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General microscopic mechanism of ferroelectric ordering in chiral smectic-C* liquid crystals is considered.
It is shown that if the mesogenic molecules have a sufficiently low symmetry, the spontaneous polarization is
proportional to one of the biaxial vector order parameters of the smectic-C phase. This order parameter may be
determined by intermolecular interactions which are not sensitive to molecular chirality. At the same time, the
polarization is also proportional to a pseudoscalar parameter which vanishes if the molecules are nonchiral.
The general statistical theory of ferroelectric ordering is illustrated by two particular models. The first model is
based on electrostatic quadrupole-quadrupole interactions, and it enables one to obtain explicit analytical
expressions for the spontaneous polarization. In the second model, the molecular chirality and polarity are
determined by a pair of off-center nonparallel dipoles. For this case, the spontaneous polarization is calculated
numerically as a function of temperature. The theory provides a more general interpretation of the previous
approaches including the classical Boulder model.
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I. INTRODUCTION

Ferroelectric smectic liquid crystals are unique systems
where the spontaneous polarization is determined by molecu-
lar chirality. Ferroelectric ordering in the chiral smectic-C*

phase has been predicted theoretically about three decades
ago �1�, and both ferro- and antiferroelectric phases continue
to attract a significant attention because of their unusual
structure and properties, and because of their applications in
electro-optical devices �2�. Ferroelectricity is observed only
in tilted smectic phases. In these systems the spontaneous
polarization is induced by the tilt and does not appear self-
consistently like in proper solid ferroelectric materials. Using
the terminology widely used in the theory of solid ferroelec-
trics, the ferroelectric ordering in the smectic-C* phase may
be called improper because the polarization is not the pri-
mary order parameter. It is well known that the primary order
parameter of the SmA–SmC transition is the tilt pseudovec-
tor which possesses a different symmetry compared with the
polarization which is a polar vector. The polarization is then
induced by the tilt pseudovector in a chiral medium. In solid
crystals, a similar improper ferroelectric state occurs, for ex-
ample, in ferroelastics �3� where the polarization is induced
by spontaneous deformation.

In every tilted layer of a chiral smectic phase, the polar-
ization appears in the direction of the polar C2 symmetry axis
which is perpendicular to the tilt plane. In the bulk tilted
phase, molecular chirality also results in the formation of the
macroscopic helical structure. In this structure, the direction
of the tilt rotates while moving along the z axis which is
perpendicular to the smectic layers. As a result, chiral tiled
smectics are characterized by the helical distribution of the
spontaneous polarizations and thus may also be called “he-
lielectric.” Ferroelectric ordering is observed also in more
complex smectic-F* and I* tilted phases which possess a
partial translational or hexatic order �see, e.g., �4,5��. One
notes that recently ferro- and antiferroelectric ordering has

also been found in smectic liquid crystal phases formed by
achiral bent-core molecules. In those phases the spontaneous
polarization is not induced by the tilt and thus appears also in
orthogonal smectic phases �6�.

In the synclinic smectic-C* phase, the direction of the tilt
in adjacent layers is practically the same and thus the spon-
taneous polarization only slowly varies from layer to layer.
In contrast, in the anticlinic smectic-C

A
* phase the direction

of the tilt alternates from layer to layer together with the
polarization creating the structure with an antiferroelectric
type ordering. In addition, many chiral smectic materials ex-
hibit a sequence of the so-called intermediate phases in a
narrow temperature interval between the synclinic ferroelec-
tric smectic-C* and the anticlinic antiferroelectric smectic-
C

A
* phase. Intermediate smectic phases are characterized by a

3D chiral distribution of the spontaneous polarization within
the unit cell of three or four smectic layers �2�. Recently, the
remarkably wide intermediate phases have also been discov-
ered in mixtures of synclinic and anticlinic smectics where
they can exist in a broad temperature range of up to 50°
�7,8�.

In spite of all diversity of tilted smectic phases with
ferro-, antiferro-, and ferrielectric ordering, the underlying
mechanism is always related to the induction of the polariza-
tion by the tilt in individual chiral smectic layers. Complex
structures with a polarization distribution along the direction
perpendicular to the layers appear due to interactions be-
tween the molecules in different layers �see, for example
�9,10�� which are generally weaker than intermolecular inter-
actions within the same layer.

The detailed microscopic mechanism of ferroelectric or-
dering in tilted smectics which is responsible for the induc-
tion of the polarization by the collective molecular tilt has
been the issue of debate during the past two decades. In
particular, the role of molecular chirality has not been com-
pletely clarified. On the one hand, there is a general agree-
ment that the spontaneous polarization in tilted smectics can-
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not exist without molecular chirality, i.e., at least a fraction
of molecules must be chiral. On the other hand, the role of
chiral intermolecular interactions remains unclear. Some mo-
lecular models of the ferroelectric smectic-C* phase are
based on the assumption that the spontaneous polarization is
directly determined by appropriate interactions between chi-
ral molecules including, for example, interactions with a mo-
lecular chiral center �11–15�. These models have been devel-
oped using an analogy with cholesteric liquid crystals where
the helical twisting power is determined by chiral �albeit
nonpolar� intermolecular interactions �16–18�. Other models
are based on a different microscopic mechanism �19–26�
which also requires molecular chirality, but, at the same time,
takes into consideration only nonchiral intermolecular inter-
actions. Some of these models are rather qualitative, but the
underlying microscopic mechanism is essentially the same.

The first extended description of this mechanism has been
given by Goossens �24,25� who considered the electrostatic
interaction between model molecular quadrupoles composed
of two antiparallel dipoles which are perpendicular to the
long molecular axis �see Fig. 1�. Goossens has shown that
the polarization in the smectic-C* phase may be induced by
the nonchiral quadrupole-quadrupole electrostatic interaction
provided the molecules possess the additional dipole in the
direction perpendicular to the molecular plane. The latter di-
pole is responsible for the molecular chirality in this simple
model, and the spontaneous polarization is proportional to
the magnitude of the dipole and to the novel order parameter
of the smectic-C phase �24�, which is related to the low
symmetry of the molecule presented in Fig. 1. One notes,
however, that the papers of Goossens are focused into one
particular model, and do not contain any general theory of
ferroelectric ordering or general expressions for the sponta-
neous polarization.

