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The competition between reptation and Rouse dynamics is incorporated in the Rubinstein-Duke model for
polymer motion by extending it with sideways motions, which cross barriers and create or annihilate hernias.
Using the density-matrix renormalization-group method as a solver of the master equation, the renewal time
and the diffusion coefficient are calculated as functions of the length of the chain and the strength of the
sideways motion. These types of moves have a strong and delicate influence on the asymptotic behavior of
long polymers. The effects are analyzed as functions of the chain length in terms of effective exponents and

crossover scaling functions.
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I. INTRODUCTION

A dilute solution of linear polymers in a gel provides the
ideal case for reptation. The gel is a rigid network of ob-
stacles which forces the polymer to find its way by slithering
through the maze. Effectively, the polymer moves inside a
tube of pores which changes only by growing and shrinking
at the ends of the tube. It is not a great step to replace the
network of the gel by a regular lattice. The regularity of the
lattice still keeps the motion of the polymer random, because
the ends randomly leave or enter cells of the lattice. A big
step is the reduction of the motion to a stochastic process of
hopping units. It certainly cannot be justified on the level of
monomers, because neighboring monomers are strongly cor-
related in their motion. For this purpose the notion of reptons
has been introduced: blobs of monomers of the size of the
correlation length [1]. Seeing the polymer as a sequence of
reptons permits the units of motion to be considered as un-
correlated, with the only proviso that they do not separate too
far, in order to preserve the integrity of the polymer.

Rubinstein [2] designed an elementary model for repta-
tion, as a chain of slack and taut links connecting the reptons.
A slack link describes two successive reptons in the same
cell and a taut link two in nearest neighbor cells. By allowing
only these configurations of reptons and only moves between
them, a simple model for reptation results. Duke [3] enriched
the model by biasing the hopping of reptons by an external
field, thus modeling the experimental situation of gel electro-
phoresis. Of course, the model misses important aspects of
polymer dynamics, such as the hydrodynamic interactions
and even more importantly the requirement of self-
avoidance, which influences the universal properties [4,5].
One can incorporate self-avoidance in the model, which,
however, makes the analysis an order of magnitude more
difficult. An excuse for leaving out this aspect is that mutual
exclusion is less severe for reptons than for monomers, be-
cause the reptons are loosely packed blobs of monomers
which can interpenetrate each other.

The eternal dilemma is to choose between being realistic
and keeping the model simple. The chemical culture opts for
being realistic and deals with specific properties; the physical
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culture leans toward simplicity and aims at generic proper-
ties. It was de Gennes’ contribution to polymer physics to
show that properties of long polymers do not depend on the
specific composition; in particular, the dependence on the
length of the polymers is governed by universal exponents.
In this sense the Rubinstein-Duke (RD) model has been
shown to catch the essential physics of reptation in spite of
the crude approximations made.

We will approach the problem from the physical perspec-
tive and deal with the universal properties of the RD model,
but investigate a richer class of motions than treated so far.
In the standard RD model only interchange of slack and taut
links is permitted. This means that the length stored in a
slack link moves in the direction of a taut link, interchanging
the slack and taut links. A move that would perfectly fit in
the spirit of the RD model is the change of two consecutive
slack links into two taut links. It corresponds to three reptons
in the same cell, of which the middle one escapes to a neigh-
boring cell. Such a move does not cross a barrier. There was
a practical reason to exclude this possibility, because it de-
stroys the dimensional reduction, as was pointed out by
Duke. From a physical point of view, the formation of “her-
nias” does not seem to influence the universal properties, and
in this paper we investigate this issue. Another optional
move is the interchange of two taut links. As we will see, this
means the crossing of a barrier by the chain. If the barriers
posed by the obstacles were infinitely high, these processes
would be strictly forbidden. But barriers are not perfect and
therefore it is worthwhile to investigate the influence of finite
barriers. Moreover, we will see that barrier crossing in the
RD model does not lead to much change, but the combina-
tion with hernia creation and annihilation has the drastic ef-
fect of crossing over from reptation to Rouse dynamics.

