S,
which properly governs the separation of the two comple-
mentary strands �S� when the last base pair of double-
stranded DNA �S2� opens �4,5,8,14�, and neglecting the
trivial term arising from kinetic energy, the partition function
for the DNA models of Eq. �1� with open boundary condi-
tions can be expressed as

Z =
 dy1 dy2 ¯ dyNexp�− 	�
n

�VM
�n��yn� + W�n��yn,yn−1��� ,

�4�

where 	= �kBT�−1 is the inverse temperature. The TI method
�13,14� is a technique that allows for the efficient computa-
tion of Z. While this method was originally developed to
investigate homogeneous sequences at the thermodynamic
limit of infinitely long chains �13�, Zhang et al. �14� have
shown how it can be adapted to finite sequences described by
the heterogeneous DPB model. It turns out that, because of
the symmetric form of the Hamiltonian for the JB model, TI
calculations are quite simpler for this model than for the
DPB one. In this section, we first indicate the successive
steps for calculating the partition function of the JB model
and, consequently, its free energy, entropy, and specific heat.
We next derive expressions for two-point correlation func-
tions.

The first step for calculating Z consists in rewriting Eq.
�4� in the form

Z =
 dy1 dy2 ¯ dyNe−	VM�y1�/2K2�y2,y1�


K3�y3,y2� ¯ KN�yN,yN−1�e−	VM�yN�/2, �5�

where the TI kernel Kn�y ,x� for base pair n interacting with
base pair n−1 has the form

Kn�y,x� = exp
− 	�1

2
VM

�n��y� +
1

2
VM

�n−1��x� + W�n��y,x�	� .

�6�

For the DPB model, Kn�y ,x� is not symmetric �Kn�y ,x�
�Kn�x ,y�� when base pairs n and n−1 are different. Zhang
et al. �14�, who used the DBP model, therefore had to de-
velop a symmetrization procedure that makes the entire
scheme more complex. In contrast, Kn�y ,x� is symmetric
�Kn�y ,x�=Kn�x ,y�� for the JB model, whatever the base pairs
at positions n and n−1, so that no additional symmetrization
procedure is required. For the JB model, the essential differ-
ence between the procedures for homogeneous and inhomo-
geneous sequences consequently arises from the fact that ten
different kernels need be considered, one for each possible
succession of two base pairs �9�. The trick borrowed from
method 2 of Zhang et al. �14� then consists in developing
each kernel in a different orthonormal basis

Kn�y,x� = �
i

�i
�n��i

�n��y��i
�n��x� , �7�

where the ��i
�n�� and ��i

�n�� are the eigenvalues and eigenvec-
tors of the TI operator and satisfy the equation


 dx Kn�x,y��i
�n��x� = �i

�n��i
�n��y� . �8�

By defining

ai
�1� =
 dy e−	VM�y�/2�i

�2��y� ,

ai
�N� =
 dy e−	VM�y�/2�i

�N��y� ,

Bij = ��i
�N�� j

�2�ai
�N�aj

�1�,

Dij
�n� = ��i

�n−1�� j
�n�
 dy �i

�n−1��y�� j
�n��y� , �9�

and substituting the kernel expansion of Eq. �7� into Eq. �5�,
the partition function can be rewritten in the form

Z = �
i2,. . .,iN

BiNi2
Di2i3

�3� Di3i4
�4�

¯ DiN−2iN−1

�N−1� DiN−1iN
�N� �10�

or, equivalently,

Z = Tr�BD�3�D�4�
¯ D�N−1�D�N�� , �11�

where B stands for the matrix with elements Bij, D�n� for the
matrix with elements Dij

�n�, and “Tr” indicates that one must
take the trace of the product of matrices. Finally, the free
energy F, the entropy S, and the specific heat CV are obtained
from Z according to

F = − kBT ln�Z� ,

S = −
�F

�T
,
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CV = − T
�2F

�T2 . �12�

Calculation of intensive thermodynamical functions proceeds
along similar lines. For example, the mean elongation of the
nth base pair can be written in the form

�yn� =
1

Z

 dy1 dy2 ¯ dyNyne−	VM�y1�/2K2�y2,y1�


K3�y3,y2� ¯ KN�yN,yN−1�e−	VM�yN�/2. �13�

Defining

bi
�1� =
 dy e−	VM�y�/2�i

�2��y�y ,

bi
�N� =
 dy e−	VM�y�/2�i

�N��y�y ,

Cij
�1� = ��i

�N�� j
�2�ai

�N�bj
�1�,

Cij
�N� = ��i

�N�� j
�2�bi

�N�aj
�1�,

Y1,ij
�n� = ��i

�n−1�� j
�n�
 dy �i

�n−1��y�� j
�n��y�y , �14�

and substituting Eq. �7� into Eq. �13�, the mean elongation is
obtained in the form

