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The melting of a self-organized system composed of classical particles confined in a two-dimensional
parabolic trap and interacting through a potential with a short-range attractive part and a long-range repulsive
potential is studied. Different behaviors of the melting temperature are found depending on the strength �B� of
the attractive part of the interparticle potential. The melting of a system consisting of small bubbles takes place
through a two-step melting process. A reentrant behavior and a thermally induced structural phase transition are
observed in a small region of the �B ,�� space. A hysteresis effect in the configuration of the particles is
observed as a function of temperature. This is a consequence of the presence of a potential barrier between
different configurations of the system.
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I. INTRODUCTION

The study of the properties of self-organized systems has
been an important topic of research in recent years. This
interest originates from the possibility to control the forma-
tion of patterns having an important impact on applications
that use large-scale self-assembly to create specific pattern
morphologies. These kinds of structures occur in systems
from diverse areas including chemistry �1� and biology �2�.
In physics, it was predicted that systems which fall into this
morphological category are generated by the competition be-
tween short-range attraction and long-range repulsion �3�.
This competitive interaction appears in many systems, such
as magnetic materials �4,5�, colloids �6,7�, and two-
dimensional electron systems �8,9�. Experimentally, colloidal
systems are one of the most studied systems, which, in com-
bination with theoretical predictions, may lead to the design
of novel soft materials and to an understanding of the glass
and gel state of matter �10�. Recently, it was observed that a
similar type of pattern formation can also arise in particular
classes of ultrasoft colloids with a strictly repulsive interpar-
ticle potential �11�.

Besides presenting a rich variety of cluster types and
showing an excellent model for technological applications,
colloidal systems have the added advantage of the facility to
control the interaction between particles and of real-time im-
aging of their configuration through video microscopy. A
wide variety of studies on colloidal systems were performed
in order to understand the structure and dynamics of different
kind of systems, such as colloidal particles interacting
through a short-range attractive and long-range repulsive po-
tential �12–14�. For instance, a binary system of superpara-
magnetic colloidal particles that are confined by a two-
dimensional �2D� water-air interface and exposed to an
external magnetic field perpendicular to the interface showed

diverse stable configurations �15�. Moreover, the authors ob-
served that clustering appeared only for one type of particles,
instead of both types of particles.

Recently, several models were developed having a small
number of interacting particles in order to understand the
behavior of colloidal systems as a function of temperature
�16–18�. Different melting scenarios were studied exten-
sively in systems consisting of charged particles for a range
of different interparticle interaction and trap types. For ex-
ample, systems of binary charged particles confined by a
circular hard-wall potential interacting by a repulsive dipole
potential �19�, confined by a parabolic trap potential and in-
teracting by a Coulomb interparticle potential �20,21�, and
nonconfined particles with short-range attraction and long-
range repulsion interaction were studied theoretically �22�.

Motivated by the increased interest in the behavior of sys-
tems of particles that are characterized by a competition be-
tween short-range attraction and long-range repulsion, we
analyze here the melting of a system composed of a finite
number of classical particles interacting through a potential
which is composed of a repulsive Coulomb and an attractive
exponential term. The particles move in a 2D plane that are
confined by a parabolic trap. The zero-temperature configu-
rations of this system were studied recently by Nelissen et al.
�23�. They observed different topological configurations
�e.g., ring, stripe, and bubble configurations�. From these re-
sults arises the question about the stability of those different
configurations against thermal fluctuations. This motivated
us to study the melting of these ordered configurations and to
analyze the effect of the interplay between the short-range
and long range interactions on the melting process. We found
that if one increases the temperature, some of the bubble
configurations exhibit a thermally induced structural phase
transition and a remarkable reentrant behavior. In addition,
we found that this system exhibits hysteresis behavior for the
mean radial displacement when we increase and decrease the
temperature and the configuration goes through a thermally
induced structural phase transition.

This paper is organized as follows. In Sec. II, we describe
the mathematical model and the numerical approach to ob-
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tain the ground-state configurations. In Sec. III we analyze
the melting process for different interparticle potentials.
Temperature-induced reentrant and hysteresis effects are dis-
cussed in Sec. IV. Our conclusions are presented in Sec. V.

