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Frustration-induced magic number clusters of colloidal magnetic particles
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We report the formation of stable two-dimensional clusters consisting of long-range-interacting colloidal
particles with predefined magnetic moments. The symmetry and arrangement of the particles within the cluster
are imposed by the magnetic frustration. By satistying the criteria of stability, a series of magic number clusters

is formed. The magic clusters are close packed and have compensating magnetic moments and chirality. Thus,
the system can be regarded as a classical mesoscopic model for spin arrangements in two-dimensional trian-
gular antiferromagnets, although the exact nature of the interactions between the macroscopic magnetic

moments is different.
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I. INTRODUCTION

Systems of interacting colloidal particles have proven to
be excellent model systems for many processes on the mi-
croscopic scale [1-4]. Up to now most experiments on col-
loids were performed using hard spheres [1,5], particles re-
lying on properties provided by electrical charges [6], or
particles with magnetic moments, which depend on the ap-
plication of an external magnetic field [4]. A variety of stud-
ies was dedicated to obtain different types of crystal stoichi-
ometries by tuning the interaction potential between the
colloidal particles in an ensemble [2,7]. In this way, the mod-
eling of the properties of the ionic crystal was demonstrated
and the possible stabilization of new unknown phases was
predicted [8].

There is a great diversity of phenomena governed by or-
dering of magnetic moments in crystals [9—14], which also
need a convenient macroscopic model. For example, the
magnetic arrangements have an essential influence on the
physical properties of stacked triangular antiferromagnets
[14,15] or high-T,. superconductors [16], where the interac-
tion between spins defines the nature of the condensed phase.
In order to study these phenomena with a colloidal model
system, particles with fixed magnetic moments are required.
The magnetic properties of many solid phases are deter-
mined by the nearest neighbor (NN) interactions of the elec-
tron’s spins pinned to the lattice geometry, which is deter-
mined by the positions of the nuclei. In many such systems a
long-range-ordered phase can exist based on these interac-
tions; for example, ferromagnetic ordering due to exchange
interactions or antiferromagnetic phases due to dipolar inter-
actions. Other lattice geometries do not allow the formation
of such a long-range-ordered phase based on NN interac-
tions. The most basic example of such a system is given
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by spins on a triangular lattice, where every plaquette is geo-
metrically frustrated. In this configuration the system “looks
for” compromise solutions to minimize the total energy, and
long-range interactions become important. Nowadays the ar-
rangement of the magnetic moments in crystals is mainly
studied by methods that are related to reciprocal space, e.g.,
neutron scattering [17,18], or inferred from spectroscopic
Mossbauer measurements [19,20] or macroscopic quantities
like the heat capacity [21]. Theoretical modeling is usually
done based on simplifying assumptions, for example restrict-
ing free parameters to the directions of the spins. An appro-
priate macroscopic system for the modeling of the magnetic
interaction would help to better understand such complex
fundamental phenomena as antiferromagnetic ordering, mag-
netic spin frustration [10-12], etc. In this regard, magnetic
colloidal particles combine many advantages to make them
an ideal model system for these purposes. The macroscopic
size of the colloids and the ability to tune their interactions
easily give the possibility to directly observe the processes of
magnetic crystal nucleation and growth, and thus visualize
the magnetic interaction within the crystal.

To our knowledge, this work is the first attempt to form a
colloidal crystal stabilized only by the magnetic interaction
between particles. We used colloids with predefined mag-
netic moments, which can freely orient in space and there-
fore they can be thought of as models for particles with a
spin. By means of video microscopy, the organization of the
magnetic particles in a series of purely two-dimensional
magic number clusters [22,23] with certain numbers of par-
ticles was visualized. The magnetic moments associated with
the particles in the stable cluster were found to lie strictly in
plane. The ground state configuration of “magic number”
clusters is achieved following the rules of compensation of
the total magnetic moment and satisfying the basic principles
of the local symmetry. The typical interaction energies be-
tween particles are on the same order as the thermal energy
kgT, which allows the particles to explore the phase space by
thermally activated motion until the stable configuration is
found.
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FIG. 1. (Color online) Magnetic moment distribution and mag-
netic characterization of a particle array covered with a Co/Pt
multilayer. (a) Schematic sketch of the spatial distribution of the
magnetic moments forming a “macrospin.” The arrows show the
direction of the axis of magnetic anisotropy, which remains perpen-
dicular to the surface of the Co/Pt film following the curvature of
particles. The spherical shape of the colloids leads to a reduction in
Co and Pt thickness along the surface. (b) Hysteresis loop, mea-
sured by superconducting quantum interference device (SQUID)
magnetometry. Coercive field is equal to 0.1 T. Insets: (I) Magnetic
Force Microscopy (MFM) image of magnetic caps with a diameter
of 475 pm in the demagnetized state, revealing a multidomain
behavior; (IT) MFM image of the caps in the remanent state displays
single-domain behavior. (c) Sketch of the interacting magnetic
dipoles.