�yn� =
1

Z
Tr�BD�3�D�4�

¯ D�n�Y1
�n+1�D�n+2�

¯ D�N�� , �15�

for n�1 and n�N, and

�yn� =
1

Z
Tr�C�n�D�3�D�4�

¯ D�N−1�D�N�� , �16�

at the extremities of the chain—that is, for n=1 or n=N.
Two-point correlation functions are derived in the same

manner. One obtains

�ynym� =
1

Z
Tr�BD�3�D�4�

¯ D�m�Y1
�m+1�


D�m+2� · · · D�n�Y1
�n+1�D�n+2�

¯ D�N�� ,

�yn
2� =

1

Z
Tr�BD�3�D�4�

¯ D�n�Y2
�n+1�D�n+2�

¯ D�N�� , �17�

if m and n are different from 1 and N,

�ynym� =
1

Z
Tr�C�n�D�3�D�4�

¯ D�m�Y1
�m+1�D�m+2�

¯ D�N�� ,

�yn
2� =

1

Z
Tr�E�nn�D�3�D�4�

¯ D�N−1�D�N�� , �18�

if m is different from 1 and N but n is equal to 1 or N, and

�y1yN� =
1

Z
Tr�E�1N�D�3�D�4�

¯ D�N−1�D�N�� . �19�

In Eqs. �17�–�19� we noted

ci
�1� =
 dy e−	VM�y�/2�i

�2��y�y2,

ci
�N� =
 dy e−	VM�y�/2�i

�N��y�y2,

Eij
�11� = ��i

�N�� j
�2�ai

�N�cj
�1�,

Eij
�1N� = ��i

�N�� j
�2�bi

�N�bj
�1�,

Eij
�NN� = ��i

�N�� j
�2�ci

�N�aj
�1�,

Y2,ij
�n� = ��i

�n−1�� j
�n�
 dy �i

�n−1��y�� j
�n��y�y2. �20�

In order to check the accuracy of the TI procedure, we
compared melting profiles obtained with this method to those
obtained from molecular dynamics �MD� simulations. MD
simulations consist in integrating numerically the Langevin
equations of motion

m
d2yn

dt2 = −
�H

�yn
− m


dyn

dt
+ �2mkBTw�t� . �21�

The second and third terms on the right-hand side of this
equation model the effects of the solvent on the sequence. 

is the dissipation coefficient �we assumed 
=5 ns−1 as in
Refs. �10,11,28�� and w�t� a normally distributed random
function with zero mean value and unit variance. Step-by-
step integration, with 10-fs steps, was performed by applying
a second-order Brünger-Brooks-Karplus integrator �29� to
the sequence initially at equilibrium at 0 K and subjected to
a temperature ramp of 10 K/ns. This slow heating ensures
that the temperature of the system, estimated from its aver-
age kinetic energy

Tkin =
2

NkB
�
n=1

N
pn

2

2m
, �22�

closely follows the temperature T imposed by the random
kicks. Once the required temperature was reached, the
Langevin equations were integrated at constant temperature
for additional 30 ns in order to bring the system still closer to
thermal equilibrium. We finally averaged the base pair sepa-
rations yn over time intervals which varied from 1 �s for
temperatures substantially smaller than the melting one up to
5 �s close to melting, in order to correctly average the low-
frequency thermal fluctuations which develop close to the
critical point �28�. During the averaging process, we went on
recording the physical temperature of the system �Eq. �22��,
because its final agreement with the imposed temperature T
provides an estimate of the quality of the averaging. For all
the results presented below, the differences between the two
temperatures were kept below 0.1 K.
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Figures 1 and 2 show the melting profiles �yn� as a func-
tion of n at increasing temperatures for, respectively, the
1793 base pairs �bp� human 	-actin cDNA �NCB entry code
NM_00110� and the 2399 bp inhibitor of the hepatocyte
growth factor activator �30�, which were obtained from TI
calculations with the JB model. In contrast with the estima-
tion of critical exponents �12,15�, this kind of plot does not
require a very high precision, so that the grid on which the
matrix representations of the TI kernels Kn�y ,x� were built
�13� consisted of only 2901 y values regularly spaced be-
tween ymin=−100 /a and ymax=2800 /a with steps of 1 /a.
The melting profiles for the actin sequence at 322 K and 346
K obtained from TI calculations and MD simulations per-
formed with the JB model are compared in Fig. 3. It is seen
that even tiny details coincide for the two curves at 322 K
�bottom plot�. The agreement remains excellent closer to de-
naturation. In particular, both methods conclude that all base
pairs with n�1200 are open at this temperature. We will
come back to this point later. Note that resolution with re-
spect to base pair positions is, however, substantially higher
in TI results, although TI calculations were more rapid than
MD simulations by a factor of almost 10 close to melting. In
spite of the fact that the TI procedure is much more CPU
demanding for inhomogeneous sequences than for homoge-
neous ones, it therefore still appears as a very powerful tool
compared to MD simulations. Figure 4 compares the melting
profiles for the actin sequence at 350 K obtained from TI and
MD calculations performed with the heterogeneous DPB
model. Although the agreement is again excellent, it is seen