II. NUMERICAL APPROACH

We consider a 2D cluster with N classical particles inter-
acting through a potential composed of a repulsive Coulomb
and an attractive exponential term as in Refs. �22,23�. The
particles are kept together by a parabolic potential centered
at the origin. The general dimensionless Hamiltonian of the
system is written as

H = �
i=1

N

ri
2 + �

i�j=1

N � 1

�r�i − r� j�
− Be−��r�i−r�j�� , �1�

where ri	�ri� is the distance of the ith particles from the
center of the parabolic confinement. Energy and distance are
in units of E0= �m�0

2r0
2 /2� and r0= �2q2 /m��0

2�1/2, respec-
tively. Notice that the B parameter determines the exponen-
tial contribution in the Hamiltonian and it is responsible for
the strength of the attractive part of the interparticle potential
�the third term in Eq. �1��. Temperature is expressed in units
of T0=E0 /kB, where kB is the Boltzmann constant.

The ground-state configuration �T=0� of the two-
dimensional system was obtained by the Monte Carlo �MC�
simulation method �using the standard Metropolis algorithm
�24�� extended with the Newton optimization method �25�.
The particles were allowed to reach a steady-state configu-
ration after 105 simulation steps, starting from different ini-
tial random positions. In the same time, we calculate the
frequencies of the normal modes of the system using the
Householder diagonalization technique �25�. The configura-
tion was taken as final if all frequencies of the normal modes
were positive and the energy did not decrease further.

In order to understand the trajectory of each particle cor-
rectly, we study the melting of the system using molecular
dynamic �MD� simulation. The temperature of system was
increased from T=0 �ground-state configuration� with suc-
cessive steps of �T and equilibrated at the new temperature
during 106 MD steps �with a typical step size of �t=0.001�.
After this equilibrium, the average energy was calculated,
together with the mean squared radial displacement given by


uR
2� 	

1

N
�
i=1

N

�
ri
2� − 
ri�2�/�2, �2�

where � is the average interparticle distance at zero tempera-
ture. The symbol 
¯� stands for an average over typically
106–107 MD steps after equilibration of the system.

The system studied exhibits complex configurations �23�,
such as, e.g., the bubble configuration shown in the inset of
Fig. 1, and presents interesting different melting processes.
In order to understand better the melting behavior of the
system, we analyze the mean radial displacement and angu-
lar disorder of the particles of the small bubbles as a function
of temperature. In particular, we calculate the radial and an-
gular disorder of each particle with respect to the center of

mass of the small bubbles to which it belongs. The mean
local radial displacement is defined as


uR�B�
2 � 	

1

Nc

1

Nsc
�
j=1

Nc

�
i=1

Nsc

�
�rj
c.m. − ri�2� − 
�rj

c.m. − ri��2�/�B
2 ,

�3�

where Nc and Nsc are the number of small bubbles and the
number of particles in each small bubble, respectively. rj

c.m. is
the distance of the center of mass of the bubble from the
center of the confinement potential, and �B is the average
distance between the particles of the same small bubble at
zero temperature.

The angular disorder in the small clusters is studied using
the angular intrashell displacement calculated locally. Previ-
ously, this property was used to calculate the angular disor-
der in the whole system �16,20�, but here, we will calculate
the angular disorder in each small bubble—i.e., with respect
to the center of mass of the small agglomerate of particles,
which is defined as


u	�B�
2 � 	

1

Nc

1

Nsc
�
j=1

Nc

�
i=1

Nsc

�
�
i − 
i1�2� − 
�
i − 
i1��2�/�
0
s�2,

�4�

where i1 indicates the nearest neighbor in the same bubble
and 
0

s =2� /Nsc is the average density of particles in each
small bubble at zero temperature.

Due to the rotation of the small bubble with respect to the
confinement center, the center of mass of each small bubble
is calculated in each MD step. Moreover, we calculate the
angular disorder of the center of mass of each small bubble
with respect to the center of confinement, which is defined as


u	
2�c.m.�� 	

1

Nc
�
i=1

Nc

�
�
i − 
i2�2� − 
�
i − 
i2��2�/�
0
c�2,

�5�

where i2 indicates the nearest center of mass and 
0
c

=2� /Nc is the average density of small bubbles in the sys-
tem at zero temperature.