A more general and a very successful model has been
proposed by the Boulder group �19–21�. In the Boulder
model, the molecules of the zig-zag shape �see Fig. 2� are
ordering in the so-called binding cites which have the same
point symmetry as the smectic-C phase itself. Then trans-
verse molecular dipoles are ordered in the particular direc-
tion perpendicular to the tilt plane simply because the zig-
zag molecule fits into the binding cite of the same shape only
for a particular direction of the transverse dipole. The Boul-
der model has been successfully used to describe and predict
the value and sign of the spontaneous polarization for a sig-
nificant number of chiral smectic materials. This indicates
that the corresponding mechanism of the ferroelectric order-

ing may be predominant at least for conventional smectics-
C*. One notes also that the symmetry of a zig-zag molecule
is exactly the same as that of the molecule with two equal
antiparallel dipoles considered by Goossens. The interaction
between the molecule and the binding cite, which is respon-
sible for the polar order, is also nonchiral in nature because
the binding cite itself is nonchiral. Boulder model empha-
sizes the steric mechanisms of the ordering, but the idea
behind the model is much more universal. In the recent paper
�21� the ordering of a molecule in the binding cite has been
interpreted as an ordering in the effective mean-field poten-
tial. In the present paper we develop this idea and show that
indeed in the context of a rather general molecular-statistical
theory the concept of the “binding cite” corresponds to the
particular form of an average one-particle mean-field poten-
tial which is created by all other molecules of the medium,
and which reflects the symmetry of the nonchiral smectic-C
phase and its orientational distribution function.

Terzis et al. have developed a similar model �22,23�. This
detailed model is based on a mean-field-like one-particle ori-
entational potential for each molecular segment and, similar
to the Boulder model, involves a summation over the mo-
lecular conformations. Using this model Terzis et al. have
obtained good quantitative results for the spontaneous polar-
ization of a number of ferroelectric smectics-C* �23�.

Existing microscopic models for ferroelectric smectics C*

have played an important role in the development of the
theory of such materials. At the same time, from the point of
view of theoretical physics, these models are too detailed in
terms of a molecular structure and a particular choice of a
coupling with the macroscopic environment. As a result, the
models only indirectly address some of the more general
physical problems related to the origin of ferroelectricity in
tilted smectic phases including, for example, the description

a) b)

FIG. 1. �Color online� �a� Simple models for nonchiral mol-
ecules of the C2h symmetry used by Wulf �32� and Goossens
�24,25�. �b� Corresponding models for chiral molecules where
chirality is determined by the additional dipole perpendicular to the
molecular plane.

FIG. 2. �Color online� Schematic of biaxial molecule in the
curved binding site as assumed in the Boulder model.
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of the symmetry properties of relevant model interaction po-
tentials and an interplay between the spontaneous polariza-
tion and the order parameters of the smectic-C* phase.

In this paper we develop a general mean-field molecular-
statistical theory of ferroelectric ordering in the smectic-C*

phase based on the mechanism described above, i.e., we con-
sider the ferroelectric ordering in chiral smectics caused by
nonchiral intermolecular interactions. We obtain a simple ex-
pression for the model interaction potential which may be
responsible for ferroelectric ordering in tilted smectics, and
interpret the general microscopic mechanism of the ordering
mathematically using the concept of the pseudovector order
parameter. The results of the theory will be used to obtain
explicit expressions for the spontaneous polarization in the
smectic-C* phase composed of biaxial molecules with
quadrupole-quadrupole interaction potential. The spontane-
ous polarization together with other order parameters of the
smectic-C* phase will also be calculated numerically for an-
other two interaction model. Finally, we will consider in de-
tail the molecular origin of the ferroelectric ordering in novel
smectic materials which have recently been investigated by
Lemieux et al. �27–30�. These materials, which are used as
chiral dopants in a nonchiral smectic-C host, possess a mo-
lecular structure rather different from that of conventional
ferroelectric smectics. In particular, the molecular chirality is
mainly determined by the chiral distribution of permanent
dipoles within the molecular structure. It is shown that de-
spite a different nature of intermolecular interactions, the
spontaneous polarization in smectics C doped with such mol-
ecules is still determined by the same general mechanism.

II. SPONTANEOUS POLARIZATION AND ORDER
PARAMETERS OF THE SMECTIC-C* PHASE

A. Coupling between polarization, tilt, and chirality

It is well known since the work by Meyer �31� that from
the purely macroscopic point of view the ferroelectric order-
ing in tilted smectics is determined by the linear coupling
between the polarization and the tilt in a chiral medium. In
terms of the Landau–de Gennes expansion, the free energy of
the ferroelectric smectic-C* phase can be expressed as �see,
for example, �15��:

FC = FA + F��� +
1

��

Ps
2 + cp�Ps · w� , �1�

where FA is the free energy of the smectic-A phase, F��� is
the expansion of the excess free energy of the smectic-C
phase in powers of the tilt angle � and the last two terms
describe the contribution which depends on the spontaneous
polarization Ps. Here w= �n ·k��k�n� is the so-called
pseudovector tilt order parameter of the SmC phase where n
is the director and k is the smectic layer normal as shown in
Fig. 3. Minimization of the free energy �1� yields the well
known result

Ps = cpw = cp�n · k��k � n� , �2�

which indicates that the spontaneous polarization is propor-
tional to the pseudovector tilt order parameter and the cou-
pling constant cp.

One notes that the polarization is a polar vector while the
tilt order parameter w is a pseudovector with different trans-
formation properties �i.e, in contrast to the polar vector Ps it
does not change sign under space inversion�. Thus the linear
relationship �2� between polarization and the tilt is only pos-
sible if the coupling constant cp is a pseudoscalar �which also
changes sign under space inversion�. Then the product of the
pseudoscalar cp and the pseudovector w makes the polar vec-
tor like polarization. Pseudoscalar quantities are nonzero
only in a chiral medium. They are proportional to molecular
chirality and change sign when all chiral molecules reverse
their handedness. Thus one arrives at a well established con-
clusion that the spontaneous polarization in tilted smectic
phases occurs only if at least a fraction of molecules are
chiral.

At the same time, the pseudovector order parameter w is
nonzero also in the nonchiral smectic-C phase. Indeed, w is
invariant under all symmetry transformations of the smectic-
C phase including the reflection with respect to the tilt plane,
which is a symmetry plane. This is related to the transforma-
tion properties of a pseudovector different from those of a
polar vector. In this case, w is invariant under a reflection
with respect to the tilt plane because both vectors n and k are
in the tilt plane and thus are not effected by the reflection. In
contrast, the spontaneous polarization Ps, of course, changes
sign under a reflection with respect to the tilt plane. One
notes that this does not violate the linear relationship �2�
because the pseudoscalar parameter cp also changes sign un-
der the reflection. In a nonchiral smectic-C phase the cou-
pling constant cp vanishes identically and the spontaneous
polarization does not appear.

B. Microscopic interpretation

The purpose of any molecular theory of ferroelectric or-
dering in tilted smectics is to establish a relationship between
the general macroscopic description presented in the previ-
ous subsection and the molecular ordering on the micro-
scopic level. An intuitive interpretation of the ferroelectric
ordering in the chiral smectic-C* phase �20,22,26� can be
illustrated using Fig. 4.

