
Linear response and hydrodynamics for granular fluids

James Dufty and Aparna Baskaran
Department of Physics, University of Florida, Gainesville, Florida 32611, USA

J. Javier Brey
Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain

�Received 15 December 2006; revised manuscript received 4 February 2008; published 31 March 2008�

A formal derivation of linear hydrodynamics for a granular fluid is given. The linear response to small
spatial perturbations of a homogeneous reference state is studied in detail, using methods of nonequilibrium
statistical mechanics. A transport matrix for macroscopic excitations in the fluid is defined in terms of the
response functions. An expansion in the wave vector to second order allows identification of all phenomeno-
logical susceptibilities and transport coefficients through Navier-Stokes order in terms of appropriate time
correlation functions. The transport coefficients in this representation are the generalization to granular fluids of
the familiar Helfand and Green-Kubo relations for normal fluids. The analysis applies to a variety of collision
rules. Important differences in both the analysis and results from those for normal fluids are identified and
discussed. A scaling limit is described corresponding to the conditions under which idealized inelastic hard
sphere models can apply. Further details and interpretation are provided in the paper following this one, by
specialization to the case of smooth, inelastic hard spheres with constant coefficient of restitution.
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I. INTRODUCTION

Forty years ago, significant advances in the theory and
simulation of simple atomic fluids were stimulated by the
application of formally exact methods from nonequilibrium
statistical mechanics, namely, linear response and the “time
correlation function method” �1�. The results differ from
those of earlier studies based on approximate kinetic theories
in that they are formally exact and closely related to proper-
ties measured in experiments. Subsequently, a great deal has
been learned through the study of appropriate time correla-
tion functions by theory, simulation, and experiment �2�. In
many respects, the more recent study of granular fluids is
poised to exploit this body of work on normal fluids. Signifi-
cant advances have been made in the past decade through the
application of molecular dynamics simulations and kinetic
theory. However, although the generalization of the formal
structure for nonequilibrium statistical mechanics has been
described �3,4�, relatively few applications outside simula-
tion and kinetic theory �5–7� have been given. In particular,
relations between properties of interest and appropriate time
correlation functions appear restricted to the simplest cases
of tagged particle motion �8–11� and liquid structure �12�.

The objective of this work is to provide a first step toward
the general application of these formal methods to granular
fluids. The response of an isolated granular fluid to small
perturbations of a reference homogeneous state is studied
and used to extract formally exact expressions for the hydro-
dynamic transport coefficients up to Navier-Stokes order. It
is the analog of the study of excitations about the equilibrium
Gibbs state for normal fluids. In both cases, it is achieved by
formulating the problem of linear response at two levels, first
using phenomenological hydrodynamics and then from sta-
tistical mechanics. The response of the hydrodynamic fields
y��r , t� �local number density, granular temperature, and flow
velocity� to small initial spatial deviations �y��r ,0� from
their values in a homogeneous �formally infinite� reference

state is written in terms of a matrix of response functions
C���r ; t�

�y��r,t� =� dr�C���r − r�;t��y��r�,0� . �1�

Here and below a summation convention is used for repeated
pairs of variables, unless otherwise indicated. At the level of
the phenomenological hydrodynamics, the C���r ; t� are pa-
rametrized by the pressure, cooling rate, and the various
transport coefficients such as the viscosity and thermal con-
ductivity. At the level of statistical mechanics, the C���r ; t�
are time correlation functions for the homogeneous reference
state about which the response is measured. On the length
and time scales at which hydrodynamics is expected to be
valid, the two descriptions should coincide, allowing an
identification of the various hydrodynamic parameters in
terms of corresponding correlation functions over the homo-
geneous reference state. This first formal step gives the pre-
cise link between the macroscopic quantities of interest and
the underlying microscopic laws governing the fluid and the
reference state considered. Subsequent detailed many-body
analysis is required for explicit evaluation of these expres-
sions in terms of the state macroscopic variables �e.g., den-
sity and temperature�. Only the first step is completed here.
A kinetic theory representation of these results is described
and applied elsewhere �13�. The utility of such formal results
for both simulation and theory also has been illustrated re-
cently for granular fluids in the cases of mobility �10� and
impurity diffusion �11�.

