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The expression of the surface tension using the virial route has been reinvestigated in order to establish a
local version of the surface tension and of its long-range corrections. In fact, giving a local surface tension is
very important for the simulation from a methodological viewpoint. It is also of basic interest to associate the
profile of the intrinsic part of the surface tension with that of the long-range corrections to make the surface
tension calculation consistent between the different approaches that can be used. Working expressions for
two-phase systems interacting through dispersion-repulsion �Lennard-Jones� and Coulombic �Ewald summa-
tion� interactions are proposed. Different operational expressions of the surface tension are compared in the
cases of n-pentane, carbon dioxide, and water liquid-vapor equilibria for which the orders of magnitude
between the electrostatic and dispersion forces are different.

DOI: 10.1103/PhysRevE.77.031601 PACS number�s�: 68.03.Cd

I. INTRODUCTION

Direct molecular simulation of two-phase systems allows
the calculation of the surface tension coupled with a micro-
scopic description of the interfacial region. The difficulties of
this method are directly related to the nature of the system,
i.e., the nonuniformity of the local density along the direc-
tion normal to the surface. Due to this heterogeneity, care
must be taken when dealing with the truncation procedures
involved in the calculation of the potential energy and corre-
sponding force �1,2�, the long-range corrections to apply to
the macroscopic properties �3–8�, and the definition of local
thermodynamic functions such as the local pressure tensor or
the energy density �9�.

In the case of a planar liquid-vapor interface lying in the
x ,y plane, the density gradient occurs in the z direction nor-
mal to the surface. It is then of fundamental interest to check
the behavior of some local thermodynamic properties along
this direction. The surface tension � can be expressed as
�−�

� �pN�z�− pT�z��dz where pN�z� and pT�z� are local values
of the normal and tangential components of the pressure ten-
sor, respectively. Expressing the surface tension as a function
of the local components of the pressure allows use of a local
��z� defined as �−�

z �pN�z�− pT�z��dz. The use of ��z� is a key
element to check the validity of the calculation concerning
the stabilization of the interfaces, the independence between
the two interfaces, and the constancy of ��z� in the bulk
phases. We note that there are many ways of expressing the
local components of the pressure, which depend on the con-
tour joining two interacting molecules. Irving and Kirkwood
�IK� �10–12� use a straight line to join the two particles. This
choice is the most natural and the one generally made. Ha-
rasima’s expression �13� leads to a different expression for
the tangential component of the pressure tensor. The profile
of pT�z� calculated using the IK definition shows small posi-
tive peaks �11� on the gas side of the liquid-vapor interface

that are missing in Harasima’s expression. This highlights
the fact that the way of specifying which intermolecular
forces contribute to the stress across dA can lead to slight
differences in the local values of the components of the pres-
sure tensor between the different possible contours. This
problem was analyzed in detail elsewhere �14�: the authors
concluded that there are many ways of writing the local com-
ponents of the pressure tensor. Nevertheless, the scalar value
of surface tension is invariant to the choice of the pressure
tensor. Until recently, only the method of Irving and Kirk-
wood was designed to provide a profile of the surface ten-
sion.

Figure 1�a� shows the accumulated average values of the
surface tension of water calculated with two different simu-
lation times of 2 and 4 ns using molecular dynamics simula-
tions. We report this property in Fig. 1�a� as a function of the
number of configurations saved during the simulation. Let us
recall that the number of saved configurations is the same for
the two total simulation times. Figure 1�b� shows the pN�z�
− pT�z� profiles whereas Fig. 1�c� displays the profiles of the
integral of pN�z�− pT�z�. Interestingly, we observe significant
differences in the local surface tension profiles of Fig. 1�c�,
whereas the scalar average value of � does not show time
dependence. Figure 1�c� shows that the two interfaces are not
completely stabilized with a liquid region contributing to the
surface tension in the case of a simulation of 2 ns whereas
the simulation of 4 ns leads to a flat profile of ��zk� in the
liquid region, indicating that only the two interfaces contrib-
ute to the surface tension. This example aimed to establish
the importance of the calculation of the surface tension pro-
file along the direction normal to the surface. This is an
essential check for the methodology of a molecular simula-
tion of a two-phase system and an important route to finding
the surface tension of interfaces.

Other routes can be used to calculate the surface tensions.
The most general working expression uses macroscopic nor-
mal and tangential pressures which can be related to the de-
rivative of the pair potential. The final form was obtained by
Kirkwood and Buff �KB� �15–18� and is referred to as �KB*Patrice.MALFREYT@univ-bpclermont.fr
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throughout this paper. Using this expression, we obtain a
macroscopic scalar surface tension which compares very
well with that of the IK definition, even if the operational

expressions of these definitions result from different approxi-
mations. Recently, the “test-area” �19� �TA� method based
upon the perturbation formalism was proposed for the calcu-
lation of the surface tension. This method uses the perturba-
tion formalism and takes advantage of expressing the surface
tension as a difference of energy between a reference state
and a perturbed state characterized by an infinitesimal in-
crease or decrease of the surface. However, the aspect of the
local surface tension was missing within the virial �KB� and
test-area �TA� methods. This led us to establish the local
expression of the surface tension calculated from the test-
area approach in a recent work �20� and to propose here the
local version of the surface tension resulting from the virial
route.

It is also of basic interest to note that the most commonly
used �KB and IK� methods for the surface tension calculation
use the derivative of the potential energy in their operational
expressions, whereas the TA method uses only the configu-
rational energy. This may lead to significant discrepancies
between the different methods when truncated potential en-
ergy and forces are used. In fact, the problems associated
with the truncation procedures were reported in previous pa-
pers �1,2,20�. We established that the value of the intrinsic
part of the surface tension was consistent within the different
definitions if the discontinuities in the potential and force
equations were removed. Additionally, the use of truncated
potential requires addition of long-range corrections �LRCs�
to the thermodynamic properties, and an inconsistent treat-
ment of the long-range corrections to the surface tension can
lead to conflicting results between the different methods. It is
also essential to associate an appropriate expression of the
tail correction with that of the intrinsic part of the surface
tension. A certain number of expressions for calculating the
LRC contributions of the surface tensions have been devel-
oped �3–8�. Some of them �5–8� express the LRC contribu-
tions of the surface along the direction perpendicular to the
interface. Our conclusions from a previous work �20�
showed that the different methods �IK, TA, and KB� matched
very well as long as appropriate LRC contributions were
included in the calculation. In that work, the operational ex-
pression of the LRC profile �20� of the surface tension within
the TA approach was also proposed.