FIG. 1. The mean radial displacement for a system with N=20,
B=8.5, and �=4 as a function of temperature given in a logarithmic
scale. The ground-state configuration is shown in the inset.

MUNARIN et al. PHYSICAL REVIEW E 77, 031608 �2008�

031608-2



The melting temperature was determined through a
Lindemann-like criterion, which has been widely used for
2D finite-size clusters. This criterion states that melting oc-
curs when 
uR

2� reaches 0.1 of the interparticle distance at
zero temperature �26�. But what is essential is that melting is
characterized by a rapid increase of the fluctuation of par-
ticles when temperature reaches the melting temperature.

III. MELTING

We start analyzing the stability and the behavior of small
bubbles as a function of temperature. To do so, we initially
consider a cluster with N=20 particles, for B=8.5 and �=4,
which is characterized by small bubbles with a different
number of particles—i.e., two small bubbles with four par-
ticles and two other ones with six particles �see inset in Fig.
1�. The particles of the four-particle bubbles are arranged in
a lozenge-type structure, while the six-particle bubbles
present a circular ring-type configuration.

In Fig. 1, the mean radial displacement 
uR
2� of the par-

ticles with respect to the center of confinement is shown as a
function of temperature. As can be observed, 
uR

2� increases
gradually with increasing temperature and exhibits plateaus
in some temperature intervals. These plateaus are usually an
indication of the presence of thermally induced structural
transitions before the system melts completely �29�. In order
to study more deeply the structural transitions and the gen-
eral behavior of the system before melting, we will make use
of the properties previously defined in Sec. II.

Figure 2 shows the temperature dependence of the mean
radial distance of each particle with respect to the center of
the confinement potential 
ri� �Fig. 2�a��, the mean radial
displacement 
uR�B�

2 �, and the mean radial distance 
ri�B�� of
each particle with respect to the center of mass of the small
bubbles to which it belongs �Figs. 2�b� and 2�c�, respec-
tively�. The temperature dependence of the mean angular
intrashell displacement of particles with respect to the center
of mass of the small bubbles 
u	�B�

2 � and the mean angular
intrashell displacement of the center of mass of the small
bubbles with respect to the center of the confinement poten-
tial 
u	

2�c.m.�� is also shown in Figs. 2�d� and 2�e�, respec-
tively. These properties refer to the system with N=20 par-
ticles, B=8.5 and �=4. In Figs. 2�a� and 2�c�, the open and
solid circles represent the positions of the particles in the
four- and six-particle bubbles, respectively.

As can be seen in Fig. 2�c� for very small temperatures
�T�5
10−5�, particles located at the edge of the six-particle
bubbles are not at the same distance from the center of each
bubble, which is a consequence of the positional correlation
with the other particles in the system. When T�2
10−4,
Fig. 2�a� indicates that the distance of these particles be-
comes the same with respect to the center of the confinement
potential, while Fig. 2�c� suggests that the ring-type configu-
ration of the six-particle bubbles remains unaffected. Notice
that for T�2
10−4 �first vertical dotted line—from left to
right� particles located at the edge of the six-particle bubbles
are rearranged in order that a perfect circular ring-type struc-
ture is formed �Fig. 2�c��. The apparently conflicting results
presented in Figs. 2�a� and 2�c� can be understood by the fact

that we are considering the average value of the distance of
the particles from the center of the confinement potential.
The merging of the curves in Fig. 2�a� is a consequence of
the rotation of the six-particle bubbles around their respec-
tive center, with the angular order within each of them kept
unaltered �Fig. 2�d��. The rotation of the six-particle bubbles
becomes possible due to the increased symmetry of the small
bubbles with respect to their center.

The same behavior of the six-particle bubbles is also ob-
served in the four-particle bubbles, but at higher temperature.
When T�3.3
10−3 �second vertical dotted line�, the par-
ticles of the four-particle bubbles arrange in a perfect circular
ring �Fig. 2�c��. At this temperature, we find that the internal
angular order in each four-particle bubble is maintained since

u	�B�

2 ��0. Notice that for T�3.3
10−3 the lozenge-type
structure of the four-particle bubbles remains intact �Fig.
2�c��.