II. FORMATION OF COLLOIDAL MAGNETIC CLUSTERS

A. Details of experiment

In order to serve as a valid model system, the particles
have to exhibit monodisperse magnetic properties. The mag-
netic properties of the colloids are provided by evaporation
of Co/Pt multilayer films with out-of-plane magnetic aniso-
tropy on top of a densely packed monolayer of silica par-
ticles [24,25] with a diameter d=4.75 um, as reported in
[26]. In our experiments we use particles with natural silanol
(Si-OH) surface groups, which negatively charge the spheres
and prevent their undesirable aggregation.

Figure 1 shows a summary of the magnetic properties of
the capped colloids. The multilayer of Co/Pt exhibits a mag-
netic anisotropy pointing perpendicular to the surface of the
film [27], following the spherical shape of the particle as
illustrated in Fig. 1(a). Due to the curved surface of the par-
ticle, the center of mass of the magnetic cap is shifted from
the geometrical center of the sphere. The hysteresis loop for
such a particle array, measured in the out-of-plane field ge-
ometry, is presented in Fig. 1(b). In the remanent state the
nonzero magnetic moment, directed along the symmetry axis
of the cap, is associated with a single-domain particle [28].
This macroscopic magnetic moment forms the so-called
macrospin of the particle. A slight reduction in the remanent
magnetization is obtained due to the spatial variation of the
easy axis of magnetization across the cap surface [29] [Figs.
1(a) and 1(b)].

Covering of the transparent silica particles by a thin metal
film leads to an optical inhomogeneity of the spheres, which
can be used for the visualization of the orientations of mag-
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FIG. 2. (Color online) Growth process of magnetic clusters. The
pictures on the right display the correspondent schematic view of
the ordering of the macrospins on a lattice. Yellow arrows represent
the orientations of the magnetic moments that deviate from the
preferred directions. (a) The initial nucleus contains three particles.
The arrangement of the magnetic moments of particles corresponds
to the minimum of energy. (b) depicts the lowest-energy arrange-
ment of six particles. The top particle has its cap tilted slightly out
of plane. Black arrows point to the particles with divergent orien-
tation of the macrospins. (c) Visualization of the orientations of the
magnetic caps in the case of a seven-particle structure. (d) A struc-
ture consisting of 14 particles. 12 particles in the cluster are close
packed and all magnetic moments lie strictly in two dimensions.
The additional two particles (on the lower right side) do not affect
the formed magnetic arrangement.

netic moments in the clusters. The process of magnetic clus-
ter formation was directly imaged by means of video micros-
copy (Fig. 2). A suspension of capped colloids, prepared by
mixing the particles with distilled water, was confined be-
tween two glass plates coated by layers of SU-8 (permanent
epoxy negative resist), which prevents the particles from get-
ting stuck due to surface charge effects. Optical laser twee-
zers [30] (wavelength A\=1064 nm) were used for manipu-
lating individual particles. The growth of the cluster was
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carried out by gradually adding particles from a reservoir one
by one to an initial nucleus.

The colloidal particles experience repulsive hard core in-
teractions and the dipole-dipole interactions of their mag-
netic moments [Fig. 1(c)]. The interaction energy of two
magnetic dipoles is given by

E= ﬂ% (cos @—3 cos O cos ')
4 1,
a
I—E[COS ¢o+3cos(20- )], (1)

where m; and m, are the magnetic moments (|m,|=|m,|
=m), r|, is the distance between the centers of particles, ¢ is
the angle between the directions of the magnetic moments
(m,-my=m? cos @), 6 and @' are the angles between m, and
r (m;-r=mrcos 6) and m, and r (m,-r=m rcos '), re-
spectively [Fig. 1(c)], r is the unit vector connecting the
particles, and the angles ¢ and 6 are linked via ¢=6+6".
Note that the prefactor a is equal approximately to 3.5kzT.