Before giving the different steps leading to the operational
expressions of the local surface tension for a planar surface
and of its long-range corrections within the virial route, we
need to recall some fundamental expressions for the pertur-
bation formalism. The most popular methods for the calcu-
lation of the free energy difference are the free energy per-
turbation �FEP� �21–23� and the thermodynamic integration
�TI� �24–26� methods. Both methods use a master equation
derived from classical statistical mechanics to give the work-
ing expression for the free energy calculation. FEP relies on
the master equation

�F = F1 − F0 = − kBT�
�=0

�=1

ln�exp�−
�U��+��� − U����

kBT
	


�

�1�

where T is the temperature, kB is the Boltzmann constant.
and � is defined as a coupling parameter �24� going from 0 to

FIG. 1. �a� Accumulated time average values of the surface ten-
sion of the liquid-vapor interface for the TIP4P water model at a
temperature of 400 K calculated over a simulation time of 2 �solid
line� and 4 ns �dotted line�. �b� pN�zk�− pT�zk� profile as a function
of zk. �c� Integral of pN�zk�− pT�zk� calculated from the two simula-
tion times as indicated in the legend of �a�.
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1. U��+���−U��� is the energy difference between states �
+�� and � and �¯�� indicates an ensemble average at state
�. The second method, TI, uses the following master equa-
tion:

�F = 

0

1 � �F�

��
	d� = 


0

1 � �U

��



�

d� , �2�

where F� is the free energy of the state �. While FEP has
been more widely applied for the free energy calculations
than TI, TI has some advantages by not using the logarithm
of the average of an exponential function as in FEP. By anal-
ogy, we observe that the TA method is based upon the free
energy perturbation. We will show that the surface tension
resulting from the virial route and expressed as the derivative
of the potential energy with respect to the surface can also be
considered throughout the TI formalism.

The local expression of the surface tension derived from
the virial route is referred to as the KBZ expression where Z
indicates the direction of the density gradient. The resulting
value of surface tension calculated from the KBZ expression
is discussed along with those calculated from the TA, IK, and
KB approaches. These expressions are given within the
framework of a planar interface of a two-phase system inter-
acting through 6-12 Lennard-Jones interactions and electro-
static contributions. The case of nonplanar surfaces is not
investigated here. The TA and KBZ approaches can be ex-
tended to other types of interfaces. For example, in a cylin-
drical interface parallel to the z direction, the local thermo-
dynamic properties will depend on R, which is defined as
�x2+y2 within a cylindrical coordinate system. The surface
area expressed as 2�RLz is no longer a constant and the
operational expressions of the surface tension and of its long-
range corrections within the TA and KBZ approaches must
be rewritten within this cylindrical coordinate system. Fur-
ther details concerning the calculation of the surface tension
in curved interfaces may be found elsewhere �27–29�. All the
expressions developed in this paper are written for planar
surfaces.

The paper is arranged as follows: In Sec. II, we reinves-
tigate the different steps leading to the operational expres-
sions of � using the virial route with Lennard-Jones
and electrostatic contributions �30,31�. We compare in Sec.
III the different operational expressions �TA, KBZ, IK, and
KB� in systems involving different orders of magnitude for
the dispersion-repulsion and electrostatic interactions
�n-pentane, CO2, and H2O�. In Sec. IV, we draw the main
conclusions from this work.

II. SURFACE TENSION CALCULATION

A. Volume perturbation

In the constant-NVT ensemble, the surface tension � is
defined as the derivative of the Helmholtz energy with re-
spect to the interfacial area A:

� = � �F

�A
	

N,V,T
= lim

�A→0
��F

�A
	

N,V,T
. �3�

The surface tension given in Eq. �3� represents the change in
free energy for an infinitesimal change in the area. This in-
finitesimal change in the area can be performed throughout a
perturbation process in which the box dimensions are virtu-
ally changed by a small quantity � such as ��1. These
transformations conserve the volume of the box in the per-
turbed state. Let us consider a system with Lx, Ly, and Lz as
the box dimensions. V=LxLyLz and A=2LxLy are the volume
and the overall interfacial area of the system, respectively.
The factor 2 is introduced in the interfacial area because two
interfaces are considered in the system due to the use of
periodic boundary conditions. It is then possible to express
the surface tension as a ratio of partition functions between
the perturbed and reference states as in Eq. �4�. This leads to
Eq. �5�, where U�0��rN� and U�1��r�N� are the configurational
energies of the systems with area A�0� and configurational
space rN, and with area A�1� and configurational space r�N,
respectively:

� = � �F

�A
	

N,V,T

= lim
�→0

F�N,V,T,A�1�� − F�N,V,T,A�0��
�A

= lim
�→0

−
kBT

�A
ln

QNVT
�1�

QNVT
�0� �4�

=lim
�→0

−
kBT

�A
ln�exp�−

U�1��r�N� − U�0��rN�
kBT

	

0

�5�

where �A=2LxLy� is an infinitesimal variation of the inter-
facial area. �¯�0 denotes the canonical average over the ref-
erence system. The expression given in Eq. �5� has been
established by Gloor et al. �19� and has led to a novel ap-
proach called the test-area technique. Let us recall that the
formalism used to establish this working expression is that
used for the calculation of the free energy difference in the
FEP approach.