A further increase of temperature brings the system to a
drastic structural phase transition in the small bubbles as can
be observed in Fig. 2�c� for T�0.01 �third vertical dotted
line�. This figure shows that one particle of the six-particle
bubble moves from the center to the edge of the small
bubbles, while Fig. 2�d� shows that the angular order of the
small bubbles is destroyed around T�0.01. However, Fig.
2�a� shows that the position of the small bubbles with respect
to the center of the confinement potential remains unaffected.
These results indicate that after a thermally induced struc-
tural phase transition a local angular melting occurs in the
small bubbles. This transition can also be identified as a typi-
cal plateau in the 
uR�B�

2 � curve shown in Fig. 2�b� for T
�0.01. A similar behavior of the 
uR�B�

2 � curve was found
earlier �20,29�, but in this case, the plateau is a consequence
of a structural transition in only one kind of bubble—i.e.,
six-particle bubbles.

From Fig. 2�b� we find that the small bubbles melt when
T�0.06 �fourth vertical dotted line�, destroying the angular
order of the small bubbles with respect to the center of the
confinement potential �Fig. 2�e��, and consequently it
changes the configuration of the system �Fig. 2�a��. For T
�0.06, the value of the mean radial displacement increases
sharply and, according to the Lindermann criterion, it
reaches the critical value �
uR

2�=0.1� at T�0.1, indicating
that the system melts �fifth vertical dotted line�. It is impor-
tant to mention that the small bubbles undergo a local rota-
tion before melting indicating that the melting of this system
proceeds via a local two-step process. Moreover, we ob-
served that the melting temperature of this system is about 5
times higher than the melting temperature of a pure Coulomb
system composed of N=20 identical particles �Tm=0.012�.
This fact indicates that the system composed of small
bubbles are more stable than a pure Coulomb system.

In order to observe the influence of the configuration on
the melting temperature, we show in Fig. 3 the melting tem-
perature for the total system as a function of the B parameter
for a system with N=20 and �=4. We define in Fig. 3 three
different regions associated with ring �I and III� and nonring
configurations �II�. Configurations of these regions are
shown in Fig. 4. From Figs. 3 and 4 we see that for low B
values �region I� the system is in a ring configuration, in
region II the system is on a stripe or bubble configuration,
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and for large B value the system transforms again into a ring
configuration �region III�. The horizontal dotted line in Fig. 3
indicates the melting temperature of a pure Coulomb system
with N=20 particles.

Figure 3�a� shows that the melting temperature in the re-
gion I decreases with increasing B value, indicating that the
system becomes less stable. This behavior is surprising since
B is the strength of the short-range attraction �see Eq. �1��,
and one may expect that the larger the strength of the attrac-
tion, the more packed the particles are, and therefore the
higher the melting temperature. This unexpected behavior is
a consequence of the fact that the interparticle distance are
such that the interparticle potential is purely repulsive in re-
gion I. In this region, when the value of B increases, the
repulsive potential decreases �see Eq. �1�� and thus also the
coupling strength among the particles, which leads to a soft-
ening of the normal modes and of the melting temperature.

The melting temperature continues decreasing up to the
small value Tm�0.0013, which is reached for B=6.0—i.e.,
one order of magnitude smaller than the melting temperature
of a pure Coulomb system Tm=0.012. For B�6.0, the attrac-
tion between the particles starts to influence the system be-
havior and consequently the melting temperature increases
due to the increase of the packing of the particles. For B
=6.8, the attraction dominates the interaction potential be-
tween particles and the system changes its configuration
from rings to stripes or bubbles �vertical dotted line between
regions I and II�.

Region II is composed of several kinds of configurations;
some of them are shown in Figs. 4�b�–4�f�. Notice that the
number of small bubbles in region II decreases with increas-
ing B. This is a consequence of the fact that the effective
repulsion potential between particles decreases as a function
of B �see Eq. �1��. Thus, more particles can occupy a small
bubble, decreasing the number of small bubbles and there-
fore increasing the distance between them as a function of B.
As a consequence, the required energy for a particle to over-
come the potential barrier between small bubbles increases
as a function of B as well as the melting temperature as is
apparent in region II of Fig. 3�a�. The melting temperature in
region II continues increasing as a function of B up to B
=14 �vertical dotted line between regions II and III�. At this
B value, the system melts at Tm=1.18—i.e., two orders of
magnitude higher than the melting temperature of a pure
Coulomb system—confirming that the system composed of
bubbles is more stable than a Coulomb system. For B=14,
the system transits back to a ring configuration, indicating
that the strength of the short attraction potential between the
particles is large enough to agglomerate all particles in a
short distance. Since there are no small clusters present and
consequently no large potential barrier for particles to over-
come, the melting temperature decreases drastically and at
the same time the system changes its configuration as shown
in Fig. 3�a�.