Since the standard RD model already does not permit an
exact solution, we have to rely on numerical methods to
analyze the extended model. The most common method is
simulation of the system but this is less suited for our goal,
because the crossover between the two types of dynamics
occurs for rather long chains, which are hard to simulate
accurately. We will employ the technique of finite-size analy-
sis, which requires very accurate data to be successful. In this
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FIG. 1. Rubinstein-Duke moves. Their rate is set to 1.

paper we use a method, based on the analogy between the
master equation and the Schrodinger equation, by which the
temporal evolution of the probability distribution of the
chain configurations corresponds to the evolution of the
wave function. The master operator corresponds to the
Hamiltonian of a one-dimensional spin chain, for which the
very efficient density-matrix renormalization-group method
(DMRG) has been designed by White [6]. The model re-
mains a one-dimensional quantum problem, irrespective of
the lattice in which it is embedded, because the chain itself is
a linear structure. Application of the DMRG method to the
chain dynamics on a lattice is by now standard, but to per-
form calculations successfully in a three-dimensional (3D)
embedding lattice requires an optimal use of the symmetries
of the model in order to keep the basis set of states to a
practical size. In the Appendix we outline how we exploit the
symmetries of the 3D lattice.

In the next section we describe the extension of the RD
model and the corresponding master equation. We focus on
two properties: the renewal time 7 and the diffusion coeffi-
cient D, and determine them directly from the master opera-
tor. The renewal time is the time needed for the chain to
assume a new configuration, which has no memory of the
original one. It is found from the gap in the spectrum of the
master operator. The master equation always has a trivial
eigenvalue 0, corresponding to the stationary state. Any other
initial state ultimately decays toward the stationary state, and
the slowest relaxation time (the inverse of the gap) is the
renewal time. The gap decays with a negative power z of the
length N of the chain, such that 7~ N¢. The zero-field diffu-
sion coefficient D is related to the drift velocity in a weak
driving field and decays as a power N~*. The approach to this
asymptotic behavior is the main issue of this paper.

Due to the additional types of hopping, the dimensionality
d of the embedding lattice plays a nontrivial role. We report
calculations in d=3. They became possible through subtle
use of the symmetries of the model, which are discussed in
the Appendix. The subsequent sections contain the results for
the renewal exponent z and the crossover functions, which
describe the data for all lengths N, and the strengths of the
transition rates for barrier crossing and hernia creation and
annihilation. The results for the diffusion coefficient D and
its exponent x are calculated from a linearization of the mas-
ter equation with respect to the driving field. The exponents
z and x are linked through the mean square displacement of
the wandering chains. In the Discussion we comment on the
results and explain why the crossover in gels is different
from that in polymer melts.

Paessens and Schiitz [9] have also extended the RD model
by including “constraint release” in the hopping rates. In our
language, this is a mix of hernia creation-annihilation and
barrier crossings. We comment on their calculation in the
discussion.
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FIG. 2. Barrier crossings with hopping rate c.

Earlier [10] we performed a similar investigation for the
cage model (in d=2), with similar conclusions as in the
present study. Investigation of the RD model elucidates how
far the crossover is model independent.

II. THE MODEL

The model consists of a chain of N+1 reptons located in
the cells of a (hyper)cubic lattice. They are connected by N
links, labeled by Y=(y;,...,yy). The links take on the value
v;=0 (slack) or any of the 2D vectors that connect a cell to
its neighbors (taut). The corners of the squares in d=2 or the
edges of the cubes in d=3 are barriers for the chain. The
reptons can move in three ways.

(1) The standard RD move, in which a repton between a
slack and a taut link moves to the neighboring cell, thereby
interchanging the slack and taut links. For these moves no
barriers have to be overcome. A move is illustrated in Fig. 1.
The strength of the hopping rate for RD moves sets the time
scale and is therefore put equal to 1.

(2) The barrier crossings, of which an example is shown
in Fig. 2. This is an interchange of two taut links connected
to the same repton that jumps over the barrier. The strength
of the transition rate for such a move is taken to be c.

(3) The creation of a hernia, which is a change in two
consecutive slack links, from which the middle repton jumps
to a neighboring cell. The annihilation is the reverse process.
An example is shown in Fig. 3. Hernia creation and annihi-
lation occur with the rate .