Let us apply the formalism used in the TI approach to the
calculation of �. From the derivation of Eq. �6� with respect
to the surface area, we obtain an expression of � depending
on the derivative of the partition function with respect to A
according to Eq. �7�:

F = − kBT ln QNVT, �6�

� = � �F

�A
	

N,V,T
= −

kBT

QNVT
� �QNVT

�A
	

N,V,T
, �7�

where the partition function QNVT is expressed as
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QNVT =
1

�3NN!

 drN exp�−

U�rN�
kBT

	 . �8�

� denotes the de Broglie thermal wavelength. Differentiating
Eq. �8� with respect to A gives the following expression:

�QNVT

�A
= −

1

�3NN!

 drN 1

kBT

�U�rN�
�A

exp�−
U�rN�
kBT

	 . �9�

Using the canonical ensemble average, the surface tension �,
expressed as

� = − kBT
�− 1

�3NN!
 drN 1
kBT

�U�rN�
�A exp�−

U�rN�
kBT 	�

1

�3NN!

 drN exp�−

U�rN�
kBT

	 , �10�

leads to the following operational expression of Eq. �11�:

� = � �U�rN�
�A



0
. �11�

In a first step, the term �U�rN� /�A can be calculated using a
second-order finite difference method. This gives the follow-
ing expression for �:

�TA2 = � �U�rN�
�A



0

= lim
�→0

1

�A
�U�1��r�N� − U�0��rN��0,

�12�

where 0 and 1 are the states previously defined for TA. Un-
like Eq. �5� this expression does not involve any exponential
functions. This means that we can rigorously attribute to the
working expression of �TA2 a corresponding LRC contribu-
tion. This was not the case for the original version of TA.
Establishing the LRC part of the original TA expression re-
quired assuming no dependency between the averages of two
exponential terms containing the intrinsic part and the LRC
part. This discussion was described in detail elsewhere �20�.

However, as expected from a numerical viewpoint, we
check that in the case of infinitesimal variations of the sur-
face, the exponential and the logarithm of Eq. �5� can be
expanded, leading to equivalence between expressions �5�
and �12�. The working expression of Eq. �12�, �U�rN� /�A,
which can also be considered as an approximate expression
of Eq. �5�, results from a rigorous demonstration based upon
statistical thermodynamics. In the next section, the different
steps leading to the working expressions of � from the virial
route are investigated in the case of particles bearing
Lennard-Jones centers and electrostatic charges.

B. Derivation of the potential with respect to the surface

Consider a system with a volume V=LxLyLz composed of
N molecules; each of these N molecules with center of mass
ri contains ni charges qia and ni atoms at position ria. The
configurational energy of this system is

U = �
i

N−1

�
j=i+1

N

�
a=1

ni

�
b=1

nj

u�riajb� �13�

=ULJ + Uelec, �14�

where riajb defined as ria−r jb is the distance between atom a
in molecule i and atom b in molecule j. ULJ is the sum of the
different pair potentials calculated using the 6-12 Lennard-
Jones potential and Uelec represents the sum of all electro-
static interactions in the system. The total electrostatic con-
tribution calculated using the Ewald summation method
�32,33� for a box with orthogonal axis is written as

Uelec =
1

2�0V
�
k�0

Q�h�S�h�S�− h�

+
1

8��0
�

i
�

a
�
j�i

qia�
b

qjb erfc��riajb/riajb�

−
�

4�3/2�0
�

i
�

a

qia
2

−
1

8��0
�

i
�

a
�
b�a

qiaqib

riaib
erf��riaib� , �15�

where erfc�x� is the complementary error function and erf�x�
is the error function. � is chosen so that only pair interac-
tions in the central cell need to be considered in evaluating
the second term in Eq. �15�. The functions S�h� and Q�h� are
defined using Eqs. �16� and �17�, respectively,

S�h� = �
i

�
a

qia exp�ih · ria� , �16�

Q�h� =
1

h2exp�−
h2

4�2	 , �17�

where the reciprocal lattice vector h is defined as h
=2��l /Lx ,m /Ly ,n /Lz�, where l ,m ,n take values of
0 , 	1, 	2, . . . , 	�. Let us recall that the excluded atoms b
of an atom a are atoms that are linked through a bond, angle,
or torsion to atom a. The fourth term in Eq. �15� indicates
that the summations run only over the excluded atoms b of
atom a in the molecule i.

The equations given below were derived by following the
same procedure as Davis �30�. For completeness, these equa-
tions are proposed here in the case of molecular systems
where Lennard-Jones and electrostatic energy contributions
are involved. Differentiating the total energy U with respect
to the surface A amounts to calculating a certain number of
derivatives with respect to A, such as �Q�h� /�A, �S�h� /�A,
�Q�−h� /�A, ��h� /�A, and �rij /�A. To do so, we recall some
definitions of important parameters. Let us introduce a new
parameter dia describing the location of the atom a relative
to the center of mass of molecule i. See the Appendix for
details about the expressions of the partition function and of
its derivative in the new set of scaled coordinates:

dia = ria − ri. �18�
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From the previous equation, we can write

diajb = riajb − rij . �19�

The scaled coordinates �sia�� are defined by �ria��

= �L���sia�� where � represents the x, y, or z dimension,

�rij�� = − �diajb�� + �siajb��L�. �20�

As �diajb�� and �siajb�� do not depend upon A, the derivative
of �rij�� with respect to A becomes

��rij��

�A
= �siajb��

�L�

�A
=

�riajb��

L�

�L�

�A
. �21�

The derivative of rij with respect to A is

�rij

�A
=

1

rij
�

k

x,y,z

�rij�k� ��rij�k

�A
	 =

1

rij
�

k

x,y,z

�rij�k� �riajb�k

Lk

�Lk

�A
	
�22�

and the derivatives of �h�� and �h2�� with respect to A are
given by the following equations:

��h��

�A
= �−

2�l

�L��2

�L�

�A
	 , �23�

��h2��

�A
= �−

8�2l2

�L��3

�L�

�A
	 . �24�

These expressions require expressing the derivative of the
box dimension with respect to the surface. Each component
can be written as a function of the overall interfacial area A
such as Lx=A / �2Ly�, Ly =A / �2Lx�, and Lz=2V /A. If Lx=Ly,
we obtain the following expressions for the derivatives of the
box dimensions with respect to the surface area:

�Lx

�A
=

1

2
�A

2
	−1/21

2
=

1

4Lx
, �25�

�Ly

�A
=

1

4Ly
, �26�

�Lz

�A
= −

2V

A2 = −
Lz

A
. �27�

The operational expression of the surface tension �KBZ is
then given by

�KBZ = � �U

�A

 �28�

=
1

4��0
�

i
�

a
�
j
i

�
b

− qiaqjb
1

riajb
A�riajb,rij�� 2�

��riajb

exp�− ��2riajb
2 �� +

erfc��riajb�
riajb

2 	
+

1

V�0
�
h�0

Q�h�Im���
i

�
a
�− �ria�x

�l

2�Lx�3 − �ria�y
�m

2�Ly�3 + �ria�z
�n

LxLyLz
	 + A�h,ria�exp�− ih · ria��

���
i

�
a

exp�ih · ria�	� +
1

2V
�
h�0

�2�2l2

�Lx�4 +
2�2m2

�Ly�4 −
4�2n2

LxLy�Lz�2	 1

h4exp�−
h2

4�2	� h2

4�2 + 1	S�h�S�− h�

− �
i

�
a

�
j
i

�
b

1

riajb
A�riajb,rij�

48�ij

riajb
�� �ij

riajb
	12

−
1

2
� �ij

riajb
	6� �29�

where the function A�u ,v� is defined as

A�u,v� = ��u�x
�v�x

4Lx
2 + �u�y

�v�y

4Ly
2 − �u�z

�v�z

2LyLx
	 �30�

Equation �28� is the operational equation of the well-
known expression of Kirkwood and Buff �15–18,30� given in
the case of electrostatic interactions treated using the conven-
tional three-dimensional �3D� Ewald summation. The route
investigated for recovering this expression is the key for pro-
viding both a local surface tension from the virial approach
and the corresponding LRC contributions.

C. Local expressions of the surface tension

In the case of a planar surface lying in the x ,y plane, the
surface tension can be calculated from the integration of the
normal and tangential components of the pressure tensor as

�IK =
1

2



−Lz/2

Lz/2

�pN�z� − pT�z��dz . �31�

This definition uses local values of the pressure tensor com-
ponents which cannot be defined unambiguously. However,
the arbitrariness of the surface tension at a planar surface
does not affect the value of �. Using this definition, we can
extract a local surface tension �IK�zk� defined by �pN�zk�
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− pT�zk��
z, where 
z is the thickness of a slab. The total
surface tension �IK is then the half sum of the local surface
tension �IK�zk�. We also established a local version of �TA,
which was directly compared to �IK�zk� �20�. The resulting
operational expression is given by

�TA�zk�

= lim
�→0

−
kBT

�A
ln�exp�−

U�1��zk,r�N� − U�0��zk,r
N�

kBT
	


k,0
.

�32�

�¯�k,0 indicates that the average is carried out over the ref-
erence state and the k slabs. U�1��zk ,r�N� and U�0��zk ,rN� are
the configurational energies of the slab k in the perturbed and
reference states. The ambiguity �9� relies on the part of the
interaction energy to be included in the volume Vs of the
slab. In this calculation, the definition of Ladd and Woodcok
�34� was adopted in this work and two energy contributions
have been assigned to the slab centered on zk: one contribu-
tion due to the interaction energy between the molecules
within the slab and a second contribution due to the interac-
tion energy of the molecules within the slab with those out-
side the slab. The energy of the slab at the position zk is
defined as

Uzk
=

1

2�
i=1

N

�
j�i

N

�
a

ni

�
b

nj

Hk�zi�ULJ�riajb� , �33�

where Hk�zi� is a top-hat function with functional values of

Hk�zi� = �1 for zk −

z

2
� zi � zk +


z

2
,

0 otherwise.
� �34�

Using this definition, the following condition is satisfied:



V

dzkUzk
= U , �35�

where U is the total configurational energy of the simulation
box and V its volume.

Writing �k�TA�zk�=�TA amounts to assuming that the en-
ergy of the slab at the position zk is uncorrelated with that of
the slab at zk+1. These approximations were validated in a
previous paper �20�.

The second version of the TA approach �TA2� does not
contain any exponential term as opposed to the expressions
of Eqs. �5� and �32�. This allows us to propose a local ver-
sion of the surface tension without taking into consideration
the lack of correlation of the local energies between the dif-
ferent slabs:

�TA2 = � �U�rN�
�A



0

�36�

=

 drN�U�rN�

�A
exp�−

U�rN�
kBT

	

 drN exp�−

U�rN�
kBT

	 =

 drN

��
k

U�zk,r
N�

�A
exp�−

U�rN�
kBT

	

 drN exp�−

U�rN�
kBT

	 = �
k


 drN�U�zk,r
N�

�A
exp�−

U�rN�
kBT

	

 drN exp�−

U�rN�
kBT

	 = �
k

�TA2�zk� .

�37�

The calculation of the local value �TA2�zk� allows a check of the methodology used and can be compared directly to the local
value calculated from the Irving-Kirkwood definition �pN�zk�− pT�zk��
z:

�TA2�zk� =

 drN�U�zk,r

N�
�A

exp�−
U�rN�
kBT

	

 drN exp�−

U�rN�
kBT

	 = � �U�zk,r
N�

�A



0
. �38�

Equation �38� gives explicitly the local version of the TA2 approach. This expression does not require any assumption
concerning the absence of correlations between local energetic properties of consecutive slabs. The local version associated
with the virial approach is then given by

�U

�A
= �

k

�Uzk

�A
, �39�

where �Uzk
/�A is expressed by

GHOUFI et al. PHYSICAL REVIEW E 77, 031601 �2008�

031601-6



�KBZ�zk� =
�Uzk

�A
�40�

=�
i�k

�
a
� 1
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�
j�i

�
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− qiaqjb
1
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A�riajb,rij�� 2�

��riajb

exp�− ��2riajb
2 �� +

erfc��riajb�
riajb

2 	
+

1

V�0
�
h�0

Q�h�Im���
i

�
a
�− �ria�x

�l

2�Lx�3 − �ria�y
�m

2�Ly�3 + �ria�z
�n

LxLyLz
	 + A�h,ria�exp�− ih · ria��

���
i

�
a

exp�ih · ria�	� +
1

2V
�
h�0

�2�2l2

�Lx�4 +
2�2m2

�Ly�4 −
4�2n2

LxLy�Lz�2	 1

h4exp�−
h2

4�2	� h2

4�2 + 1	S�h�S�− h�

− �
j�i

�
b

1

riajb
A�riajb,rij�

48�ij

riajb
�� �ij

riajb
	12

−
1

2
� �ij

riajb
	6�� �41�

where the center of mass of molecule i is within the slab k.
These local versions �TA�zk� and �KBZ�zk� are directly com-
parable to the standard local version �IK�zk�.