In region III an interesting behavior of the melting tem-
perature curve can be observed. Figures 3�a� and 3�b� show
that the melting temperature increases gradually as a func-
tion of B up to B=60 when it begins to decrease asymptoti-
cally. It is important to observe that this melting temperature
behavior occurs when the system has the ring structure; i.e.,

FIG. 2. The temperature dependence of �a� the mean radial dis-
placement of each particle with respect to the confinement center,
�b� the mean radial displacement, �c� the mean distance, and �d� the
mean angular intrashell displacement of each particle with respect
to the center of mass of the small bubbles. �e� The mean angular
intrashell displacement of the center of mass of the small bubbles
with respect to the confinement center. The open and solid circles in
�a� and �c� represent the positions of the particles in the four- and
six-particle bubbles, respectively. The temperature is given in a
logarithmic scale.
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the melting temperature of the system shows a large varia-
tion for the same structure. As in region II, the melting tem-
perature increases in region III as a consequence of the de-
crease of the repulsion between particles and thus the system
decreases its size due to the influence of the confinement
potential. We observe a difference in the size of the system
from Figs. 4�g� and 4�h�, which show two configurations of
region III in the same scale. For B=60, the system is so
small that the confinement potential is no longer relevant
�i.e., it is too weak� to compress the system. The system
becomes internally stabilized solely due to the interparticle
potential. The potential barrier preventing the hopping of
particles between the rings decreases with increasing B, de-
stabilizing the system and therefore decreasing the melting
temperature. In order to confirm that the confinement poten-
tial does not influence the system for B�60, we plot as an
inset to Fig. 3�b� the minimum energy per particle for the
system described by Eq. �1� with and without confinement
potential for N=20 and �=4. The energy of these two sys-
tems with and without confinement potential becomes the
same around B=60, confirming that the system of bubbles is

no longer influenced by the confinement potential for B
�60.

We checked that the general behavior of the melting tem-
perature of the total system �Tm� shown in Figs. 3�a� and 3�b�
for the cluster with N=20 particles was also observed for
N=10, 30, 40, and 50 particles, but now for a different value
of the B parameter.

IV. STRUCTURAL BEHAVIOR

Recently, colloidal systems exhibited several new and in-
teresting features, such as reentrant behavior �6,18,19,27�
and a hysteresis effect �28�. In this section, we show for a
specific short-range interaction that our system exhibits a
different reentrant effect and a hysteresis behavior as a func-
tion of temperature.

A. Reentrant behavior

The temperature dependence of the mean-squared radial
displacement 
uR

2� is shown in Fig. 5�a� for a system with

FIG. 3. The melting temperature �Tm� of the total system �i.e., transition to the disordered phase� as a function of B for a system with
N=20 particles and �=4. �a� is for small and �b� is for large B values. The horizontal dotted line indicates the melting temperature of a pure
Coulomb system with N=20 particles. The energy per particles of this system with and without confinement potential are shown as the inset
of �b�.

FIG. 4. Snapshots of the
ground-state configuration for a
system with N=20 particles, �=4
and different values of B.
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B=7 and �=4. When the temperature increases from T=0 to
T=0.003, the value of 
uR

2� increases considerably until it
reaches a semiplateau and remains almost constant until T
=0.0053 �dashed line�. For T�0.0053, we observe that the
value of 
uR

2� decreases rapidly before it increases sharply,
indicating that the system melts. This reentrant behavior was
observed in both experimental �6,27� and theoretical �18,19�
studies, and in the present case, it is due to an increase of the
stability of the whole system caused by an increase of the
symmetry of the system configuration. In other words, the
value of the mean radial displacement decreases after T
=0.0053 as a result of the change in the configuration of the
system.