The statistics of the model is governed by the master
equation for the probability distribution P(Y,t), where Y
stands for the complete configuration (y;,...,yy). It has the
general form

% = 2 WYY)P(Y',1) - WY [Y)P(Y,1)]
YI
= > M(Y,Y')P(Y',1). )
YI

The W’s are the transition rates of the possible motions that
we have indicated in the above list. The matrix M combines
the gain terms (in the off-diagonal elements) and the loss
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FIG. 3. Hernia creation (a)—(d) and annihilation (d)—(a). Both
processes occur with rate are h.
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terms (on the diagonal). M is the sum of matrices, one for
each repton,

N

M(Y,Y') =2 M(Y.Y"), )
i=0

where the sum runs over the reptons starting with the tail
repton i=0 to the head repton i=N. The internal reptons
induce transitions between two configurations which differ in
two consecutive y;, the external (head and tail) reptons
change only yy and y;. If we view the links as “bodies,” the
problem is equivalent to a one-dimensional many-body sys-
tem with two-body interactions between nearest neighbors.

The matrix M is asymmetric because the transition rates
are biased by a factor B=exp(e/2) for the moves in the di-
rection of the field and by B~ for the reverse process. € is a
dimensionless parameter representing the strength of the
field. M is a stochastic matrix since the sum over each col-
umn vanishes. Therefore M has an eigenvalue 0 and the cor-
responding right eigenvector is the probability density of the
stationary state. All other eigenvalues are negative. The
smallest in magnitude is the gap, giving the slowest decay to
the stationary state, and the inverse of the gap we take as the
definition of the renewal time. The diffusion coefficient D is
calculated from an infinitesimally small driving field. The
field induces a drift v,; and via the Einstein relation

_1({dva
D_N( &e)go ®)

the diffusion coefficient results. It is determined by expan-
sion of the master equation in powers of €,

M=Mo+eM+ -, P(Y)=Py(Y)+eP(Y)+ -,
(4)
which leads to the equations
MoPy=0, MyP;=-M;P,. (3)

The first equation is trivially satisfied by a constant Py(Y),
since the matrix M is symmetric and the right eigenvector
becomes equal to the trivial left eigenvector. The right-hand
side of the second equation is a known function of the con-
figuration. Thus it yields the linear perturbation P,. The drift
velocity is an average over the distribution [7]. The linear
term in € of the drift velocity involves the terms P, and P;.
With these terms we can calculate the linear term in v, and
find with (3) the diffusion coefficient D.

III. THE EXPONENT z FOR THE RENEWAL TIME

The easiest way to obtain the exponent of the relation 7
=N? is to make a log-log plot and determine the slope. In a
previous publication [8], it was shown that this is rather mis-
leading for the present problem. A much more sensitive
check is to compute local exponents z according to

_ln7'(N+1)—ln7'(N—1)~ dint
N TN+ 1) -In(N-1) _ dInN’

(6)

which gives z as a function of the chain length N. The func-
tion zy is the basic ingredient for further analysis.
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FIG. 4. Influence of the basis size m on the renewal time expo-
nent for two combinations of parameters: ¢=0, h=0.1 and
c=0.1, h=0.

First we check how accurately it can be obtained from a
DMRG calculation of which the convergence is determined
by the basis size m. In Fig. 4 we show examples of poor and
excellent convergence. Poor convergence occurs for the
combination ¢c=0, /h=0.1, where we have no barrier cross-
ings but substantial hernia creation and annihilation. For a
length N=20 the size of the basis, even as large as m=160,
still has an influence, and for longer chains this becomes
stronger. Thus it is difficult to deduce from these data the
effective exponent for chains longer than N=20. In the sec-
ond combination ¢=0.1, h=0, the convergence is perfect
for much smaller bases and for much longer chains, as the
upper curve in the picture demonstrates. In fact, the case with
no barrier crossing at all is the only combination where con-
vergence is a problem, as subsequent pictures will show. We
blame the lack of convergence on the fact that hernia cre-
ation and annihilation without some barrier crossing leads to
a large weight for configurations with many hernias and
therefore to a short end-to-end distance of the chain. These
are atypical configurations and the DMRG procedure has dif-
ficulty in finding an adequate basis to represent the gap state.