D. Long-range corrections to the surface tension

We showed in previous papers �2,20,35� that the value of
the surface tension calculated from molecular simulations
became independent of the cutoff radius once the long-range
corrections were included. Different correction schemes
�4–6,8,20� were adopted to take into account the truncation
of the dispersion-repulsion interactions on the surface ten-
sion. In the case of aqueous solutions, the electrostatic en-
ergy contributions are several orders of magnitude higher
than the repulsion-dispersion energy contributions; it results
from this that the surface tension is not affected by the LRC
contributions due to the truncated Lennard-Jones potential.
For most other polar liquids, where the different types of
interactions are comparable in magnitude, the way of cor-
recting the surface tension becomes crucial. In the case of the
simulation of n-alkanes, the inclusion of the LRC contribu-
tions is necessary, and such contributions can represent up to
30% of the total value of the surface tension �35�.

The expression derived by Blokhuis et al. is based on the
assumptions that the radial distribution function equals unity
beyond the cutoff radius and that the density profile can be
represented by a hyperbolic tangent function. This method
provides a scalar surface tension and is added after the simu-
lation run. This expression has often been used in conjunc-
tion with the Kirkwood-Buff expression. Other approaches
�5,6,8,20� are applied in the process of the simulation and
give a profile of the LRC contributions to the surface tension
along the direction normal to the interface. Slight differences
may appear between the different expressions �35�. However,
it has been shown �20,35� that the total surface tension was
independent of the type of calculation once the appropriate
LRC contributions were included in the calculation of the
intrinsic contribution. Here, we aim to calculate the LRC
profile contribution to � resulting from the virial approach.
The calculation of the intrinsic part of the surface tension

with the KBZ approach uses the derivative of the potential
with respect to the surface area. It results from this that the
calculation of the long-range corrections to the surface ten-
sion calculated with the KBZ method must use the derivative
of the configurational energy with respect to A. Since the
LRC contributions of the normal and tangential components
of the pressure tensor used in the IK approach are based
upon the method of Guo and Lu, we establish the LRC ex-
pressions of the KBZ approach by using the same scheme
�6�. Other methods are possible, like the method derived by
Janecek �8�, for example. The methodology used here can be
straightforwardly applied in the case of different LRC con-
tributions. Let us recall the two parts of the LRC contribu-
tions to the configurational energy derived by Guo and Lu:

ULRC�zk� = ULRC
�1� �zk� + ULRC

�2� �zk�

= 2��2�zk�Vs

rc

�

dr

−r

r

d�z rULJ,m�r�

+ ���zk�Vs

rc

�

dr

−r

r

d�z�
i=1

Ns

���zk+i�

− ��zk+i−1��rULJ,m�r� , �42�

where ULJ,m�r� is defined by

ULJ,m�r� = �
a=1

Na

�
b=1

Nb

4�ab���ab

r
	12

− ��ab

r
	6� . �43�

�z is the difference �z−zk� and varies between −r and r. Ns is
the number of slabs between zk and z. The first term is simi-
lar to that used in homogeneous systems except for the use of
a density ��zk� depending on zk. The second term takes into
account the fact that each slab zk is surrounded by slabs of
different local densities.

Differentiating, at constant volume, the LRC parts of the
configurational energy with respect to A amounts to consid-
ering the following derivative expression:
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�ULRC�zk�
�A
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�ULJ,m�r�
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= 2��2�zk�Vs
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�
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�r

�A
�ULJ,m�r�

+ r
�ULJ,m�r�
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	 + ���zk�Vs
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�
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−r

r

d�z���z�

− ��zk��
�r

�A
�ULJ,m�r� + r

�ULJ,m�r�
�r

	 . �44�

Using Eq. �22�, the derivative of r with respect to A can be
written as

�r

�A
=

1

r
� �r�x

2

4Lx
2 +

�r�y
2

4Ly
2 −

�r�z
2

A
	 =

1

2rA
�r2 − 3�r�z

2� . �45�

By using the fact that �r�z corresponds to �z, Eq. �44� be-
comes

�ULRC�zk�
�A

= 2�
Vs

2A
�2�zk�


rc

�

dr

−r

r

d�z� r2 − 3��z�2

r
	

��ULJ�r� + r
�ULJ,m�r�

�r
	

+ ���zk�
Vs

2A



rc

�

dr

−r

r

d�z���z� − ��zk��

�� r2 − 3��z�2

r
	�ULJ,m�r� + r

�ULJ,m�r�
�r

	 .

�46�

The integration of the first term of Eq. �46� results in a
zero value, and the operational expression of the LRC con-
tribution to the surface tension calculated through the KBZ
approach becomes

�KBZ,LRC�zk� = ���zk�
Vs

2A



rc

�

dr

−r

r

d�z���z� − ��zk��

�� r2 − 3��z�2

r
	�ULJ,m�r� + r

�ULJ,m�r�
�r

	 .

�47�

The LRC contribution relative to the second version of
the TA method is expressed using the difference between the
LRC terms of the configurational energy in the perturbed and
reference states:

�TA2,LRC�zk� = lim
�→0

1

�A
�ULRC�zk�� − ULRC�zk�� �48�

=lim
�→0

1

�A
�ULRC

�2� �zk�� − ULRC
�2� �zk�� , �49�

where ULRC�zk�� and ULRC�zk� are the LRC configurational
energies of the perturbed and reference states, respectively.
Whereas the difference between the first terms ULRC

�1� �zk�� and
ULRC

�1� �zk� cancels because the perturbation process conserves
the local density in the two states, the second term depends
on d�z and is changed by the transformation. The opera-
tional expression given by Eq. �49� does not require any
assumption about the lack of correlation between the LRC
part and the intrinsic part as was the case in the TA method
�20�.