There are two closely related logical components to this
prescription. The first is a demonstration that the statistical
mechanical representation admits a limit with the same form
as that from hydrodynamics, allowing the above identifica-
tion of the hydrodynamic parameters. The second is a proof
that the hydrodynamic description dominates all other pos-
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sible excitations in this limit. The first demonstration consti-
tutes the usual derivation of Helfand �14� and Green-Kubo
�15� time correlation function expressions for transport coef-
ficients in a normal fluid, and the presentation here is essen-
tially its extension to granular fluids. The precise character-
ization of conditions for its dominance is more difficult and
remains incomplete even for normal fluids. The qualitative
argument for normal fluids is that hydrodynamics persists on
the longest time scale since it describes the dynamics of the
densities of local conserved quantities, with relaxation times
that scale with the wavelength of the perturbation. Hence as
the system approaches homogeneity all other excitations de-
cay to zero, leaving a space and time scale on which only
hydrodynamics remains. A similar assumption is made here
for granular fluids, although there is a new time scale asso-
ciated with the rate of energy loss which does not scale with
the wavelength. Nevertheless it is possible that this faster
scale remains slow compared to the microscopic excitations.
This makes a study of the context for hydrodynamics even
more significant in the case of granular fluids.

Although the above prescription for application of linear
response to the hydrodynamics of a granular fluid is simple
to state in general, its implementation in detail requires ad-
dressing a number of differences from the case of normal
fluids. In granular fluids, there is no “approach to equilib-
rium” in the usual sense because there is no stationary equi-
librium Gibbs state, due to the continual loss of energy by
inelastic collisions. Thus Eq. �1� constitutes a reformulation
of Onsager’s observation that linear nonequilibrium regres-
sion laws can be studied via equilibrium fluctuations �16,17�.
Instead, the regression laws are those relative to a different
“universal” homogeneous state for an isolated granular fluid,
referred to as the homogeneous cooling state �HCS�. In con-
trast to the Gibbs state, it is not simply a function of the
global invariants nor is it stationary. However, all of the ho-
mogeneous state time dependence occurs through the aver-
age energy �or, equivalently, the granular temperature�. It is
universal in the sense that a wide class of homogeneous
states are observed in simulations to approach the HCS after
a few collisions within the statistical uncertainties. The ob-
jective here is to formulate the hydrodynamic response to
small spatial perturbations of this special homogeneous but
nonequilibrium, nonstationary HCS.

For linear response, it is sufficient to consider a single
Fourier mode with wave vector of magnitude k=2� /�,
where � is the wavelength of the spatial perturbation. A for-
mal generator for the dynamics of the response function is
defined and expanded for long wavelengths to second order
in k. If the coefficients in this expansion have a finite limit
for long times, they define the corresponding transport ma-
trix for the phenomenological equations. Accordingly, the
parameters �cooling rate, pressure, and seven transport coef-
ficients� are given definitions in terms of correlation func-
tions for the reference HCS in this limit. There are two tech-
nical problems with this formal procedure. First, the “long-
time” limit is complicated by the cooling dynamics of the
reference HCS. This problem is solved here by treating the
cooling as an independent degree of freedom, so that the

limit is taken with respect to only the residual time depen-
dence. The second problem is the possibility for many dif-
ferent formally equivalent forms for the correlation func-
tions, resulting from different choices for the initial
perturbation at the microscopic level. In general, the pertur-
bations excite all dynamical responses in addition to hydro-
dynamics, and the limit of small k does not cleanly separate
the two in all cases. Resulting expressions for macroscopic
parameters generally include explicit complex transients that
ultimately vanish in the long-time limit, but otherwise com-
plicate their practical utility. This problem is eliminated for
normal fluids by considering a special, physically relevant,
initial perturbation in terms of the local conserved densities
associated with the invariants of the dynamics. In this way,
only the hydrodynamic excitations occur as k→0 and the
usual “simple” Green-Kubo forms for transport coefficients
are obtained. A similar choice is identified here for the same
reasons, although the generators for the dynamics, the invari-
ants, and local densities are all different for granular fluids.

The primary results reported in this paper can be summa-
rized as follows. The pressure and the cooling rate that occur
in the linearized hydrodynamic equations are identified as
specific averages over the HCS. The transport coefficients
associated with the heat and momentum fluxes and the cool-
ing rate are identified as specific time correlation functions in
the HCS. They are given in three equivalent representations,
each of which is the tractable one for different analytical and
numerical techniques that may be used for studying them
further. They correspond to the three familiar representations
for the diffusion coefficient of an impurity in a normal fluid,

D = − lim
1

d

�

�t
�q0 · q0�t��e = − lim

1

d
�q0 · v0�t��e

= lim
1

d
�

0

t

dt��v0 · v0�t���e, �2�

where q0 and v0 are the position and velocity of the impurity,
d is the dimension of the system, the angular brackets denote
equilibrium averages, and lim means the usual thermody-
namic limit of large volume V and number of particles N,
followed by large t. The first expression is the Einstein rela-
tionship, indicating that the mean square displacement grows
linearly with time for long times. It was subsequently gener-
alized to other transport coefficients by Helfand �14�, and it
is usually referred to as the Einstein-Helfand representation.
The other two representations are the intermediate Helfand
and Green-Kubo forms, respectively and this is the nomen-
clature used for all the transport coefficients in the rest of this
paper.