Some other noticeable points are as follows.

(1) The curves have still not reached the asymptotic value
for values of N of the order of 100. Thus a log-log plot
would suggest a higher value than the reptation value 3. This
slow approach to the asymptotic value has been identified as
the main reason for the discrepancy between the theoretical
reptation exponent z=3 and the measured higher values [8].
We get a better grip on the asymptotics when we discuss the
CIOSSOVEr.

(2) The curves do not indicate a tendency toward the
Rouse exponent z=2. This illustrates the point made in the
Introduction that the two mechanisms have to assist each
other, before deviations from reptation occur.

Figure 5 shows a set of curves for 2=0 and a set of values
c. Note that the effective exponent is quite sensitive to the
value of ¢, but all curves do not show reptative behavior, as
was mentioned earlier for the N dependence of a single point
in parameter space. For larger values of ¢, a maximum in the
effective exponent zy seems to develop for larger and larger
N. As the maximum can easily be interpreted as a saturated
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FIG. 5. Renewal time exponent zy for #=0 and a set of values

asymptotic value in a log-log plot, these corrections to scal-
ing, still present for very long chains, are very important for
assessing the correct asymptotic behavior. This feature
makes it necessary to do a finite-size analysis in order to get
a grip on the region in N where the behavior changes.

The standard argument is that hernia creation and annihi-
lation do not change the reptative character of the chain mo-
tion because they leave the backbone of the chain invariant;
this is the collection of taut links after the chain has been
successively stripped of its hernias. The backbone changes
only by refreshment at the ends of the chain. Also, barrier
crossing seems to be, as a single mechanism, ineffective. It
changes the backbone, but not the number of taut links in a
certain direction, since in a barrier crossing taut links are
only interchanged in position along the chain. We may call
the properties of the chain, which are not changed by internal
motion, “quasi-invariants.” So one needs both a nonzero ¢
and a nonzero h to remove these quasi-invariants. The coop-
eration of hernia creation and annihilation and barrier cross-
ing is an intricate mechanism. Therefore we concentrate first
on the situation where one of them has a finite strength and
the other becomes small.
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FIG. 6. Renewal time exponent zy for ¢=0.1 and a set of values
h.
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FIG. 7. Renewal time exponent z, for 7=0.1 and a set of values

IV. SIMPLE CROSSOVER

The case where one of the two, ¢ or A, is fixed at a finite
value gives a simple crossover from reptation to Rouse dy-
namics when the chain grows with N. As an example, con-
sider first a fixed value ¢=0.1 and % varying and small, for
which the local exponent zy is given in Fig. 6. The reverse
situation is plotted in Fig. 7 with z for #=0.1 and a set of
values of c¢. The two figures are strikingly similar. For small
values of the parameter ¢ (h), the chain seems to show repta-
tive behavior but turns over toward the Rouse exponent
z=2 for longer chains. It is remarkable that even in Fig. 7 the
values for very small ¢ show this trend, while we know from
the previous section that for ¢=0 the calculation is poorly
convergent.

Anticipating the asymptotic values of the two regimes, the
following representation is adequate for the renewal time (for
fixed h):

7(N,c) = N°g(c’N). (7)

The idea is that all curves of, e.g., Fig. 7 are represented by
a single curve g(x). Thus we have plotted in Fig. 8 the data
for 7N=* as a function of ¢’N for the fixed value 2=0.5 and

T
0.08 0—0¢=0.025 _
o0 ¢=0075
o ¢=0.125
=4 c=0.2
0.06 =08 .
g
0.04 |
0.02 —
0 | | | |
0 10 20 30 40 50
)
¢ N
FIG. 8. Crossover scaling function g(x) for h=0.5 and
6=0.58.
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FIG. 9. Crossover exponent 6 as deduced from (10). It is given
by the slope of the curve.