For illustration only, let us consider a simple model of a
chiral biaxial molecule represented as a rigid rod with two
“lateral groups” and a permanent dipole perpendicular to the
molecular plane as shown in Fig. 4�a�. Note that the lateral
groups make the molecule biaxial while the chirality is de-

k n
�

Ps w

t

FIG. 3. �Color online� Spontaneous polarization Ps and the
pseudovector tilt order parameter w in the Sm C* phase.
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termined by the transverse dipole. Without this dipole, the
molecule possesses a mirror plane and thus is nonchiral.
Now let us assume that the lateral groups have a tendency to
point in the direction of the region between two adjacent
smectic layers. One can readily see that in the smectic-A
phase �i.e., without any tilt� the two orientations of such a
molecule, which correspond to opposite directions of the
transverse dipole �, are energetically equivalent. Thus the
macroscopic polarization in the untilted smectic phase
should vanish. In contrast, in the tilted phase the balance
between two opposite directions of the transverse molecular
dipole is violated because the molecular orientation A is
more favorable than the orientation B �see Fig. 2�b��. As a
result, the average molecular dipole does not vanish, and a
macroscopic polarization appears in the direction perpen-
dicular to the tilt plane. One notes that this simple argument
is directly valid for rigid chiral molecules of sufficiently low
symmetry. Nonchiral flexible molecules may also posses chi-
ral conformations which will order in the smectic-C phase
according to the simple mechanism discussed above. In this
case, however, the macroscopic polarization does not occur
�as it should be in a nonchiral SmC phase� because the or-
dered dipoles of, say, left-handed conformers will exactly be
canceled by those of the right-handed conformers, which
point in the opposite direction. Now one has to clarify how
this type of ordering corresponds to the general macroscopic
description presented above.

First one notes that this simple argument is valid for mol-
ecules which are characterized by the C2h symmetry when
the transverse dipole is removed. Simple examples of mol-
ecules of the C2h symmetry, presented in Fig. 1, include a
molecule with two in-plane antiparallel dipoles �a model
considered by Goossens �24�� and a molecule of the “zig-
zag” shape �considered by Wulf �32� and others� which very
roughly characterize the actual shape of typical mesogenic
molecules. Orientation of any rigid biaxial molecule can be
specified by the unit vectors a and b in the direction of short
and long molecular axis, respectively. In practice, the orien-
tation of a nonpolar molecule is usually characterized by
second rank tensors composed of the components of the vec-
tors a and b. For example, uniaxial molecules are character-
ized by the molecular tensor Q��

M =a�a�− �1 /3����. The sta-
tistical average of QM is the nematic tensor order parameter
Q. Biaxial molecules of high symmetry, which possess two
mutually perpendicular symmetry planes, are also character-
ized by the second molecular tensor B��

M =b�b�−c�c� where
the unit vector c�b is the second molecular short axis. In

addition, the molecules of the C2h or lower symmetry are
characterized by the third molecular tensor a�b� which is
invariant under all symmetry operations which leave the
molecule intact. Indeed, one can readily see that the mol-
ecules presented in Figs. 1 and 4 are not invariant under the
sign inversion of the axes a or b individually. At the same
time, the molecules are invariant under simultaneous inver-
sion of both axis a and b. This symmetry enables one to
introduce the transverse molecular pseudovector �a�b�
which is related to the skew part of a�b�. One notes that the
existence of this transverse pseudovector does not violate the
mirror symmetry of the molecule because the pseudovector
�a�b� is invariant under a reflection with respect to the
molecular mirror plane which is parallel to a and b.

Now it can readily be shown that the average �a�b� is
nonzero only in a tilted smectic phase and is proportional to
w= �n ·k��k�n�. Thus the expression

wab = �a � b� �3�

is a microscopic definition of a pseudovector tilt order pa-
rameter of the smectic-C phase. One notes that in the
smectic-C phase composed of biaxial molecules there exist
several tilt order parameters. However, only the parameter
�3� is directly related to the spontaneous polarization.

Indeed, one notes that the molecular orientations A and B
in Fig. 4 are characterized by the opposite directions of mo-
lecular pseudovector �a�b� �because the short axis b points
in the opposite directions while the long axis a is the same�.
Thus one concludes that the average pseudovector �a�b�
�0 in the smectic-C phase where the orientation A is more
energetically favorable than the orientation B. Moreover, it
follows from the general symmetry arguments that �a�b�
�w= �n ·k��k�n� because w is the only pseudovector al-
lowed by the symmetry of the smectic-C* phase. Indeed, any
macroscopic vector or pseudovector must be parallel to the
C2 symmetry axis of the smectic-C* layer which is normal to
the tilt plane. This is exactly the direction of w. A different
derivation of this result is presented in Sec. III.

Finally it can be shown that the spontaneous polarization
Ps is proportional to the average �a�b��w. We assume for
simplicity that the transverse molecular dipole is parallel to
the short molecular axis c�b�a, i.e, �=��c. Then the
macroscopic polarization in the smectic-C* phase equals

Ps = 	��� = 	���c� , �4�

where 	 is the molecular number density.
The unit vector c can be expressed in terms of the unit

vectors a and b in the following way:

c = 
�a � b� , �5�

where 
= ��a�b� ·c� is the molecular unit pseudoscalar
which specifies the handedness of the molecular coordinate
system. Note that in Eq. �5� c is the conventional polar vector
which is expressed as a product of the pseudovector �a
�b� and the pseudoscalar 
.

Now the spontaneous polarization �4� can be rewritten as

a) b)

A B A B

FIG. 4. �Color online� �a� Molecular orientation A and B, which
correspond to the opposite directions of the molecular transverse
dipole, are equivalent in the SmA phase. �b� In the Sm C* phase
molecular orientation A is more energetically favorable than the
orientation B.
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Ps = 	���c� = 	��
�a � b� = 	
��a � b� , �6�

where 
�= �� · �a�b��. Here we have taken into account
that the parameter 
 is independent of the molecular orien-
tation.

According to Eq. �6�, the spontaneous polarization Ps is
proportional to the tilt order parameter �a�b��w= �n ·k�
��k�n�. Thus the simple microscopic interpretation of the
appearance of the spontaneous polarization in the smectic-C*

phase, presented in this subsection, is fully consistent with
the general phenomenological theory outlined in Sec. II A.

In summary, one concludes that if the smectic-C* phase is
composed of molecules of the C2h symmetry or lower with
an additional transverse dipole in the direction perpendicular
to the molecular plane, the spontaneous polarization is pro-
portional to the order parameter �3� and the pseudoscalar
quantity 
�= �� · �a�b�� which characterizes the molecular
chirality determined by the transverse dipole �. A consistent
statistical theory of the ferroelectric ordering in the smectic-
C* phase is presented in the following section.