The energy calculations given in this paper describe the
system qualitatively for the case when there is no shift of the
center of mass of the magnetic cap with respect to the geo-
metrical center of the particle. This shift, which of course
exists in real systems, leads to a change of the ground state
energy. Nevertheless, the symmetries of all stable configura-
tions of the magnetic moments stay unchanged.

Because the uncoated part of every sphere carries surface
charge, colloidal particles can experience specific (asymmet-
ric) electrostatic repulsion. In order to estimate the influence
of this interaction on clustering, in some experiments an ad-
ditional layer of silicon dioxide was sputtered on top of the
Co/Pt caps, making the surface of the sphere symmetrically
charged. However, this did not affect the process of magnetic
cluster formation, i.e., it did not cause changes of lattice
geometry or strong repulsion between particles. In addition
to this, the ion concentration in the sample was not con-
trolled during experiments, resulting in a very short Debye
screening length. Therefore, we do not take into account the
electrostatic interactions in the considered system, because
they do not influence the arrangement of the magnetic
moments.

Another type of interaction that might influence cluster
formation is the van der Waals interaction, usually resulting
in particle adhesion [31]. As long as particles are able to
freely rotate with respect to each other in our experiment,
and we detect it in our measurements, the van der Waals
forces can also be neglected in the current context.

B. Growth of clusters

Consider the addition of one magnetic particle to a colloi-
dal cluster consisting of n spheres. In our definition a particle
becomes a constituent of the cluster when it touches at least
two other particles in the group. The new contact can be
considered as stable if the total sum of the pair dipolar inter-
actions between the new particle and each of the n colloidal
particles is negative; otherwise the contact is not stable, and
the new particle is rejected. The magnetic moment of the
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cluster changes the orientation of the new macrospin in order
to find the new equilibrium state of the system. The new
particle itself, in turn, has an influence on the macrospins of
the cluster.

The procedure for the creation of a magnetic cluster from
a small nucleus is presented in Fig. 2. The images on the left
of Fig. 2 are photos of the clusters taken during growth. The
pictures on the right represent the corresponding schematic
view of the ordering of the macrospins pinned to the lattice:
The arrows designated I, II, and III (black, red, and blue)
represent the directions of magnetic moments predicted by
the symmetry of the system (see below), and the yellow ar-
rows indicate the deviations of the magnetic moments from
the preferred directions, as observed experimentally. A short
yellow arrow indicates that the magnetic moment has an out-
of-plane component. The initial nucleus consists of three par-
ticles and has the shape of an equilateral triangle, as illus-
trated in Fig. 2(a), on the left. It can be seen that all magnetic
moments strictly lie in the plane parallel to the sample sur-
face. All the macrospins [on the right of Fig. 2(a)] form
angles ¢=2m/3 with respect to each other. If the angles in
the system are counted counterclockwise, the values of # and
0" are given by 6,=60,=0;=7/6 and 0);=6,=6;=—m/2, re-
spectively. A structure containing six particles is shown in
Fig. 2(b). We can see that the three colloidal particles at the
corners are positioned in such a way that the rotational con-
figurations are most likely to form. The magnetic configura-
tion of the initial triangle (formed by the central particles) is
not affected by the addition of the three extra macrospins.
The angles between the magnetic moments of additional par-
ticles and their respective neighbors differ from 120° [see the
fifth and sixth particles on the right of Fig. 2(b)]. The mag-
netic moment of the top particle (sixth arrow) has an out-of-
plane component, indicating that the stable configuration, in
which all magnetic moments are in one plane, is not found.
Figure 2(c) shows the situation after addition of the seventh
particle. It can be seen that the hexagonal arrangement of the
particles had to be broken in order to find an energetically
favorable state. The top particle [see the sixth arrow in the
right image of Fig. 2(c)] is shifted up and to the left com-
pared to its initial position. On the other hand, the magnetic
moment of this particle lies now in two dimensions, in con-
trast to the magnetic moment of the seventh particle, which
is turned slightly out of plane.