varying ¢, with an assumed value #=0.58. This exponent is
determined by trial and error to get the maximum collapse of
the data on a single curve. The figure shows indeed a nice
data collapse but it hides a subtlety which we can uncover by
using the properties of the crossover function g(x). The func-
tion g(x) should be expandable for small arguments as

gx)=go+gx+--- (8)

and for large arguments as

o) = l(g_1+ﬁ+---). 9)
X X

Then 7 varies as N° for vanishing ¢ and as N” for N— o (at
nonzero ¢). Inserting the asymptotic behavior (9) into (7), we
obtain

In(7/N*)=Ing_;—flnc+ -, (10)

where the ellipsis refers to corrections of order 1/N. In Fig.
9 we have made a plot of the limit of In(7/N?) vs In c. The
values of the vertical axis are extrapolated to N— e, which
corresponds to the first two terms of (10). We first check
whether the basis of states is large enough that we have no
systematic errors due to a too small basis. Then we inspect
whether 7/N? has a well-defined limiting value for N— o,
(The values should approach the limiting point in a fairly
linear way.) If the curves in Fig. 9 have a straight slope, a
well-defined value of the crossover exponent 6 follows. As
one observes, there rather is a constant slope for small values
of ¢ and another one for the larger values of ¢. Now cross-
over may only be expected in the limit of ¢ — 0, which gives
a slope in the neighborhood of #=0.5. We could therefore
discard the behavior for larger ¢, as not being described by
crossover, but this contrasts with the findings for the cage
model, where the crossover formula applies for practically
the whole range of c. We show the data also for larger values
of ¢ because we find it intriguing that this region is also
representable by a crossover function, albeit with a different
Crossover exponent.
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FIG. 10. Crossover exponent 6 for ratios of &/c.

V. CROSSOVER ALONG LINES h/c=r

With one of the parameters h or c fixed, it is the other
parameter that controls the crossover. The real challenge is to
find a representation where both mechanisms feature. We
have not been able to find a simple expression that accurately
accounts for arbitrary combinations of & and c. We gain
some insight into the combined action of 4 and ¢ by ap-
proaching the limit z=c=0 along a radial line h/c=r. For
fixed r we have again a single parameter which, in combina-
tion with N, provides a crossover scaling variable, such that
we can use the scenario of the previous section to analyze the
data. In Fig. 10 we give the crossover exponent 6 as a func-
tion of Inc (In /) and for some values of the parameter ratio
h/c. For very small values of In ¢ (In %) the slope of the line
is compatible with the “universal” exponent 6=0.5. How-
ever, for larger values another exponent seems to emerge of
the order of #=0.85. Note that the curves in Fig. 10 run quite
parallel, which means that r enters only in the offset given by
g_; in (10). To show this point in more detail we have plotted
in Fig. 11 the lines for larger values of & (or ¢). The window
where the large exponent #=0.85 applies covers more than
an order of magnitude for a fixed ratio &/c.
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FIG. 11. Crossover exponent 6 for ratios of i/c at larger values
of i and c.
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FIG. 12. Comparison of the exponents zy—1 and xy.

VI. THE DIFFUSION COEFFICIENT D

The diffusion coefficient has been determined by the lin-
earization (5), which gives the linear response of the drift
velocity with respect to the driving force. We do not repeat
the analysis for the diffusion exponent x, since diffusion and
renewal time are closely related. If the center of the chain has
dgfted over a distance of the order of the end-to-end distance
VN, the chain has renewed itself. The mean square displace-
ment due to diffusion during a renewal time equals D7. So
one has the connection

Dr=N for N— o, (11)

This relation implies the relation for the exponents z—x=1.
We have tested this relation, and in Fig. 12 we show the
values of zy—1 and x, for the same set of parameters, one for
the small value 27=c=0.0001, where the behavior is more
reptative, and one for the larger value h=c=0.1, where the
exponents tend to Rouse dynamics. See also Fig. 13, which
shows that the crossover exponents 6 for renewal and for
diffusion are practically the same in the domain where they
could be calculated with reasonable accuracy.