In order to confirm that the reentrant behavior is caused
by a change in the configuration, we plot in Fig. 5�b� the
position of the particles with respect to the center of the
confinement potential as a function of temperature. Specifi-
cally, in each MD step we organize the distance of each
particle in such a way that r1 ,r2 ,r3 , . . . ,rN correspond to the
first, second, third,…, Nth closest particles from the center of
the cluster, respectively. After that, we calculate the average
of each closest distance 
ri

�� for each temperature and we
present it as a function of temperature in Fig. 5�b�. As can be
seen, the system remains in the bubble configuration from
T=0 to T=0.0053. We will label this configuration as
(2;6�3�B), which means that there is 1 ring of 2 particles and
6 bubbles of 3 particles �see the left inset of Fig. 5�b��. For
T�0.0053, a particle leaves the edge and moves to the cen-
ter of the system. The configuration changes from the bubble
(2;6�3�B) to the ring configuration �3;17�, which means that
there is a ring of 3 particles and another with 17 particles.
The outer ring has a nonzero width. We observe from Figs.
5�a� and 5�b� that the value of the mean radial displacement
decreases when the configuration changes from (2;6�3�B) to
�3;17� and increases rapidly when the temperature ap-
proaches the melting temperature of the ring configuration.
Therefore, this change of configuration is a structural transi-
tion which stabilizes the system. This transition occurs be-
fore the system is completely melted and is a thermally in-
duced structural phase transition. This interesting
phenomenon was found in diverse previous studies �29–31�,
but in this case, it is the result of the increase of disorder in
small bubbles when the temperature approaches T=0.0053.

In order to better understand the local disorder of the par-
ticles, we present in Figs. 5�c� and 5�d� the mean radial dis-
placement and angular disorder of the particles of the small
bubbles as a function of temperature, respectively, as defined
in Sec. II. As we can see, the mean radial displacement and
the angular disorder of the particles increase simultaneously
very dramatically in each bubble when the temperature ap-
proaches T=0.0053 �dotted vertical line�. The thermal fluc-
tuation permits a particle to overcome the potential barrier
allowing it to move to the center and consequently changing
the system configuration from (2;6�3�B) to �3;17�.

Reentrant behavior was found in a small region of �� ,B�
space which is shown in Fig. 6. We found that this interesting
feature is the result of the interparticle potential profile which
is illustrated in the inset of Fig. 6 for some values of B and �.
We observe that the interparticle potential for the system
with B=7 and �=4 is not so repulsive as that for B=6 and
�=5 and it is not so attractive as for B=8 and �=3. There-
fore, systems which have values of B and � close to 7 and 4,
respectively, are ideal to exhibit a reentrant behavior due to
the characteristic of agglomerating particles that are suffi-
ciently weakly bound to allow particles to overcome the po-
tential barrier when temperature increases—i.e., a thermally
induced structural phase transition.

The reentrant phenomenon present for the cluster with
N=20 particles was also observed for other values of
N—e.g., for N=30 particles. The general behavior of 
uR

2�
shown in Fig. 5�a� was also found for N=30 particles, but
now for a slightly different region in �� , B� space, as well as
the thermally induced structural phase transition.

FIG. 5. �a� The mean radial displacement �
uR
2��, �b� the mean

distance of each particle from the center of the confinement poten-
tial, �c� the mean radial displacement, and �d� the angular intrashell
displacement with respect to the center of mass of the small bubble
for a system with N=20, B=7, and �=4.
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B. Hysteresis behavior

Figure 7 shows 
uR
2� when we decrease temperature after

the system changed its configuration to �3;17� for N=20, B
=7, and �=4. The mean radial displacement is calculated
and the temperature is increased from T=0 to T=0.008 �solid
circles�. In T=0.008, the system does not melt, but reaches a
different configuration from the T=0 configuration. After
that, we decreased temperature until T=0 �red square sym-
bols� and increased it again up to T=0.008 �green triangle
symbols�. Notice that at T=0.008 the system reaches a dif-
ferent configuration from the ground-state one and that the

uR

2� behavior is very different when temperature is decreased
indicating that the system gets stuck in a metastable state.
This phenomenon is very interesting because the system ex-
hibits a hysteresis effect in the mean radial displacement as a
function of temperature when we decrease the temperature
after a thermally induced phase transition—i.e., after a
change of configuration. This interesting behavior is a con-
sequence of the fact that the �3;17� configuration is stable,
although it has a larger potential energy than that of the
(2;6�3�B) configuration, and is separated from the (2;6�3�B)
configuration by a high-energy saddle point.