The other expressions for the LRC contributions to the
surface tensions �IK,LRC and �KB,LRC are given elsewhere
�20,35�.

III. RESULTS AND DISCUSSION

The simulation box is a rectangular parallelepiped box of
dimensions LxLyLz �Lx=Ly� with N n-pentane, CO2, or H2O
molecules �see Fig. 2�. The details of the geometry of the
system and the total number of molecules are given in Table
I. We can use periodic boundary conditions either in three
dimensions or only in the x and y directions. In the latter
case, the system has a finite length along the direction per-
pendicular to the surface and two hard reflecting walls must
be added. The three-dimensionally periodic system allows

FIG. 2. �Color online� Typical configuration of a carbon dioxide
liquid-vapor interface at T=228 K. Carbon atoms are represented
in black while oxygen atoms are in red.

TABLE I. Dimensions of the simulation box, temperature, num-
ber of molecules and relative probabilities for the different types of
MC moves.

n-pentane CO2 H2O

Lx=Ly �Å� 35 25 20

Lz �Å� 235 151 100

N 500 512 500

T �K� 300 228 388

% �translation� 45 50 50

% �rotation� 35 50 50

% �internal� 20 0 0
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the use of the conventional Ewald summation �32,33� for the
treatment of the electrostatic interactions and the number of
reciprocal lattice vectors must be consistent with the box
dimensions. An excellent discussion about the use of the
conventional Ewald summation for the simulation of a two-
phase system is given by Alejandre �31�. In the case of sys-
tems that are periodic in two dimensions, a two-dimensional
technique �36–39� must be applied. However, it is well
known that the Ewald quasi-2D method is much more ex-
pensive than the 3D Ewald summation. Therefore, the first
solution consisting in applying the periodic boundary condi-
tion in all directions and using the 3D Ewald summation
technique has been adopted in this work as is the case of
most simulations of two-phase systems.

Monte Carlo �MC� simulations were performed in the
NVT ensemble. Each cycle consisted of N randomly selected
moves with fixed probabilities. The moves were �1� displace-
ment of the center of mass of a random molecule, �2� rota-
tion of a randomly selected molecule around its center of
mass, and �3� regrowth of part of a random molecule using
the configurational-bias scheme �40� in the case of flexible
molecules. The relative probabilities for the different moves
are given in Table I for each studied molecule. The second
contribution of the LRCs to the configurational energy of Eq.
�42� consisted in a double integral which contains a series of
density differences that render this part cumbersome to cal-
culate. Concerning this term, it was shown �35� that it rep-
resented only a minor contribution of the total long-range
energy. As a consequence, only the first part of the long-
range correction energy was included here in the total con-
figurational energy. The total long-range correction energy
ULRC was calculated by summing up all the local contribu-
tions of each slab and was calculated after each move of
molecular position. The ULRC term was then added to the
total energy of the system to be used in the Metropolis
scheme.

The initial configuration was built by placing N molecules
on the nodes of a fcc lattice included in a cubic box with
random orientations. MC simulations in the NpT ensemble
were performed on this bulk fluid configuration. The dimen-
sions of the resulting configurations were increased along the
z axis by placing two empty cells on both sides of the bulk
liquid box. A typical MC run consisted of 100 000 cycles for
equilibration and 200 000 cycles for the production phase.
The surface tension was calculated every ten cycles. The
statistical errors for these properties were estimated using ten
block averages of 2000 configurations. As the geometry of
the system shows a heterogeneity along the axis normal to
the interface �z axis�, a dependence of the thermodynamic
properties is expected only in this direction. We calculated
the local surface tension and its long-range correction as a
function of zk by splitting the cell into slabs of width 
z.

The n-pentane molecule was modeled using the aniso-
tropic united atom �AUA-4� force field �41�. Within this
model, the force centers are located on the external bisector
of the angle formed by neighboring bonds. The intermolecu-
lar interactions were modeled using the 6-12 Lennard-Jones
potential. We used the same potential energy to describe the
nonbonded interactions between atoms separated by more
than three bonds in n-pentane. The unlike interatomic inter-

actions were calculated using the Lorentz-Berthelot combin-
ing rules, i.e., a geometric combining rule for the energy and
an arithmetic combining rule for the atomic size. In the case
of n-pentane, the bond angle interactions were calculated us-
ing Ubend=kbend /2�cos���−cos��0�� and the torsion potential
was given by Utors=�n=0

8 an cosn���. The different parameters
of the AUA-4 model are given in Table II. The CO2 molecule
was described using the rigid version of the Harris and Yung
potential �42� with three Lennard-Jones centers and three
electrostatic charges �see Table III�. The carbon-oxygen bond
lengths were fixed and equal to 1.149 Å and the carbon di-
oxide molecule had a fixed OCO angle of 180°. The water
molecule was modeled using the TIP4P-Ew rigid model �43�,

TABLE II. n-pentane �41� potential parameters.

n-pentane �AUA4 model�
� �Å� � �K� 
 �Å�

CH2 3.4612 86.29 0.38405

CH3 3.6072 120.15 0.21584

C-C distance �Å� 1.535

Bending

C-CH2-C �0 �deg� 114

kbend �K� 74900

Torsion

C-CH2-CH2-C a0 �K� 1001.35

a1 �K� 2129.52

a2 �K� −303.06

a3 �K� −3612.27

a4 �K� 2226.71

a5 �K� 1965.93

a6 �K� −4489.34

a7 �K� −1736.22

a8 �K� 2817.37

TABLE III. CO2 �42� and water �43� potential parameters.