A magnetically compensated structure appears when a
cluster of 12 particles is formed [Fig. 2(d)]. The ordering of
all particles in the system perfectly fits the triangular packing
and all magnetic moments strictly lie in two dimensions.
Second, the whole structure has three axes of symmetry [see
Fig. 2(d) (right)]. All magnetic moments align with those
axes, forming angles ¢=27/3 with respect to each other (the
angles 6 exhibits three different values: 7/6, 57/6, and
—/2); thus only three preferred directions appear in this
cluster. These facts distinguish the system of 12 particles
from the systems imaged in Figs. 2(b) and 2(c), where not all
particles are lined up with a fixed set of axes.

C. Energy of the clusters

The behavior of the clusters leads to the conclusion that
magic clusters can be formed with three and twelve particles,
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while clusters containing six and seven (and all other num-
bers of particles between three and twelve, which are not
discussed in detail here) form less stable clusters. This as-
sumption is further supported by considering the pair inter-
action energies in these clusters. The mutual orientation
of the magnetic moments in the three-particle cluster mini-
mizes their pair interaction energies, which equal E\"=E}"
=E}'=—(1/2)a [Eq. (1)]. Therefore, this so called rotational
triangle presents a ground state configuration with total en-
ergy E™'=-(3/2)a, where the macrospins form the closed
magnetic flux. The energy gained by the formation of the
magic cluster stabilizes the particle arrangement. A similar
magnetic behavior has been found in many two-dimensional
triangular spin systems, where the ground state of the whole
plaquette is reached by minimizing the energy of each sepa-
rated fragment (the “rule of satisfied triangles”) [32].

The orientation of the magnetic moments of the spheres
that are added to form the six-particle cluster is determined
by minimizing the energy of the whole cluster, including the
added particle, simultaneously. Therefore, a configuration
with a set of only local circulations cannot appear in the
group of six particles. The formation of such a configuration
would require energy for the rearrangement of the rotational
triangle in the center of the cluster. Moreover, further con-
siderations related to the chirality of magic clusters lead to
the conclusion that a cluster consisting of six particles cannot
be stabilized by only rotational configurations (see discus-
sion of the 12-particle cluster below). Instead of this, three
pair interactions characterized by the divergent orientations
of the macrospins with 6,=6,=6;=5m/6 can be formed at
the corners of the structure [see the arrows pointing to two of
them in Fig. 2(b)]. Because each of the divergent pair inter-
actions increases the total energy of the cluster by E
=(7/4)a, the ground state of the system is not reached by
such a two-dimensional arrangement of the magnetic mo-
ments. To counterbalance it, the structure finds an alternative
solution, where the final configuration contains one magnetic
cap slightly tilted out of the plane, instead of one of the
high-energy divergent contacts [see the upper particle in Fig.
2(b)]. The same issues define the behavior of the system after
addition of the seventh colloidal particle to the cluster [Fig.
2(c)]. The system reaches its energetically favorable state by
locally breaking the triangular packing. We can conclude that
the system does not approach a state in which the magnetic
interactions stabilize the spatial arrangement of the particles
in the last two cases: the violation of the hexagonal symme-
try and two-dimensional arrangement of the magnetic mo-
ments in the structure only brings the system to a state in
which at least one particle (in this arrangement the topmost)
fluctuates between two lattice sites. Such configurations are
less stable than the magic configurations, meaning that they
can be easily disturbed by the successive addition of colloi-
dal particles to the cluster.

In the case of the 12-particle cluster, three macrospins in
the center of the structure form a triangle with divergent pair
interactions (a so-called divergent triangle) [Fig. 2(d)]. The
energy can be evaluated from Eq. (1): E%V=(21/4)a. The
surrounding three particles are needed to compensate this
arrangement by pointing their magnetic moments to the cen-
ter. This divergent arrangement consisting of six particles is
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FIG. 3. (Color online) Images of magnetic clusters and sche-
matic description of their properties. (a) is an image of the magic
12-particle cluster. The rotational centers of the structure are indi-
cated by six triangles. The pink triangles display clockwise and
green ones correspond to counterclockwise circulations in the struc-
ture. (b) Arrangement of the magnetic moments in the 12-particle
cluster. Because the magnetic moments are aligned with the three
axes of symmetry, three ferromagnetic sublattices of macrospins
(four particles in each direction) can be considered in the cluster.
Triangles with opposite chirality are designated + and —. (¢) Sche-
matic image illustrating the procedure of calculation of magic num-
bers. The black triangle corresponds to the initial nucleus; branch-
ing gives the next magic cluster with 12 particles (blue color), and
so on. (d) displays a schematic view of the magic clusters. The
boundaries of each cluster are marked with corresponding colors.