III. MOLECULAR STATISTICAL THEORY
OF FERROELECTRIC ORDERING

IN THE SMECTIC-C* PHASE

A. General results

As discussed in the previous section, the orientation of a
biaxial molecule can be specified by the unit vectors a and b
in the direction of the long and short molecular axis, respec-
tively. The second molecular short axis c is then given by Eq.
�5�. The spontaneous polarization can be expressed in the
following general form:

Ps = 	���� = 	� ��f1�a,b�da db , �7�

where f1�a ,b� is the orientational distribution function of the
smectic-C* phase, and the transverse molecular dipole ��

=��c. The orientational distribution function can always be
expressed in terms of the effective one-particle potential
U1�a ,b�:

f1�a,b� =
1

Z
exp�−

U1�a,b�
kBT

	 , �8�

where

Z =� exp�−
U1�a,b�

kBT
	da db . �9�

For molecules which are polar in the direction of the c
axis, in the quadrupolar approximation the effective one-
particle potential depends on the unit vector c and the second
rank molecular tensors a�a� ,b�b�, and a�b� which are in-
variant under all symmetry operations of a molecule. Here c
is expressed in terms of a and b by Eq. �5�. As discussed in
Sec. II B, the invariant a�b� exists only for biaxial molecules
of sufficiently low symmetry. Thus in the quadrupolar ap-
proximation the potential U1�a ,b� reads

U1�a,b� = a�a�A�� + b�b�B�� + �a�b� + b�a��C��

+ �a � b� · w , �10�

where W and A�� ,B�� ,C�� are the material pseudovector
and tensors correspondingly, which depend on the symmetry
of the chiral smectic-C* phase. This symmetry, in turn, is
determined by the two tensors n�n� and k�k� which specify
the macroscopic structure of the phase. One notes that the
last term in Eq. �10� contains a pseudovector �a�b�, which
means that W has also to be a pseudovector in order to
insure that U1�a ,b� is a scalar. We conclude that this last
term is determined by chiral interactions in the system, i.e.,
the interactions depending on the handedness of the interact-
ing molecules. Indeed, let us consider the case when Eq. �10�
describes an effective one-particle potential of a chiral dop-
ant in the chiral smectic-C* host. Inversion of the host chiral-
ity results in sign inversion of the pseudovector W while all
material tensors A�� ,B��, and C�� remain the same. As a
result, the last term in Eq. �10� changes sign. Thus the last
term describes the so-called chiral discrimination energy, i.e.,
the difference of energy of interaction between the same chi-
ral molecule and the two enantiomeric forms of the chiral
host. In many cases such a discrimination is small and then
this term may be neglected.

Taking into account that all macroscopic quantities in the
smectic-C phase must be quadratic both in n and k, the
pseudovector W can be expressed in the following general
form:

W = �Ps + �w , �11�

where � is a pseudoscalar and � is a scalar. The symmetric
tensors A, B, and C are expressed as

A�� = A1n�n� + A2k�k� + A3�n · k��n�k� + k�n�� ,

B�� = B1n�n� + B2k�k� + B3�n · k��n�k� + k�n�� ,

C�� = C1n�n� + C2k�k� + C3�n · k��n�k� + k�n�� , �12�

where we have neglected the terms quadratic in Ps and w
because these terms are of the order of �2 at small tilt angle
��1 while all other terms in Eq. �12� are of the order of 1.

The effective one particle potential U1�a ,b� is determined
by intermolecular interactions in the smectic-C* phase which
may, or may not be sensitive to molecular chirality. For ex-
ample, the electrostatic interaction between permanent di-
poles and quadrupoles is not sensitive to molecular chirality
while the interactions involving molecular octupoles are dif-
ferent for the pairs of molecules of equal and opposite hand-
edness, respectively. In particular, the pseudovector quantity
W in Eq. �11� must vanish if the molecules are nonchiral.
This parameter is determined by some chiral intermolecular
interactions which exist only between chiral molecules. All
other material parameters in Eqs. �10�–�12� are scalars, and
therefore they are generally nonzero in the corresponding
nonchiral smectic-C phase. The difference between scalar
and pseudoscalar material parameters in the effective one-
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particle potential enables one to distinguish between two dif-
ferent microscopic mechanisms of ferroelectric ordering in
the smectic-C* phase.

Taking into account that the spontaneous polarization Ps
and the pseudovector w are small at small tilt angles �, the
orientational distribution function �8� can be expanded in
powers of Ps and w keeping the linear terms, and substituted
into the general expression for the spontaneous polarization
�7�. As a result, the spontaneous polarization in the smectic-
C* phase can be expressed as

� · Ps = 	
�� · w + 	� ��

1

Z0
exp�−

U1
�0��a,b�
kBT

	 da db ,

�13�

where the inverse polarizability tensor 
��=���+ �	 /kBT�
������c��0, the tensor ���=−�	 /kBT�����c��0, the averag-
ing �¯�0 is performed with the orientational distribution
function f0= �1 /Z0�exp�−U1

�0��a ,b� /kBT� and U1
�0��a ,b� is

given by Eqs. �10�–�12� with W=0.
According to Eq. �13� there exist two qualitatively differ-

ent contributions to the spontaneous polarization of the
smectic-C* phase which correspond to the two terms in the
right-hand side of Eq. �13�. The first term comes from the
last term in the one-particle potential �10�, which is deter-
mined by chiral intermolecular interactions. This contribu-
tion corresponds to the microscopic mechanism of ferroelec-
tric ordering determined by chiral interactions which has
been considered in Refs. �11,13–15�. In contrast, the second
term describes the ferroelectric ordering of chiral molecules
determined by nonchiral intermolecular interactions. Indeed,
this contribution describes the ordering of a transverse mo-
lecular dipole in a nonchiral effective one-particle potential
U1

�0��a ,b�. This potential does not depend on any pseudo-
scalar parameters, and thus, in the first approximation, it is
exactly the same as in the corresponding nonchiral smectic-C
phase. Molecular chirality in this case is determined by the
orientation of the molecular transverse dipole and manifests
itself during the averaging process as described below. Now
let us consider this contribution in more detail.

In the general case the effective one-particle potential
U1

�0��a ,b� can be expressed as a sum of the following two
terms:

U1
�0��a,b� = Ua�a� + Ub�a,b� , �14�

where Ua�a�=a�a�A�� and Ub�a ,b�=b�b�B��+ �a�b�

+b�a��C��. In Eq. �14� the first term depends only on the
orientation of the long molecular axis a while the second
term depends also on the orientation of the short axis b.
Smectic liquid crystals are composed of strongly anisotropic
molecules, and in this case one may assume that the inter-
molecular interaction energy associated with a change of ori-
entation of the long axes is much larger than the change of
the energy associated with the rotation of short molecular
axes. Then the second term in Eq. �14� is expected to be
much smaller than the first one, i.e., Ub�Ua. One notes that
the first term in Eq. �14� determines the orientational �nem-
atic� ordering of long molecular axis, while the second term

is responsible for a weaker ordering of short molecular axes.
Now the orientational distribution function f0�a ,b� can be
expanded in powers of Ub keeping the linear term:

1

Z0
exp�−

U1
�0��a,b�
kBT

	 
 fa�a��1 −
Ub�a,b�

kBT
	 , �15�

where the uniaxial orientational distribution function fa�a�
depends only on the orientation of the long axis a:

fa�a� =
1

Za
exp�−

Ua�a�
kBT

	 . �16�

Substituting Eq. �15� into the second term in Eq. �13� one
obtains the following expression for the spontaneous polar-
ization:

Ps 
 − 

	��

kBT
� �a � b�Ub�a,b�fa�a�da db . �17�

Now Eqs. �14� and �16� can be substituted into Eq. �17�
where the averaging is performed over b and a taking into
account that the function fa�a� is independent of b. Neglect-
ing biaxiality of the smectic-C phase one may use the fol-
lowing simple formulas:

1

2�
� b�b�db =

1

2
���� − a�a�� �18�

and

1

4�
� fa�a��a�a� −

1

3
����da = S�n�n� −

1

3
���� , �19�

and obtain the final expression for the spontaneous polariza-
tion:

Ps =
	
�C3S

2kBT
�n � k��n · k� , �20�

where S is the nematic order parameter.
Equation �19�, which has been obtained without using any

particular model, presents a general expression for the spon-
taneous polarization of the chiral smectic-C* phase deter-
mined by nonchiral intermolecular interactions. The sponta-
neous polarization is proportional to the pseudoscalar
parameter 
�= ����a�b�� which specifies molecular chiral-
ity determined by the orientation of the transverse dipole,
and the parameter C3 which is determined by nonchiral in-
teractions. One notes that the general microscopic mecha-
nism of ferroelectric ordering described by the present theory
is qualitatively the same as the one considered in the Boulder
model �19,20�. In the framework of the Boulder model the
restrictions imposed by the binding cite on the orientation of
a given molecule are equivalent to the specific form of the
effective one-particle potential U1

�0��a ,b�. From the qualita-
tive point of view, both the binding cite and the effective
one-particle potential possess the same symmetry as the non-
chiral smectic-C phase �i.e., the C2 symmetry axis and the
mirror plane� and are not sensitive to molecular chirality. On
the other hand, the present theory also covers the model of
Goossens �25� based on the electrostatic interaction between

M. A. OSIPOV AND M. V. GORKUNOV PHYSICAL REVIEW E 77, 031701 �2008�

031701-6



molecules with pairs of antiparallel dipoles. Detailed numeri-
cal results obtained using a version of this model are pre-
sented in Sec. IV. Explicit expressions for effective one-
particle potential and the spontaneous polarization in the
quadrupole-quadrupole interaction model are derived in the
following section using the mean-field approximation.

B. Quadrupole-quadrupole interaction model

In this section we obtain explicit analytical results for the
spontaneous polarization in the smectic-C* phase using the
simple model of a rigid molecule with essentially uniaxial
quadrupole tensor slightly tilted with respect to the primary
molecular axis �which is determined by the shape or molecu-
lar inertia tensor and orders along the director�. Such a mol-
ecule is biaxial, and the molecular biaxiality is determined
by the angle between the axis of the quadrupole tensor and
the primary molecular axis. Assuming that this angle is
small, one obtains approximate expressions for the polariza-
tion using the generalized mean-field theory.

Let us consider the system of rigid molecules with pri-
mary axes ai. The molecules are characterized by the perma-
nent quadrupole tensor q�� which depends on the distribu-
tion of effective charges within a molecule. It should be
noted that for molecules of the C2h symmetry, considered
here, one primary axis of any molecular tensor �including the
quadrupole one� must be parallel to the twofold symmetry
axis of the molecule c. At the same time, the orientation of
the two remaining primary axes, which lie in the symmetry
plane of the molecule, is not specified by the molecular sym-
metry. As a result, the orientation of these axes should gen-
erally be different for different molecular tensors character-
izing different molecular properties. In particular, the
primary axes of the quadrupole tensor q�� are not expected
to coincide with those of the molecular inertia tensor, a and
b. Thus in the general case the traceless symmetric quadru-
pole tensor can be expressed in terms of molecular axes
a�b�c in the following way:

q�� = q1�a�a� − ���/3� + q2�b�b� − c�c�� + q3�a�b� + b�a�� .

�21�

It will be shown below that the spontaneous polarization is
proportional to the off-diagonal element q3, which character-
izes the difference in the orientation of the molecular inertia
and quadrupole tensors.

The electrostatic interaction between permanent quadru-
poles of the molecules i and j can be written in the form:

Uqq�i, j� = q��
i D����q��

j , �22�

where the quadrupole-quadrupole coupling tensor D is given
by

D���� =
3

4R5 ������� + ������ + ������ − 5���u�u�

− 5���u�u� − 5���u�u� − 5���u�u� − 5���u�u�

− 5���u�u� + 35u�u�u�u�� , �23�

where R=Rij is the intermolecular vector and the unit vector
u=R / 
R
.

Now the quadrupole-quadrupole interaction can be taken
into account in the generalized mean-field approximation of
the smectic-C* phase. In this approximation �see, for ex-
ample, �33–35�� the free energy of the system without posi-
tional order can be expressed as

F/V =
1

2
	2� f1��1�U�1,2�f1��2�d2R d�1d�2

+ 	kBT� f1��1�ln f1��1�d�1, �24�

where f1��� is the one-particle orientational distribution
function, the variable �i= �ai ,bi� specifies the orientation of
the molecule i, U�1,2� is the effective pair interaction poten-
tial which takes into account the steric cutoff, and 	 is the
number density of molecules per unit area of the smectic
layer.

Minimization of the free energy �24� yields the one-
particle distribution function in the form �8� and �9� with the
one-particle potential U1 being equal to the mean-field po-
tential

UMF�a,b� = 	� U�1,2�f1�a2,b2�d2R db2 da2. �25�

The total effective pair interaction potential U�1,2� can
be expressed as

U�1,2� = U0�1,2� + Uqq�1,2� , �26�

where U0�1,2� is the effective interaction potential for mol-
ecules without permanent quadrupole moments, and
Uqq�1,2� is the quadrupole-quadrupole interaction energy
given by Eq. �22�. We assume for simplicity that the poten-
tial U0�1,2� is even in a1 ,a2 ,b1 ,b2, and thus it cannot be
responsible for the ferroelectric ordering in the smectic-C*

phase.
Substituting Eqs. �22� and �23� for the quadrupole-

quadrupole interaction potential into Eq. �26� and then into
Eq. �25� one obtains the following expression for the total
mean-field potential after averaging over a2 ,b2 and integrat-
ing over R:

UMF�a,b� = UMF
�0� �a,b� + UMF

qq �a,b� , �27�

where UMF
�0� �a ,b� is even in a and b, and where

UMF
qq �a,b� =

�

4
	R0

2q��
�1�D�����k��q��� . �28�

Here q��
�1� is the quadrupole tensor of the molecule 1 given by

Eq. �21�, R0 is the distance of minimum approach between
the neighboring molecules in the layer, and the tensor D is
given by Eq. �23� with R=R0 and u=k.

At this point we can neglect the weak biaxiality of the
molecular distribution and use the average of the quadrupole
tensor �21� in the simple form

�q��� = q1S�n�n� − ���/3� . �29�

After some algebra the corresponding expression for
D�����k��q��� can be written as
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M�� = D�����k��q���

=
3

4R0
5q1S�����1 − 5 cos2�� + 2n�n�

− 5�1 − 7 cos2��k�k� − 10�k · n��n�k� + n�k��� .