CO2

� �Å� � �K� Charge �e�

C 2.757 28.129 +0.6512

O 3.033 80.507 −0.3256

C=0 distance �Å� 1.149

O=C=0 angle �deg� 180

H2O �TIP4P-Ew model�
� �Å� � �K� Charge �e�

O 3.16435 81.9 0

H 0 0 0.52422

M 0 0 −1.04844

OH distance �Å� 0.9572

H-O-H angle �deg� 104.52

OM distance �Å� 0.1250
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where the oxygen site contributes only to the LJ term and
carries no charge. Ew indicates that the parameters of this
model have been established from simulations using the
Ewald summation method. This model introduces a bare
charge at a new site M, located on the bisector of the HOH
bond angle �Table III�. This model is a recent reparametriza-
tion to take into account the use of the long-range interac-
tions calculated from the Ewald method. Within the CO2
model, the cross interactions were calculated using the
Lorentz-Berthelot rules.

A relatively small cutoff of 12 Å was used in order to
bring the two-phase simulations in line with those carried out
with the Gibbs ensemble Monte Carlo �GEMC� method
�44–46�. In this case, the use of the long-range corrections to
be added to the interfacial properties is meaningful. For sys-
tems with electrostatic interactions calculated using the
Ewald technique, we took hx

max=hy
max=8 and hz

max=35 to re-
spect both the ratio of the box dimensions and the conver-
gence of the reciprocal space contribution of the surface ten-
sion. Concerning the computational CPU time required for
the calculation of the surface tension, the TA and KBZ meth-
ods are 1.7 and 1.4 times faster than the IK method, respec-
tively.

Using the test-area method, the calculation of the surface
tension was carried out in the direct and reverse directions.
The calculation of the direct direction involves an increase of
the surface area as A�1�=A�0�+�A�, whereas a decrease of the
surface area was performed in the reverse path as A�−1�

=A�0�−�A�. �A� is equal to Lx
�0�Ly

�0�� where � is fixed to 5
�10−4. The surface tension value was averaged over the two
directions as ��D−�R� /2 where �D and �R are expressed as

−
kBT

2�A�

ln�exp�−
�U�0→1�

kBT
	


0

and

−
kBT

2�A�

ln�exp�−
�U�0→−1�

kBT
	


0
,

respectively. The perturbation of the box dimensions was
performed over the configurations of the reference state and
led to virtual configurations of the perturbed state. The en-
semble average was carried out over the reference system
and the virtual configurations of the perturbed system did not
participate in the Markov chain of states.

We compared the different operational expressions for the
surface tension of three systems: n-pentane at T=300 K,
carbon dioxide at T=228 K, and water at T=338 K. The
long-range corrections and the intrinsic part of the surface
tension are reported in Table IV for different surface tension
expressions. First, it can be seen that the different expres-
sions predict correctly the surface tension for the n-pentane
and CO2 systems with a deviation less than 10% with respect
to the experimental value. The agreement remains satisfac-
tory with the water TIP4P-Ew model even though the devia-
tion can reach 15%. The difference between the calculated
and experimental values for water must be attributed both to
the model and to the truncation procedures. The recent cal-
culations �47� of the surface tension with this TIP4P-Ew
model using MD simulations confirm this analysis.

With the KBZ method, the long-range corrections are
slightly greater than those obtained from the TA and TA2
approaches and smaller than those derived from the IK and
Buff methods. These differences are due to the fact that these
expressions are not completely equivalent and result from
different approximations. The discrepancies between the dif-
ferent ways of correcting the surface tension decrease in
magnitude with larger values of the cutoff radius �35�. The
use of a relatively small cutoff value makes essential the use
of appropriate LRC contributions within each definition of
the surface tension. The intrinsic part of the surface tension

TABLE IV. Surface tension contributions �LRC, intrinsic and total� �mN m−1� calculated from different
operational expressions in the cases of n-pentane �T=300 K�, CO2 �T=228 K�, and water �T=388 K�
systems. The surface tensions resulting from the TA, TA2, KBZ, and IK methods are calculated from Eqs.
�5�, �12�, �28�, and �31�, respectively. The operational expression using the Buff method has been given
elsewhere �2,20,35�. The experimental surface tensions are reported for comparison �n-pentane �49�, CO2

�50�, H2O �51��. The subscripts give the accuracy of the last decimal�s�, i.e., 44.06.0 means 44.0	6.0.

System �TA �TA2 �KBZ �IK �KB �Exp.

LRC contributions

n-pentane 3.1.2 3.1.2 3.3.3 3.9.3 4.9.5

CO2 2.1.1 2.1.1 2.4.1 3.0.1 3.3.3

H2O 3.0.1 3.0.1 3.8.1 4.5.1 5.3.3

Intrinsic part

n-pentane 13.21.7 13.21.7 12.01.8 12.01.8 12.01.8

CO2 13.42.3 13.42.2 12.12.3 12.12.3 12.12.3

H2O 44.06.0 44.06.0 42.96.0 42.96.0 42.96.3

Total surface tension

n-pentane 16.31.9 16.31.9 15.32.1 15.92.1 16.92.2 15.2

CO2 15.52.4 15.52.3 14.52.4 15.12.4 15.42.7 14.3

H2O 47.06.1 47.06.1 46.76.1 47.46.1 48.26.6 56.0
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calculated from the KBZ method is slightly smaller than that
calculated from the perturbation techniques and is close to
the value calculated from the mechanical approaches. We
check that the present operational expression of the surface
tension �KBZ� compares very well with the expressions
resulting from the perturbation �TA,TA2� and the mechanical
�IK,KB� routes. We also confirm that the approximations
made in the previous paper �20� concerning the absence
of correlations between the �exp�−��U� /kBT�� and
�exp�−�ULRC /kBT�� terms remains valid because the expres-
sion TA2 which requires no approximation gives the same
value as that of the TA method within the statistical fluctua-
tions.

Figure 3�a� compares the profiles of the intrinsic local
surface tension ��zk� calculated from the mechanical method
�IK� and from the virial route �KBZ� in the case of the CO2
two-phase system. In a first step, we compare the profile
resulting from the KBZ method to that calculated from the
IK method because the IK technique has been widely applied
for the calculation of the profile of the surface tension in the
literature �1,2,11,12,20,35�. The profiles resulting from the
two methods present the same features both in the vapor and
in the liquid regions. It can be seen that the region close to
the surface exhibits a negative peak on the vapor side of the
interface in the KBZ calculation. This feature has been the

subject of controversial discussions and depends on the
method used for the calculation of the pressure tensor
�11,48�. The magnitude of these peaks decreases within the
Harasima expression �13�.