not stable by itself, as can be concluded from Fig. 2(b).
Therefore, six additional particles are grouped around such a
cell. Each of them follows the rules of arrangement set by the
axes of symmetry. The presence of the additional six
particles causes each macrospin to be a part of one of the six
low-energy  rotational triangles [each with energy
E™'=—(3/2)a], which form a ring [see Fig. 3(a)] around the
high-energy divergent one [E%Y=(21/4)a]. It leads to the
stabilization of the 12-particle cluster by minimizing the
magnetic dipolar energy and to the appearance of an antifer-
romagnetic arrangement of macrospins on a triangular lat-
tice. The last statement is explained and confirmed in Fig. 3.

D. Frustrated antiferromagnet on triangular lattice

Note that the clockwise and counterclockwise circulations
of the magnetic flux in the rotational triangles are alternating
and so fully compensated [Fig. 3(a)]. The orientations of all
magnetic moments in the cluster are displayed schematically
in Fig. 3(b). We can consider three groups of colloidal par-
ticles, which are distinguished by the directions of their mag-
netic moments. It is obvious that the same number of par-
ticles is aligned with each axis, forming three noncollinear
ferromagnetic sublattices in the structure. These sublattices
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compensate each other, meaning that the magnetization of
this 12-particle configuration equals zero. The magnetic mo-
ments of each sublattice are colored individually. Thus, this
12-particle cluster presents a stable state since the total en-
ergy is minimized by the unconventional antiferromagnetic
order of the macrospins. Indeed, the specific character of this
noncollinear magnetic arrangement in the cluster is caused
by the geometry of the crystal lattice. As in two-dimensional
spin systems, the ordering of the macroscopic magnetic mo-
ments on the triangular lattice is imposed by geometric frus-
tration. It is well known that frustration-induced phases in
spin systems on a triangular lattice have a chiral degree of
freedom [12]; this means that the spin configuration of every
triangle (a combination of any three magnetic moments in-
teracting as NNs) on a lattice is degenerate (chiral degen-
eracy).

Naturally that chirality will also be peculiar to the order-
ing of the macrospins in the colloidal clusters. As shown in
Fig. 3(b), the magnetic structure of the cluster is a set of
triangles with opposite chirality, which are designated + (all
rotational triangles with a divergent one in the center) and —
[isosceles triangles with energy E'°=(3/4)a]. The necessity
of this alternation of + and — chiralities in the structure
proves, in particular, that it is impossible to form a magnetic
configuration with a set of only rotational triangles [see Fig.
2(b) discussed above].

III. MAGIC CLUSTERS

A. Scheme of building of magic clusters

During the experiment the formation of stable magic
number clusters consisting of three and twelve colloidal par-
ticles was observed. Obviously, other magic clusters consist-
ing of a larger number of particles should also exist. They
can be obtained during the process of further growth of the
existing structures. They must be distinguished by the same
threefold symmetry and by the specific magnetic arrange-
ment that minimizes the energy of the system. We propose a
scheme for building magic clusters by taking into consider-
ation the above-mentioned conditions. The procedure for ob-
taining a series of numbers which satisfy the criteria of sta-
bility is shown schematically in Fig. 3(c), where a branched
structure, obtained from the central triangle in a stepwise
manner, is presented. Each step forms the next family of
branches. This construction helps to reconstitute the real pro-
cess of cluster growth which took place in the experiment.
The basic triangle initially has no branches; therefore the
number of its knots corresponds to the magic number of the
first order (NV,=3). The second triangle, circumscribing the
initial one, already belongs to the series, which describes the
next magic number of second order. It has no branches but
only knots at this stage. The magic number of second order is
supplemented with the branches given by each knot of the
basic triangle. Therefore, the second magic number equals 12
(N,=12). All following numbers can be obtained in the same
way, and they equal 27,48,75,.... The general formula de-
scribing the stable magnetic cluster with magic number of
nth order is given by
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FIG. 4. (Color online) Magnetic arrangement of the infinite pat-
tern. (a) displays a two-dimensional close-packed pattern with the
triangular lattice formed by the magnetic colloidal particles. The
magnetic arrangement of the space-filling pattern is identical with
the ordering of the magnetic moments in a stable 12-particle cluster.
(b) Schematic sketch of the antiferromagnetic space-filling pattern
formed by the macrospins. The pink and green triangles correspond
to rotational triangles with clockwise and counterclockwise circula-
tions, respectively.