that the TI profile looks like as if it consisted of three or four
superposed curves. This is most probably due to the conjunc-
tion of two phenomena: �i� the heterogeneous DBP model
assumes that the Morse interaction for GC base pairs is
stronger than that for AT base pairs, and �ii� the resolution of
the TI procedure is high enough to reflect the variations of
�yn� at the level of single base pairs that result from this
difference. To confirm this hypothesis, we checked that the
same phenomenon does show up for the JB model. Still,
since this model assumes that heterogeneity is carried by
stacking interactions instead of on-site potentials, superposed
curves essentially appear in the plots of �yn−yn−1� as a func-
tion of n. Moreover, the phenomenon is somewhat attenuated
compared to Fig. 4, because the JB model considers ten dif-
ferent stacking enthalpies, while the DPB one considers only
two different Morse potential strengths. Finally, Fig. 5 shows
the melting curve—that is, the evolution with temperature of
the portion of open base pairs—for the 1793-bp actin se-
quence obtained with the JB model. Although they were
computed with different models, this curve compares very
well with the one drawn in Fig. 4 of Ref. �11�.

In conclusion, the TI procedure appears as a powerful and
trustful tool for the computation of the thermodynamic prop-
erties of inhomogeneous DNA sequences.

IV. EFFECTS OF DISORDER CLOSE TO MELTING

In this section, we will investigate the role of disorder
close to the critical point. In contrast with previous studies
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FIG. 1. �Color online� Top: plot, for increasing temperatures, of
�yn� as a function of the site number n for the 1793-bp human
	-actin cDNA sequence �NCB entry code NM_001101�. These
curves were obtained from TI calculations performed with the JB
model. Bottom: plot, as a function of n, of the AT percentage aver-
aged over 40 consecutive bp of the actin sequence.
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FIG. 2. �Color online� Top: plot, for increasing temperatures, of
�yn� as a function of the site number n for the 2399-bp inhibitor of
the hepatocyte growth factor activator sequence �30�. These curves
were obtained from TI calculations performed with the JB model.
Bottom: plot, as a function of n, of the AT percentage averaged over
40 consecutive bp of the inhibitor sequence.
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�22–26�, we will not consider disorder-averaged quantities;
that is, we will not discuss the statistical physics of an en-
semble of random sequences. Instead, we will focus on pre-
cise sequences and try to determine if the successive open-
ings that lead to the dissociation of these sequences may be
described as phase transitions and eventually address the

question of the order of these transitions. To this end, we will
study the behavior of the specific heat per particle, cV
=CV /N, the average bubble depths �yn�, and the correlation
length �, close to the critical temperature.