In order to visualize this saddle point in the potential en-
ergy landscape between the �3;17� and (2;6�3�B) configura-
tion, we fixed one particle at the edge of the (2;6�3�B) con-
figuration at T=0.0045 and moved it in the direction of the
center and at the same time allowing all the other particles to
relax to their equilibrium positions. We calculated the aver-
age energy per particle of the system as a function of the
position of the fixed particle �Fig. 8�. In this simulation we
used the Monte Carlo technique in order to obtain the
ground-state configuration and to make an average of the
particle energy of several MC steps �around 107�. This aver-
age energy per particle is shown in Fig. 8 as a function of the
distance of the marked particle �open symbol in the inset and
this particle is moved along the thin dashed line� with respect
to the center of the confinement potential for a fixed tem-
perature T=0.0045.

In Fig. 8, we observe that the average energy per particle
increases sharply when the marked particle is moved from
r=1.2 to r=0.9. After that, the mean energy of the system
decreases continuously until r�0.3 and remains almost con-
stant until r=0.17. The �3;17� configuration is found when
r=0.21. Notice that the �3;17� configuration has the second
lowest energy of the whole simulation and is stable. Thus,
when we increase the temperature of the (2;6�3�B) configu-
ration such that there is enough thermal energy for a particle
to overcome the potential energy saddle point, of T=0.007,
the system changes its configuration to �3;17� and is locked
into this lowest-energy configuration. Consequently, the sys-
tem remains in this metastable configuration even when tem-
perature is decreased down to T=0.

V. CONCLUSION

In this paper we investigated the dependence of the melt-
ing temperature of a system composed of classical particles,
interacting through an interparticle potential with a short-
range attractive part and a long-range repulsive part, con-
fined by a parabolic trap. The system of bubbles showed

FIG. 6. Phase diagram in �B ,�� parameter space showing the
reentrant behavior for N=20 particles �solid symbols are the calcu-
lated values�. The profile of the interparticle potential for some
relevant �B ,�� values is shown in the inset.

FIG. 7. �Color online� The mean radial displacement for a clus-
ter with N=20, B=7, and �=4 for increasing �black ball and green
triangle symbols� and decreasing temperature �red squared
symbols�.

FIG. 8. The mean energy per particle as a function of the dis-
tance of the marked particle �particle in the inset indicated by a
open circle� from the center of the confinement potential for the
cluster with B=7, �=4, and N=20 particles and fixed temperature
T=0.0045. The configurations at the three local energy are shown in
the inset as well as the trajectory of the marked particle �dashed
line�.
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diverse and nontrivial behaviors as a function of temperature.
We observe that the small bubbles rotate and melt locally
before the melting of the total system, indicating that the
melting phenomenon of this system proceeds in a two-step
process—i.e., a two-step process in the behavior of the small
bubbles. Moreover, the system exhibits a thermally induced
structural phase transition in the small bubbles before it
melts completely.

The melting temperature curve showed diverse behaviors
as a function of the B-parameter. In general, the melting
temperature decreases as a function of B for pure repulsive
systems and increases for a packed system—e.g., stripes and
bubbles. The highly packed system shows a different behav-
ior of the melting temperature as a function of B. For large B
values we found that the confinement potential is no longer
important in the melting process.

The mean radial displacement 
uR
2� showed a reentrant

behavior as a function of temperature. We found that this
behavior is a consequence of a thermally induced structural

phase transition which stabilizes the system before it melts.
This structural transition occurs due to the rapid increase of
the local disorder in the small bubbles of the system. This
reentrant behavior is found for a restricted set of values for
the B and � parameters which define the attractive part of the
potential. These values that lead to a reentrant behavior are
shown in a phase diagram.

A hysteresis effect was observed in the structural and dy-
namical behavior of the system as a function of temperature.
It was shown that this behavior is a consequence of the ex-
istence of a high-energy saddle point in the potential energy
landscape between the two lowest-energy configurations.
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