This negative peak has also been observed in the profile
obtained with the TA method �20�. Figure 3�a� shows that the
local integral of the surface tension profile is constant
throughout the liquid and vapor regions, indicating that these
two phases have no contribution to the surface tension. It is
clear from the profiles that the two interfaces are well defined
and symmetric around the middle of the slab, indicating that
the contribution from both surfaces is the same. The fact that
the integral is constant in the liquid region means that this
region does not contribute to the surface tension and indi-
cates that the two interfacial regions are independent with no
interaction between them. Figure 3�b� �right axis� shows that
the integral of the surface tension tends to the same value for
the IK and KBZ methods. It has also been checked that the
surface tension calculated from the sum of the local values
�Eq. �40�� and from Eq. �28� is identical. Figure 3�b� shows
the profiles of the total surface tensions; these profiles
present the same features as the profiles of the intrinsic part.
The total surface tension calculated from the integral of the
local surface tension profile �right axis� matches very well
between the KBZ and IK methods.

Figure 4�a� shows the profiles of the total surface tensions
calculated from the perturbation approach �TA and TA2� and
the KBZ technique. We observe that the profiles cannot be
distinguished between the three methods, whereas the inte-
gral of the KBZ profile shows a surface tension value
slightly smaller than that resulting from TA and TA2 in
agreement with the values given in Table IV. Figure 4�b�
presents the profiles of the long-range corrections of � for
the different methods. The profiles differ in the magnitudes
of the positive peaks, which explains the differences between
the different tail corrections given in Table IV.

IV. CONCLUSIONS

We have established an operational expression for the lo-
cal surface tension calculated from the virial route. This ex-
pression constitutes the local version of the well-known ex-
pression of Kirkwood and Buff. Additionally, we have given
the local version of the long-range corrections of � within
this approach. We have also presented for completeness the
local version of the TA approach within the TI approach as
opposed to the TA expression calculated from the FEP for-
malism. In the case of small perturbation of the surface, the
expression for � derived from TI can be seen as an approxi-
mate expression of the original version of the TA approach.
This reformulated expression takes advantage of providing a
LRC expression for the surface tension without needing to
assume approximations about the lack of correlations be-
tween terms containing the intrinsic and LRC parts. The dif-
ferent operational expressions for the surface tension using
both the mechanical and thermodynamical routes have been
discussed as applied to the n-pentane, carbon dioxide, and
water liquid-vapor interfaces. The KBZ method produces
values in agreement with the different methods and with the

FIG. 3. Surface tension profiles calculated from MC simulations
of CO2 at T=228 K using the IK definition and the KBZ approach
�left axis� and the corresponding integral curve �right axis�. �a� In-
trinsic part and �b� total part calculated from the sum of the intrinsic
and LRC parts.
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experimental values for the studied compounds. In the case
of water, a small deviation compared to experiments has
been observed. This deviation is mainly attributed to the wa-
ter model used rather than the methodology employed. Ad-
ditionally, the KBZ method has the advantage of providing a
profile of the surface tension and of being faster than the
traditional IK method.

APPENDIX: EXPRESSION FOR THE DERIVATIVE
OF THE PARTITION FUNCTION WITH RESPECT

TO THE SURFACE AREA IN A SET
OF SCALED COORDINATES

In the case of changes of variables like those carried out
in Eqs. �18�–�20�, we propose to show that the surface ten-
sion can be written as ��U /�A�. For convenience and clarity,
let us consider a planar surface system of N particles in the
NVT statistical ensemble. The QNVT partition function is then
expressed as

QNVT =
1

�3NN!

 drN exp�−

U�rN�
kBT

	 �A1�

=
1

�3NN!

 ��J�ds�N exp�−

U�sN�
kBT

	 , �A2�

where sN is a set of coordinates scaled with the dimensions
of the simulation cell and defined by rN=LsN and �J� is the
Jacobian of the transformation of Eq. �A3�. The rN=LsN ex-
pression is equivalent to that of Eq. �20� for a system of N
particles:


 drxdrydrz =
 �J�dsxdsydsz. �A3�

The Jacobian �J� contains all the first-order derivatives of the
vector r with respect to s. For a given particle i, the Jacobian
�Ji� is written as

�Ji� = �
�rx

�sx

�rx

�sy

�rx

�sz

�ry

�sx

�ry

�sy

�ry

�sz

�rz

�sx

�rz

�sy

�rz

�sz

� = LxLyLz = V .

For N particles, the Jacobian �J� becomes equal to VN and the
QNVT partition function takes the form of the well-known
expression �52�

QNVT =
VN

�3NN!

 dsN exp�−

U�sN�
kBT

	 . �A4�

The derivative of the partition function with respect to A
leads to consideration of the following derivatives of Eq.
�A5�:

�QNVT

�A
=

NVN−1

�3NN!
� �V

�A
	
 dsN exp�−

U�sN�
kBT

	
+

VN

�3NN!

 dsN 1

kBT
� �U�sN�

�A
	exp�−

U�sN�
kBT

	 .

�A5�

Equation �A5� is related to the density number � defined by
N /V. Given that the transformation conserves the volume
and that the surface is planar, the derivative of the volume
with respect to A in Eq. �A5� is zero. The derivative of the
partition function with respect to A rewritten in the original
set of coordinates rN is then expressed by Eq. �A6� which is
strictly equivalent to Eq. �9�:

�QNVT

�A
=

1

�3NN!

 drN 1

kBT
� �U�rN�

�A
	exp�−

U�rN�
kBT

	 .

�A6�

FIG. 4. �a� Total surface tension profiles calculated from MC
simulations of CO2 at T=228 K using the TA, TA2, and KBZ
methods �left axis� and the corresponding integral curves �right
axis� and �b� LRC profiles of the surface tension calculated from the
TA, TA2, IK, and KBZ approaches.
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