A. Critical behavior of cV

The evolution of cV with temperature was computed for
the 1793-bp actin and the 2399-bp inhibitor according to
Eqs. �11� and �12�. Finite differences were used to estimate
the second derivative of Z in Eq. �12�. The results obtained
with grids of 2901 values of y regularly spaced between
−100 /a and 2800 /a are shown in Fig. 6. The evolution of cV
in these plots is most easily understood when comparing
them to the corresponding profiles in Figs. 1 and 2. The
bottom plot in Fig. 1 indeed indicates that the average AT
content for the 1793-bp actin sequence is substantially higher
for base pairs with n�1150. It is seen in the top plot of Fig.
1 that one-third of the sequence �the base pairs with n
�1150� consequently melt around 346–348 K, while the re-
maining two-thirds �the base pairs with n�1150� melt at the
slightly higher temperature of about 354 K. This two-step
denaturation is perfectly reflected in the temperature evolu-
tion of cV �top plot of Fig. 6�, which displays two peaks with
1:2 relative intensities centered around 348 and 354 K. For
the 2399-bp inhibitor, the bottom plot of Fig. 2 similarly
indicates that the average AT content is rather uniform in the
sequence, except that it significantly decreases with decreas-
ing n for the first 600 base pairs. Not surprisingly, it is ac-
cordingly seen in the top plot of Fig. 2 that these first 600
base pairs melt about 3° above the temperature of 352–354 K
where the rest of the sequence dissociates. Since this second
melting step involves only about one-fourth of the sequence
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FIG. 3. �Color online� Comparison of �yn� profiles for the
1793-bp actin sequence at 322 K �bottom plot� and 346 K �top plot�
obtained from TI calculations �dashed lines� and MD simulations
�solid lines� performed with the JB model. The main plots show the
profile of the whole sequence, while the inserts zoom in on 300
base pairs.
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and takes place very close to the first step, it merely appears
as a shoulder on the high-temperature side of the plot of cV in
the bottom plot of Fig. 6.

In order to learn more about these openings, we next draw
log-log plots of the evolution of cV as a function of the re-
duced temperature t, defined according to

t = 1 −
T

Tc
. �23�

In the case of homogeneous sequences, the critical tempera-
ture Tc that appears in Eq. �23� is unambiguously defined.
This is no longer the case when dealing with inhomogeneous
sequences, so that in the following we will explicitly state
which temperature is used as Tc. Moreover, this kind of plot
requires more precision than the previous figures. The calcu-
lation of Z in Eq. �11� was therefore performed with grids of
4101 values of y regularly spaced between −100 /a and
4000 /a. The result obtained for the JB model and the
2399-bp inhibitor is displayed in the bottom plot of Fig. 7.
The solid line shows the result for the 2399-bp inhibitor
sequence, while the dashed and dot-dashed lines show results
that we previously obtained for a 2000-bp homogeneous se-
quence and an infinitely long homogeneous sequence, re-
spectively �see the bottom plot of Fig. 3 of Ref. �15��. For the
inhomogeneous sequence, Tc was taken as the temperature
where cV is maximum �for the grid with 4201 points, we
numerically obtained Tc=354.34 K�, so that the solid line
actually deals with the first step of the melting of the inhibi-
tor sequence, that is, the opening of the base pairs with n
�600. In Ref. �15�, we arrived at the conclusion that the
thermodynamics of sequences with a few thousand base
pairs are close to that of infinite ones down to t�10−3 for the

JB model. As a consequence, the curves for the 2000-bp and
infinitely long homogeneous sequences are almost super-
posed above this threshold. Stated in other words, the round-
ing of the phase transition is hardly noticeable for tempera-
tures which differ from the critical one by more than a few
tenths of a degree. Examination of the bottom plot of Fig. 7
further shows that the thermodynamics of the opening of the
1800 base pairs with n�600 of the inhibitor sequence is also
very similar to that of the finite �N=2000� and infinite ho-
mogeneous sequences: rounding is indeed imperceptible
about 1° �t�3
10−3� below the critical temperature. The
power-law dependence of cV against t therefore extends over
an interval of t values which is sufficiently large to allow for
the estimation of the critical exponent � of cV. One obtains
�=1.07, which is characteristic of a first-order phase transi-
tion.

The top plot of Fig. 7 also displays a log-log plot of the
evolution of cV with t computed, however, with the hetero-
geneous DBP model. For the grid with 4201 points and this
model, we found Tc=284.24 K. We showed in Ref. �15�
that, in contrast with the JB model, sequences with N
=2000 bp are still far from the thermodynamic limit for the
DBP model. Therefore, the dashed curve �homogeneous se-
quence with N=2000 bp� and the dot-dashed one �homoge-
neous sequence at the thermodynamic limit� are well sepa-
rated. Examination of this plot also indicates that the �solid�
curve for the inhomogeneous 2399-bp inhibitor sequence is
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FIG. 6. �Color online� Plots of the specific heat per particle, cV,
as a function of temperature T for the 1793-bp actin sequence �top
plot� and the 2399-bp inhibitor sequence �bottom plot�, obtained
from TI calculations performed with the JB model. cV is expressed
in units of the Boltzmann constant kB.
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again qualitatively close to the �dashed� curve for the homo-
geneous 2000-bp sequence—and consequently quite sepa-
rated from the curve for the sequence at the thermodynamic
limit.