�30�

Assuming that the off-diagonal element q3 of the molecu-
lar quadrupole tensor is small one may expand the exponent
in Eqs. �8� and �9� in powers of q3 keeping the linear terms.
This yields the following approximate expression for the ori-
entational distribution function:

f1�a,b� = f0�a,b� + 
f�a,b� , �31�

where

f0�a,b� =
1

Z0
exp�−

UMF
�0� �a,b�
kBT

+
�	R0

2q��
0 M��

4kBT
	 �32�

and


f�a,b� =
�	

4kBT
R0

2q3�a�b� + a�b��M��f0�a,b� , �33�

and where q��
0 is the molecular quadrupole tensor given by

Eq. �21� without the off-diagonal term.
Only the term containing 
f makes a contribution to the

spontaneous polarization given by the general equations �6�
and �7�. Substituting Eqs. �31�–�33� and assuming that the
biaxial ordering in the system is weak �i.e., using Eqs. �18�
and �19� for the averaging� one obtains the following expres-
sion for the spontaneous polarization of the smectic-C*

phase:

Ps = 	
�cp
0�n � k��n · k� , �34�

with

cp
0 =

15�	

16kBTR0
3q1q3S2�4 − 7 sin2�� . �35�

This explicit analytical expression for the spontaneous po-
larization was obtained in the context of the model of the
quadrupole-quadrupole intermolecular interactions and con-
firms all results of the previous section which have been
obtained using general theory arguments. In particular, the
spontaneous polarization is proportional to the pseudoscalar
parameter 
�= �� · �a�b�� which specifies molecular chiral-
ity. At the same time, the remaining factor cp

0 is completely
independent of the molecular chirality, and is obtained using
the orientational distribution function of the nonchiral
smectic-C phase. In this simple model, the factor cp

0 depends
only on the diagonal components of the molecular quadru-
pole moment, the orientational order parameters of the
smectic-C phase and the distance of minimum approach R0.

In the following section we consider a more realistic
model based on electrostatic interactions between localized
molecular dipoles.

IV. INTERACTION BETWEEN CHIRAL PAIRS
OF MOLECULAR DIPOLES

In a recent series of papers by Lemieux et al. �27–30� a
number of different compounds with unconventional struc-
ture have been used as chiral dopants to induce the large
spontaneous polarization in the smectic-C phase. One notes
that the chirality of these molecules is not determined by any
chiral centers, but is a consequence of a chiral distribution of
permanent molecular dipoles. Disregarding other elements of
the actual molecular structure, one can use the minimum
model shown in Fig. 5. In this model, the molecule is pre-
sented by a rigid rod �with some dispersion interactions be-
tween rods� and a pair of off-center dipoles with large trans-
verse components lying in orthogonal planes. Introducing the
orthogonal transverse unit vectors e� we write

�� = ��e�sin � � a cos �� . �36�

One can readily see that the molecule presented in Fig. 5 is
chiral because it does not have any symmetry planes. The
total dipole moment of the molecule is transverse ��= ��+

+�−� and directed along the unit vector c= �e++e−� /�2. Ac-
cordingly, another short molecular axis is to be defined as
b= �e+−e−� /�2. The spontaneous polarization in such a sys-
tem is given by the general equations �4� and �6� where the
pseudoscalar parameter is expressed as


� =
�2

� sin �
a · ��+ � �−� = �2
� sin � , �37�

This parameter quantitatively determines the molecular
chirality in the context of the present model.

An interaction potential for a pair of such molecules is
expressed as a sum of effective interaction potentials be-
tween rigid uniaxial cores and the sum of all electrostatic
dipole-dipole interactions:

U�1,2� = Uaa�a1,R,a2� + U��1,2� , �38�

with U� depending also on the orientation of short molecular
axes:

U��1,2� = �1
+ · D↑↑ · �2

+ + �1
− · D↑↑ · �2

− + �1
+ · D↑↓ · �2

−

+ �1
− · D↑↓ · �2

+, �39�

where both tensors D involved have the form

�e �e

�a
�
�

��

��

FIG. 5. �Color online� Schematic of molecular axes and
dipoles.
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Dij�a1,a2,R� =
1

r5 �r2�ij − 3rirj� , �40�

with the distance between the interacting dipoles r being the
function of molecular orientation and intermolecular dis-
tance: r=r�a1 ,a2 ,R�. For D↑↑ it reads r=R+�a2−�a1, while
for D↑↓ it is r=R+�a2+�a1.

We assume that the tilting of the director in the smectic-C
phase is due to the long-axes potential Uaa�1,2�. We then
employ the following model expression for the uniaxial po-
tential which has been extensively used in the general theory
of Sm A–Sm C transition �36,37�:

Uaa�a1,R,a2� 
 v1�R���a1 · u�2 + �a2 · u�2� + v2�R��a1 · a2�2

+ v3�R��a1 · a2��a1 · u��a2 · u�

+ v4�R��a1 · u�2�a2 · u�2, �41�

As discussed in detail in �36,37� the corresponding mean-
field potential

UMF
aa �a� = w1P2�cos �� + w2SkP2�cos �� + w3Pk sin2� cos 2�

+ w4V sin 2� cos � , �42�

depends on three order parameters

Sk = �P2�cos ���, Pk = �sin2� cos 2�� , �43�

V = �sin 2� cos �� , �44�

where � and � are the polar and azimuthal angles of the unit
vector a, respectively.

If these order parameters are known, conventional order
parameters such as nematic order parameter S, nematic ten-
sor biaxiality P, and the tilt angle � can be easily calculated
as

tan 2� =
V

Sk − 0.5Pk
, �45�

S =
1

4
Sk +

3

8
Pk +

3V

4 sin 2�
, �46�

P =
1

2
Sk +

3

4
Pk −

V

2 sin 2�
. �47�

The potential �42� promotes the tilt if the nematic order pa-
rameter exceeds the critical value

SAC =
3w1

4w4 − 3w2
, �48�

which means that the growth of the nematic order is the
driving force of the tilting transition. Thus in this model the
molecular dipoles are not responsible for the tilt of the direc-
tor, but the interaction between such pairs of dipoles gives
rise to the spontaneous polarization as shown below.

One notes that the actual form of the interaction potential
for off-center dipoles is too complicated to be used directly
in the statistical theory �37�. In particular, substituting the
actual potential �39� into Eq. �25� one cannot obtain the

mean-field potential as an explicit function of the orienta-
tional order parameters. As a result, the free energy cannot be
minimized to determine the transition point and the tempera-
ture variation of the parameters. However, we can expand the
actual dipole-dipole potential in spherical invariants neglect-
ing the higher order terms. One notes that the statistical av-
erages of higher order terms are expressed in terms of higher
order orientational order parameters which are normally not
important from the qualitative point of view �35�. The details
of the expansion procedure are presented in the Appendix.