09
0.81- 7
607 oed=2(gap)| |
| o-od=2 (diff)| |
=—a d=3 (gap)
06 o—o d=3 (diff)
0.5 ] el ‘
0.0001 0.01 1

c=h

FIG. 13. Comparison of the crossover exponent 6 for d=2 and
d=3, for both the gap and the diffusion coefficient.
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VII. TWO-DIMENSIONAL RESULTS

We have shown the results for embedding dimension
d=3. As mentioned, the general expectation is that the em-
bedding dimension has little influence on the universal prop-
erties. We are now in a position to verify this statement, since
we have made extensive calculations in both d=2 and d=3.
Indeed we come to the conclusion that the results agree
qualitatively. To show an example we plot in Fig. 13 the
d=3 and d=2 curves for 6 for h=c. The trends are the same,
but the value of 6 in the “large” parameter regime is defi-
nitely larger for d=3 than for d=2.

VIII. DISCUSSION

As a follow-up to the study of crossover in the cage
model, the extended RD model gives by and large the same
picture: with growing length the chain crosses over from
reptation to Rouse dynamics. The story is more complicated
here because the two extra types of hopping, barrier crossing
and hernia creation and annihilation, have to assist each
other in order to obtain Rouse dynamics for long chains. This
makes a comprehensive representation of the data in one
scaling expression complicated. We have investigated the
crossover behavior along lines in the ¢,/ plane.

The underlying idea of crossover is that there are two
competing time scales. One is the diffusive time scale N*/D,.,
which is the time needed for a perturbation to diffuse along
the chain inward. We note that here not the overall diffusion
D but the curvilinear diffusion coefficient D,. applies, which
decays as N™!. This time scale leads to a renewal time ~N?>.
The other time scale is the time needed to renew the chain by
the combined action of hernia creation and annihilation and
barrier crossing. If one of the parameters ¢ or h is large
enough, the other is the limiting factor. If ¢ is the smaller
one, the time scale due to ¢ equals N/c and if & sets the rate,
it is N/h. The fastest of the two time scales sets the overall
rate and therefore crossover occurs when they are equal, i.e.,
when ¢~N72, or h~ N2, whichever is the smaller param-
eter. This leads to a crossover exponent #=1/2. We see this
trend in the numerical data, but the fact that we have to go to
really small values of ¢ (or k), and therefore to correspond-
ingly large N, prevents this “universal” crossover exponent
from showing up in a clear way.

On the other hand, we observe for larger values of the
parameters crossover behavior also, with different crossover
exponents 6. This change in value could be a demonstration
of corrections to scaling, just as the exponents z, or x, are
rather far from their asymptotic values when crossover plays
no role (as, e.g., Fig. 5 shows). Clearly the renewal of the
chain by sideways motion is still slow enough, even when ¢
and h are of order unity, that the competition with diffusive
renewal determines the character of the dynamics.

As pointed out earlier for the cage model [10], the cross-
over differs from the common scenario for polymer melts,
where the crossover is in the opposite direction: from Rouse
dynamics to reptation [11]. In the melt, reptation results for
the longer chains because the restriction in motion of the
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polymer, due to the presence of others, becomes more severe
as the polymer gets longer. We have argued that such cross-
over in melts can be understood from sideways motions that
have a rate depending on the length of the chain. If the re-
newal time is taken as indicative of the lifetime of a barrier,
the sideways motion will have a rate ~N"°V in the melt. The
combined scaling parameter cN? then will shrink as N grows.
Since we always find zy>2, reptation prevails for long
chains in the melt. One would have to do a self-consistent
calculation, as carried out by Paessens and Schiitz, to make
this argument quantitative [9].

Paessens and Schiitz [9] have also extended the RD model
with rates that depend on the length of the chain. Their aim is
to see the influence of “constraint release” on finite chains.
The constraint release that they allow is in our language a
mix of hernia creation and annihilation and barrier crossing.
But not all types of barrier crossing that we allow are per-
mitted in their model. So it is somewhat difficult to make a
clear comparison between their findings and ours. The inter-
esting point of their calculation is the requirement of self-
consistency: the rates determine the renewal time and the
renewal time in turn influences the rates. To carry out this
program accurately within the DMRG method is one of the
challenges for further research.
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APPENDIX: THE SYMMETRIES OF THE MASTER
OPERATOR

It is easy to set up a DMRG without paying attention to
the symmetries of the problem. Then in d=3 each link can be
in 2d+1=7 states, leading to 7" configurations for N+1 rep-
tons. The possible symmetries in the problem will give an
equal probability to many configurations. If the symmetries
are not explicitly acknowledged, the symmetries get lost
when the choice of basis states does not conserve the sym-
metry. This means that states which are equivalent by sym-
metry have to be chosen simultaneously. Thus either one has
to include a large number of states, which leads to impracti-
cal calculations, or one has to keep track of the symmetry in
each step of the method, which requires a substantial extra
amount of careful programming. However, since we want to
extract the utmost out of the data, we have no choice and
must optimize the symmetry.