N,=32[(1 +n)n+ (n—1)n]=3n> (2)

The lines in the sketch of Fig. 3(c) (continuous and dashed)
represent the total number of nearest neighbor interactions in
every magic cluster: three in the first one, 24 in the second,
63 in the third, and so on. Our assumption [Eq. (2)] is con-
firmed by Fig. 3(d), where a schematic view of magic clus-
ters with corresponding numbers of particles 3, 12, and 27 is
shown.

The stable magic clusters have properties which distin-
guish them from others. First of all they are characterized by
the same symmetry group. All macrospins in magic clusters
lie in two dimensions and their directions follow the rules of
arrangement set by the axes of symmetry. In particular, the
three-particle cluster represents a low-energy vortexlike con-
figuration. The other 12- and 27-particle formations are sta-
bilized by six and twelve rotational triangles, respectively,
with alternating directions of the circulation of magnetic
flux. Finally, the stable magnetic configurations in clusters
are not affected by the addition of the successive particles as
shown by Figs. 2(a)-2(d).

B. Space-filling pattern

The formation of clusters with perfect hexagonal symme-
try denotes the possibility of the existence of a two-
dimensional space-filling pattern where the magnetic mo-
ments follow the same rules of arrangement as in the stable
clusters. A small fragment of such a pattern was realized
experimentally and is displayed in Fig. 4(a). The magnetic
moments of all colloids lie strictly in the plane. However, the
positions of many edge particles in the structure do not cor-
respond to the ideal order provided by hexagonal packing.
Moreover, the directions of the magnetic moments of these
external particles do not coincide with the three preferred
directions mentioned above. This misalignment is caused by
the lower number of NN in the particles at the edges of the
structure. The lower number of pair interactions that the par-
ticles experience during random growth of the pattern leads
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to the appearance of defects in the hexagonal order and so to
the deviations of the external macrospin orientations from
the preferred axes. However, further growth of the pattern
anneals the orientations and positions of the particles, gradu-
ally excluding structural defects. As illustrated in Fig. 4(b),
the space-filling pattern also reaches its ground state through
an antiferromagnetic arrangement. Nevertheless, the energy
advantage, which leads to the equivalence of the magnetic
configurations of the infinite system and of the magic num-
ber clusters, must yet be proven.

IV. CONCLUSIONS

In conclusion, the formation of a colloidal cluster stabi-
lized by magnetic interaction has been demonstrated. Stable,
two-dimensional, close-packed magnetic clusters were ob-
tained for a certain number of colloids in the cluster. It was
shown that the magnetic structure of these “magic” clusters
has zero flux and circulation of the magnetic moment. The
ground state configurations that were observed experimen-
tally match calculated structures, where the magnetic mo-
ments coincide with the centers of mass of the particles. This
shows that the structures are robust against small changes in
magnetic arrangement. Therefore the system can be used as a
model system for a large variety of magnetically interacting
particles.
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Interacting macroscopic magnetic moments, as they are
investigated here, are in many respects similar to the classi-
cal triangular antiferromagnet system, which is comprised of
three ferromagnetic interpenetrating sublattices. Such an ar-
rangement of macrospins in the system coincides with a
ground state configuration that appears in an XY-spin model
on a triangular lattice. The most extensively studied triangu-
lar antiferromagnet is of ABX; type (for example, YMnOs).
There is a large diversity of compounds with many possible
combinations of the constituent atoms. The system of inter-
acting magnetic colloidal particles studied here reconstitutes
one of the triangular antiferromagnetic isolated layers of the
magnetic ions (B) in ABX; compounds. In addition to this,
arrangements of the magnetic moments on lattices with di-
verse geometries (for example, square or rectangular), in-
cluding those that have no experimental realization yet (e.g.,
Kagomé), can also be investigated with the technique pre-
sented here. This can be done by fixing the particles to cer-
tain positions by means of external potentials. Such poten-
tials can be generated, for example, by structuring the
substrate using anisotropic etching techniques or laser
tweezers.
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