One might therefore tentatively conclude from the results
presented in this subsection that, for a given sequence, the
essential effect of heterogeneity is to let different portions of
the sequence open at slightly different temperatures. Besides
this global effect, the dynamics of the local aperture of each
portion is indeed very similar to that of a homogeneous se-
quence with the same length. We will now investigate the
critical behavior of the depth of the bubbles and of the cor-
relation length, in order to check whether they confirm this
conclusion.

B. Critical behavior of the bubble depth Šyn‹

As we already noted, the 1793-bp actin sequence opens in
two fairly separated steps: the base pairs with n�1150 melt
around 348 K, while those with n�1150 melt at the slightly
higher temperature of 354 K �see Figs. 1, 5, and 6�. Finer
details can be observed in Fig. 1. It is indeed seen that melt-
ing of the n�1150 portion is driven by three bubbles cen-
tered around n=1300, n=1450, and n=1610, while melting
of the n�1150 portion is driven by two bubbles centered
around n=318 and n=441, the center of each bubble corre-
sponding to a local maximum of the AT percentage. Figure 8
displays log-log plots of the average depth of each bubble,

�yn�, as a function of the reduced temperature t, obtained
with the JB model. For the three bubbles with n�1150 �top
plot�, the critical temperature was taken as the temperature
Tc=348.2 K of the secondary maximum of the specific heat,
while for the two bubbles with n�1150 �bottom plot�, the
critical temperature was taken as the temperature Tc
=353.9 K of the principal maximum of cV. Figure 8 indi-
cates that �i� the average depth of all bubbles exhibits a
power-law dependence against t over a reasonably large in-
terval of temperatures, �ii� the slopes are essentially identical
for all bubbles belonging to the same portion of the se-
quence, and �iii� the critical exponents that can be deduced
from these slopes—that is, −1.28 for the bubbles with n
�1150 and −1.00 for the bubbles with n�1150—are close
to the critical exponent 	=−1.31 we obtained at the thermo-
dynamic limit �12�.

C. Critical behavior of the correlation length �

At the thermodynamic limit of infinitely long chains, the
two-point spatial autocorrelation function

Cij = �yiyj� − �yi��yj� �24�

varies for large values of �i− j� according to

Cij � exp�− �i − j�/�� , �25�

where � is the correlation length �17�. � can consequently be
obtained as the inverse of the slope in the plots of ln�Cij� as
a function of �i− j�. Such plots are shown in Fig. 9 for a
homogeneous sequence with 10 000 base pairs described
with the homogeneous version of the JB model �10,12,15�. It
is seen that the natural logarithm of Cij indeed evolves lin-
early with j− i over more than 20 orders of magnitude and
that the correlation length � can be determined very accu-
rately from the slope of these curves. When plotting the val-
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FIG. 8. �Color online� Log-log plots, as a function of the re-
duced temperature t, of the average depth �yn� of bubbles centered
around n=1300, n=1450, and n=1640 �top plot� and n=318 and
n=441 �bottom plot� for the 1793-bp actin sequence. These results
were obtained from TI calculations performed with the JB model.
The critical temperature of each portion of the sequence is indicated
on the corresponding plot.
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ues of � obtained in this way as a function of t �critical
temperature is Tc=367.47 K�, one furthermore recovers the
critical exponent �=1.23 reported in Ref. �12�. Similar plots
of ln�Cij� as a function of j− i, obtained from Eqs. �15�, �17�,
and �24�, are reported in Fig. 10 for the 1793-bp actin se-
quence described with the JB model. The main plot was
obtained by setting i=180 and the smaller one by setting i
=1250. The horizontal and vertical scales are identical for
both plots, but the smaller one �i=1250� was horizontally
shifted so that identical values of j are vertically aligned.
Examination of Fig. 10 indicates that all curves in the main
plot and some curves in the smaller plot are composed of two
segments instead of a single straight line and that the values
of j where the two segments cross approximately coincide,
for each temperature, with the boundary between the double-
stranded and open portions of the sequence. Moreover, local
slopes are much smaller whenever i and/or j lie in the open
portion of the sequence. By comparing the two plots in Fig.
10, one finally notices that absolute values of ln�Cij� are
different for different values of i, but that their variations are
identical for identical values of j. These two observations
suggest that for inhomogeneous sequences the two-point spa-
tial correlation function Cij still evolves exponentially with
�i− j�, as in Eq. �25�, but that there exists one different cor-
relation length � for each region that melts independently
from the rest of the sequence. Note that it is then quite ap-
propriate to call these regions coherence regions. At last, we
checked that the correlation lengths obtained from the slopes
of the first segments in the main plot of Fig. 10 evolve as

t−1.13 �Tc=353.9 K, as in the bottom plot of Fig. 8�. There-
fore, the correlation length critical exponent for the portion
of the sequence with n�1150 is again close to the above
mentioned value �=1.23 for homogeneous sequences �12�.