As we deal with a field-free gap for the renewal time and
with the field-free equation (5), we can employ, in principle,
the full symmetry group of the cube, which has 48 elements.
If we were to do an exact calculation, we could apply all the
relevant symmetry operations to the wave function and so
reduce the number of components. But that is not the way
the DMRG works. The configuration space is split into tail
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and head parts, and the wave function is improved by an
optimal choice of basis states in one part using the density
matrix induced by the other part. In order to keep the sym-
metry in the wave function, the chosen states have to have
the symmetry, which implies that the density matrix must
have the symmetry. That in turn implies that, in each stage of
the calculation, the wave function of the whole chain must
have the desired symmetry. Thus we have to know how to
combine the symmetry of the parts in order to get the sym-
metry of the whole. This is similar to combining angular
momenta of particles in atomic physics to get the angular
momentum of the total wave function. The “good quantum
numbers” are derived from a set of commuting symmetry
operators.

We can find at most three commuting operators within the
cubic group, with some freedom of choice. The simplest
method would be to look to the reflection symmetry of the
coordinate axes. For each of the three operations the wave
function can be even or odd, giving eight sectors labeled by
the parities. The parities qualify as good quantum numbers.
The ground state (stationary state) is located in the sector
that is even under all three reflections. Each of the other
sectors contains an excited state, and the smallest (in magni-
tude) is the gap. The parities of the parts can easily be com-
bined with each other for the total since they simply multi-
ply. We have implemented this scheme, but it does not lead
to very accurate results; we blame this on the rather unbal-
anced occupation of the sectors, when the most probable
states of the density matrix are chosen.

The most successful use of the symmetry comes from
another choice of commuting symmetry operations. We put
the field in the direction of the body diagonal and consider
rotations around this diagonal. We may rotate over the angles
=0, 27/ 3, or 471/ 3, leaving the problem invariant. Under a
rotation the wave function is multiplied by a phase factor
exp(i¢), which qualifies also as a good quantum number,
leading to three sectors. Rotations commute with simulta-
neous inversion of the coordinate axes, doubling each of the
three rotation sectors. As the first three sectors we take those
that are invariant under inversion, and the next three are odd
under inversion. The ground state is in the first and the gap is
in the fourth sector (invariant under rotation and odd under
inversion). The advantage of these good quantum numbers is
that we can combine the quantum numbers of parts (by
simple multiplication) to give the same set of quantum num-
bers for the combination. For instance, a part in sector 2
(¢p=2m/3) and one in sector 3 (¢p=4/3) lead to a combi-
nation with ¢=0, which is therefore in sector 1. This use of
symmetry gives good results, but it is not yet optimal.

A refinement could be made by considering the inter-
change of the x and y axes. This turns the first and fourth
sectors into themselves and transforms sectors 2 and 3 as
well as 4 and 5 into each other. Although there is no good
quantum number associated with this operation, we could
use this symmetry by splitting sectors 1 and 4 into even and
odd parts under the interchange. This leads to eight “chan-
nels,” which partly coincide with the previous sectors. Com-
bining a part in sector (channel) 2 with a part in 3 does give
an overall state in sector 1, but one has to take even and odd
combinations to get them in the even and odd channels cor-
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responding to sector 1. This gives a substantial amount of
extra programming in order to properly keep track of the
channels. But the effort is rewarded, as it improves the ac-
curacy, which is needed for the delicate cases of the param-
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eter space. This choice of sectors (channels) is efficient be-
cause the states of the density matrix, which are chosen as
having the largest eigenvalues, are more or less evenly dis-
tributed over the channels.
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