As shown in the Appendix, the actual interaction potential
between the pairs of off-center dipoles can be approximated
by the relatively simple expression:

UMF
� = w5�cot �V�a · k��b · t� + cot �� sin 2� cos �

+ �2��a · k��b · t�� , �49�

which involves the biaxial order parameter �= ��a ·k��b · t��.
Combining this with the uniaxial mean-field potential �42�
we can write the total mean-filed approximation of the LC
free energy �24�.

Now the orientational order parameters can be evaluated
by numerical minimization of the free energy at a given tem-
perature, and the spontaneous polarization can be calculated
using the general Eq. �7� for the orientational distribution
function �8� and the sum of Eqs. �42� and �49� as the total
mean-field potential. Typical results of these calculations are
presented in Fig. 6.

Thus the present general theory enables one to calculate
the spontaneous polarization explicitly as a function of tem-
perature using the model of rodlike molecules with chiral
distribution of dipoles. In this case the ferroelectric ordering
also occurs according to the general mechanism described in
the previous sections. Indeed, one can readily see from Fig. 6
that the spontaneous polarization is approximately propor-
tional to the order parameter � which is mainly determined
by the nonchiral part U0�1,2� of the total interaction poten-
tial. At the same time, the spontaneous polarization is pro-
portional to the pseudoscalar parameter 
�� �a · ��+��−��,
which, of course, vanishes if the molecules are nonchiral, for
example, if both dipoles and the long axis of the molecule
presented in Fig. 5 are in the same plane.

V. CONCLUSIONS

In this paper we have used the general statistical theory
and two particular molecular models to demonstrate how the
ferroelectric ordering of polar and chiral molecules in the
smectic-C* phase may be determined by nonchiral intermo-
lecular interactions. It has been shown that if the molecules
are characterized by C2h symmetry or lower, the spontaneous
polarization is given by the general expression Ps=	
��a
�b� �see Eq. �6��, which is an exact result derived without
any approximations. Here the parameter 
�= ��� · �a�b��
characterizes the molecular chirality determined by the rela-
tive orientation of the transverse molecular dipole and the
molecular plane containing the long and short molecular
axes, a and b, respectively. For rigid molecules of C2h sym-
metry �see Fig. 1�, the spontaneous polarization is always
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proportional to the pseudovector order parameter �a�b�
which is nonzero also in the nonchiral smectic-C phase.
Thus, if specific chiral and polar intermolecular interactions
are not important, the spontaneous polarization is essentially
determined by the molecular chirality coefficient 
� and the
order parameter �a�b� emerging due to nonchiral molecular
interactions in the corresponding nonchiral smectic-C phase.

One notes that this general mechanism of ferroelectric
ordering corresponds to the one considered in the Boulder
model �19,20�. In the Boulder model, a single molecule of
sufficiently low symmetry is ordered in the binding cite
which plays the role of the effective one-particle �mean-field�
potential considered in the present statistical theory. Similar
to the effective mean-field potential, the binding site itself
has exactly the same symmetry as the nonchiral smectic-C
phase �see Fig. 2�, i.e., possesses the mirror plane and the
twofold symmetry axis and thus is nonchiral. One notes also
that, in the first approximation, the ordering of a molecule of
the zig-zag shape in the binding site is not determined by its
possible chirality. The corresponding nonchiral molecule
with a similar overall shape will also order in the same bind-
ing site, although no polarization will be created in this case,
of course. The ordering of such a nonchiral molecule in the
binding site is described by the same nonchiral pseudovector

order parameter w which is considered in this paper. The
same general mechanism corresponds also to the one consid-
ered in �22–24� for some particular cases. At the same time,
the Boulder model as well as the models considered in
�22,23� enable one to account for a selection of molecular
conformations which fit the site or minimize some interac-
tion potential. This effect is not taken into consideration in
the present paper which deals with rigid molecules.

In this paper, the general mechanism of ferroelectric or-
dering has been illustrated using two particular molecular
models. The first model is based on the electrostatic interac-
tion between anisotropic molecular quadrupoles. Here the
molecular quadrupole tensor is assumed to be nondiagonal in
the molecular frame determined by the molecular axes a ,b,
and c �i.e., one of the primary axes of the molecular quadru-
pole is tilted with respect to the long axis a�. The existence
of the nonzero off-diagonal element q3 �see Eq. �21�� deter-
mines the C2h symmetry of the molecule. If this off-diagonal
element is small, it is possible to expand the orientational
distribution function in powers of q3 and obtain the explicit
analytical expression for the spontaneous polarization pro-
portional to q3. This models shows that the electrostatic
quadrupole-quadrupole interaction, which is not sensitive to
molecular chirality, may be responsible for the ferroelectric
ordering of chiral molecules in the smectic-C* phase.

Finally, we have considered a more realistic molecular
model related to the materials recently synthesized by Le-
mieux et al. �27–30�, in which the molecular chirality is
mainly determined by the distribution of permanent dipoles.
We consider a simple model of a uniaxial rod with two non-
parallel off-center dipoles which make approximately an
angle of 90°. In this simple case, the pair of permanent di-
poles is responsible for both molecular chirality, polarity and
biaxiality. The model interaction potential for such molecules
is composed of the uniaxial interaction responsible for the tilt
in the smectic-C phase, and the electrostatic interaction be-
tween all dipoles. We obtain that here the ferroelectric order-
ing also follows the general mechanism described above, and
the spontaneous polarization is proportional to the
pseudovector order parameter w. The polarization is also
proportional to the pseudoscalar parameter 
� which van-
ishes if we set the molecule to be nonchiral by placing the
two dipoles and the long molecular axis a within the same
plane. One notes that for real materials of the type reported
in �27–30�, the direct interaction between pairs of dipoles
may not be the only cause of spontaneous polarization. Such
molecules may also possess a zig-zag shape or have confor-
mational states of the corresponding symmetry. Then the
molecule would order in the binding site according to the
Boulder model just due to steric interactions, and this will
make an additional contribution to the spontaneous polariza-
tion. Which contribution is predominant for particular mate-
rials can be determined by experiments involving systematic
variation of the molecular structure.
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FIG. 6. �Color online� �a� Sm A-Sm C phase transition obtained
using the parameters w1=−0.05, w2=−1, w3=−0.9, w4=−0.8, w5

=0 �thin lines�, w5=−0.05 �dashed�, w5=−0.1 �solid�, and �=30o.
Biaxial order parameters � and Gk together with the normalized
polarization Ps /	
� are shown in �b� for the case w5=−0.05 and in
�c� for w5=−0.1.
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APPENDIX: APPROXIMATION
FOR THE ELECTROSTATIC INTERACTION

BETWEEN PAIRS OF DIPOLES

Let us consider the electrostatic dipole-dipole interaction
�39� between two molecules described in Sec. IV. In order to
calculate the corresponding part of the mean-field potential
�25�, one has first to integrate Eq. �39� over the intermolecu-
lar distances. This involves the integrals

D̄�a1,a2,k� = �
R���a1,a2�

D�a1,a2,R�d2R �A1�

taken over the distances R within the smectic plane and ac-
counting for the steric cut off between the rigid cores of the
molecules with long axes a1 and a2.