V. CONCLUSION

In this work, we analyzed the statistical physics of inho-
mogeneous DNA sequences close to denaturation. Unlike
previous studies, which considered disorder-averaged ther-
modynamic observables, we focused on the successive local
openings of precise sequences. To this end, we used the ex-
tended TI method of Zhang et al. �14� to investigate the
properties of the heterogeneous DPB model �8� and derived a
modified version of this method to adapt it to the study of the
JB model �10,12,15�. Examination of the critical behavior of
the specific heat per particle, cV, the average bubble depths
�yn�, and the correlation length � leads to the following con-
clusions. Both models agree in pointing out that the principal
effect of heterogeneity is to let different portions of the se-
quence open at slightly different temperatures. Besides this
global effect, the dynamics of the local aperture of each por-
tion is indeed very similar to that of a homogeneous se-
quence with the same length. In particular, the local melting
transition of each portion is rounded by finite-size effects
�15�. Strictly speaking, one should therefore not describe the
melting of an inhomogeneous sequence as a succession of
phase transitions. When speaking more loosely, such a de-
scription is, however, not really wrong, in the sense that the
melting of several hundred or a few thousand of base pairs is
accompanied by a sharp maximum of the specific heat and a
clear step of the entropy �see Fig. 6 and Figs. 2 and 3 of Ref.
�15��. The answer to the more involved question concerning
the possibility to ascribe an order to these rounded transitions
unfortunately turns out to depend on the model which is used
to describe DNA. Indeed, for the JB model, sequences �or
portions thereof� with several hundred to a few thousand
base pairs are already rather close to the thermodynamic
limit �see the bottom plot of Fig. 7 and Figs. 3 and 4 of Ref.
�15��, so that power laws are observed over significant tem-
perature intervals. For the 2399-bp inhibitor and the 1793-bp
actin sequences, the values of the critical exponents esti-
mated on these temperature intervals turn out to be close to
those of homogeneous sequences at the thermodynamic
limit. In particular the specific heat critical exponent we ob-
tained for the opening of the 1800 base pairs with n�600 of
the inhibitor sequence, �=1.07, is characteristic of a first-
order phase transition. Of course, it is not possible to draw a
general conclusion from a single example, but this calcula-
tion still has the merit of showing that disorder does not
necessarily reduce the order of the transition. In contrast, for
the DPB model, sequences with a few thousands base pairs
are still quite far from the thermodynamic limit �see the top
plot of Fig. 7 and Fig. 3 of Ref. �15��, so that it is not
appropriate to discuss the order of the melting transition for
inhomogeneous sequences described by this model.

Last but not least, it should be emphasized that the two
Morse parameters Dn for AT and GC pairing and the ten
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FIG. 10. �Color online� Plots of ln�Cij� as a function of �i− j� for
the 1793-bp actin sequence at several temperatures regularly spaced
between 340 K and 350 K. i=180 for the main plot and i=1250 for
the smaller vignette. The horizontal and vertical scales are identical
for both plots, but the vignette �i=1250� was horizontally shifted so
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obtained from TI calculations performed with the JB model.
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stacking enthalpies �Hn cannot be extracted independently
from experimental denaturation curves �31–33�. It has, how-
ever, been shown recently how these 12 quantities can be
obtained from the properties of nicked DNA �32,33�. The
free energies reported in Table I of Ref. �33� indicate that
heterogeneity in improved dynamical models of DNA sec-
ondary structure should be carried by both pairing and stack-
ing energies. It will therefore be very instructive to build a
dynamical model centered on these data and check whether

the description of the melting phase transition of inhomoge-
neous DNA obtained from this model matches that obtained
with the DPB or the JB models �note that the new parameters
have already been used in statistical models; see �34��. Aside
from the adjustment of the remaining free parameters of the
model against experimental melting curves, the major diffi-
culty of this task will consist in establishing a TI calculation
procedure that allows one to take into account the heteroge-
neity of both pairing and stacking energies.
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