The tensors �A1� have important properties: They are in-
variant under the following transformations

a1 ↔ a2 and a1,a2 ↔ − a1,− a2, �A2�

and are traceless and symmetric:

�ijD̄ij = 0, D̄ij = D̄ji. �A3�

Furthermore, the substitutions

a1,a2 ↔ − a1,a2 and a1,a2 ↔ a1,− a2 �A4�

transform D̄↑↑ into D̄↑↓ and vice versa.
We are interested in the orientational interaction contain-

ing the lowest possible �i.e., first� power of a1,2. There are
four tensorial expressions obeying the above requirements,
and thus one can approximately present the tensor D in the
following form:

r0D̄ij�a1,a2,k� = D1�a1ia2j + a2ia1j − 2�a1 · a2��ij/3� + �kikj

− �ij/3��D2�a1 · a2� + D3�a1 · k��a2 · k��

+ D4��a1 · k��a2ikj + a2jki� + �a2 · k��a1ikj

+ a1jki� − 4�ij�a1 · k��a2 · k�/3� . �A5�

Note that we have introduced a characteristic scale param-
eter, molecular breadth r0, which is used to make the con-
stants D1−4 dimensionless.

In order to evaluate the constants D1−4 it is convenient to
convolute the tensor �A5� with another second rank tensor.
There are several possible second-rank tensors which can be
constructed from the vectors a1 ,a2, and k. We use the simple
tensor a1ia2j −�ij, which is orthogonal to the long axes of
both molecules in the case of ideal nematic order. It results in
a convenient form of the convolution product:

D̃�a1,a2,k� = r0D̄:�a1 a2 − I�

= D1 + D4��a1 · k�2 + �a2 · k�2�

+ �a1 · a2�2�D1/3 − D2/3� + �a1 · a2��a1 · k�

��a2 · k��D2 − D3/3 + 2D4/3�

+ D3�a1 · k�2�a2 · k�2. �A6�

Equation �A6� can be expressed as a function of the molecu-

lar tilting angles �1,2 and the difference of molecular azi-
muthal angles �=�2−�1:

D̃��1,�2,�� = d0 + d1�P2�cos �1� + P2�cos �2��

+ d2P2�cos �1�P2�cos �2�

+ d3 sin2�1sin2�2 cos 2�

+ d4 sin 2�1 sin 2�2 cos � , �A7�

where the coefficients are

d0 = 10D1/9 − 2D2/27 + 20D4/27, �A8�

d1 = 2D2/9 + 4D3/27 + 22D4/27, �A9�

d2 = 2D1/9 + 2D2/9 + 8D3/27 + 8D4/27, �A10�

d3 = D1/6 − D2/6, �A11�

d4 = D1/6 + D2/12 − D3/12 + D4/6. �A12�

It is possible to determine the coefficients d1−4 by calcu-
lating numerically the coefficients of the spherical harmonic

representation of D̃ �see, e.g., �36� for details�. Then the co-
efficients D1−4 can be expressed as

D1 = − d1 + 5d2/4 + 5d3/3 + 8d4/3, �A13�

D2 = − d1 + 5d2/4 − 13d3/3 + 8d4/3, �A14�

D3 = 9d2/4 + d3 − 4d4, �A15�

D4 = 3d1/2 − 3d2/4 + d3. �A16�

In Fig. 7 the coefficients D1−4 for D↑↑ are presented. They
have been calculated for the molecules with ellipsoidal core.
One can readily see that the coefficient D3 clearly dominates
in D, and thus one may neglect other coefficients and write

D̄↑↑ij 
 r0
−1D3�a1 · k��a2 · k��kikj − �ij/3� . �A17�

Obviously, the approximate form �A5� changes sign under

the transformations �A4�, which means that D̄↑↓=−D̄↑↑. As a
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4
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D3

FIG. 7. �Color online� Coefficients D1−4 for the tensor D↑↑ as
functions of the dipole location on the molecular long axis. The
molecular axial ratio is set to be equal to 4.
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result one can write the integrated interaction energy as

Ū��1,2� =� U��1,2�d2R = ��1
+ − �1

−� · D̄↑↑ · ��2
+ − �2

−� .

�A18�

Substituting the dipole moments �36� one arrives at the
potential which depends on both long and short molecular
axes. The uniaxial part, which depends only on the long
axes, provides a small correction to initial uniaxial interac-
tion potential, and we omit it here. Secondly, there is a part
which depends on a coupling of the short axes of the two
molecules:

Ūbb�1,2� =
2�2

r0
D3 sin2��a1 · k��a2 · k� � ��b1 · k��b2 · k�

−
1

3
�b1 · b2�	 . �A19�

Finally, there exists the most important contribution
which contains terms describing the coupling of the short
axis of one molecule with the long axis of the other. This part
is responsible for the induction of biaxial ordering by the tilt
of long axes, which is of primary importance for the descrip-
tion of ferroelectricity in the smectic-C* phase. This part of
the potential can be written in the form

Ūab�1,2� =
�2�2

r0
D3 sin 2��a1 · k��a2 · k���b1 · k��a2 · k�

+ �a1 · k��b2 · k� −
1

3
�b1 · a2� −

1

3
�a1 · b2�	 ,

�A20�

The corresponding contribution to the mean-field poten-
tial is obtained after averaging of Eqs. �A19� and �A20� over

all orientations of the molecule “2,” UMF�1�=	�Ū�1,2��2,
which yields

UMF
bb �1� =

2�2

r0
	D3 sin2� � �2

3
Gk�a1 · k��b1 · k�

−
1

3
��a1 · k��b1 · t�	 �A21�

and

UMF
ab �1� =

2�2�2

9r0
	D3 sin 2���2S + 1��a1 · k��b1 · k�

+ Gk�2P2�cos �� + 1� −
3

4
V�a1 · k��b1 · t�

−
3

4
� sin 2� cos �� , �A22�

where the order parameters Gk= ��a ·k��b ·k�� and �

= ��a ·k��b · t�� have been introduced. Apparently, the terms
containing V �a1 ·k��b1 · t� and � sin 2� cos � induce the bi-
axial order parameter � below the tilting transition.

The order parameter Gk is of minor importance, since it is
nonzero already in the Sm A phase. We have found that it is
normally of the order of 0.1 and does not affect the transition
significantly. The biaxial potential is significantly simplified
if one neglects all terms containing Gk and �a ·k��b ·k�. The
corresponding simplified mean-field potential can then be
written as

UMF
� = w5�cot �V�a · k��b · t� + cot �� sin 2� cos �

+ �2��a · k��b · t�� , �A23�

where the parameter w5=−�2 /3 	�2r0
−1D3 sin2� is negative

and can be easily estimated for given values of molecular
breadth r0, 2D molecular number density 	, dipole strength
�, and dipole orientation angle �. The reasonable values of
the constant D3 are between 4 and 8 �see Fig. 7�.
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