The derivation of these formal results is accomplished
with few restrictions on the dynamics in phase space: deter-
ministic, Markovian, and invertible. This allows a wide
range of inelastic collision rules currently used for granular
fluids, from inelastic hard spheres to soft viscoelastic poten-
tials. However, to expose further details of the expressions
for the transport coefficients obtained here, and to provide
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insight into the content of these formal expressions in a more
tractable setting, a companion paper following this presenta-
tion is specialized to the simplest case of smooth inelastic
hard spheres with constant coefficient of restitution �18�.

The structure of the paper is as follows. In Sec. II, the
phenomenological hydrodynamic equations associated with a
granular fluid are described and its homogeneous solution
characterized. These equations are linearized about the ho-
mogeneous state and the first of two representations of the
hydrodynamic response matrix identified. Also, the technical
complications associated with the fact that the homogeneous
reference state is time dependent are circumvented by treat-
ing the HCS temperature as an independent variable, sepa-
rating the reference cooling dynamics from the residual time
dependence. Then, in Sec. III, the tools of statistical mechan-
ics �e.g., the generators of dynamics of phase functions and
distribution functions, the Liouville equation, and time cor-
relation functions� are described. The HCS phase space dis-
tribution is characterized as a special solution to the Liou-
ville equation. Next, for more general states, the HCS
cooling and residual time dependence are again distinguished
using the HCS temperature as an independent variable. The
resulting Liouville equation in this representation has the
HCS as a stationary solution. The invariants of the generator
for the Liouville dynamics are obtained from this stationary
condition. A class of homogeneous solutions to the Liouville
equation is constructed from these invariants and shown to
represent excitations that agree with those from hydrody-
namics in the long-wavelength limit. This provides the nec-
essary identification of special initial perturbations for the
linear response analysis that excite only hydrodynamics in
the long-wavelength limit and avoid the complex initial tran-
sients mentioned above.

In Sec. IV, the linear response problem is formulated in
the context of statistical mechanics and the second represen-
tation for the hydrodynamic response matrix in terms of time
correlation functions over the HCS is obtained. In Sec. V, the
long-wavelength limit of the general hydrodynamic response
function is described in order to obtain Navier-Stokes order
parameters. The primary results of the paper are presented
and discussed in Secs. VI and VII. In Sec. VIII, a dimension-
less representation of the dynamics of a granular fluid is
developed with explicit identification of the energy scales in
the problem to expose the simplifying features of hard
spheres or disks, reported in the following companion paper.
Finally, Sec. IX is used to discuss the context and scope of
this work. Due to the involved nature of the analysis done,
many details are deferred to one of six Appendixes included
in this presentation.

II. PHENOMENOLOGICAL HYDRODYNAMICS

The purpose of this section is twofold. First, the phenom-
enological hydrodynamic equations are recalled and the un-
known parameters �pressure, cooling rate, transport coeffi-
cients� are indicated. A special solution for spatially
homogeneous states is obtained, and the hydrodynamic equa-
tions are linearized about that state for small spatial pertur-
bations to describe linear response. The second purpose is to

characterize the dynamics to be expected from solutions to
these equations. As it will be shown below, two features new
to granular fluids are an inherent time dependence of the
coefficients due to the cooling of the reference state, and a
nontrivial dynamics associated with homogeneous perturba-
tions of the homogeneous state. In the subsequent sections, it
will be shown that identifying the component of linear re-
sponse associated with only spatial perturbations requires
taking explicit account of these two types of homogeneous
dynamics.

Hydrodynamics for a one-component fluid is a closed de-
scription for the dynamics in terms of the number density
n�r , t�, the energy density e�r , t�, and the momentum density
g�r , t�. The starting point for identifying such a description
for a granular fluid is the formally exact macroscopic balance
equations for these densities. However, as for normal fluids,
it is usual to replace the energy density and momentum den-
sity by the temperature T�r , t� and flow velocity U�r , t� as the
hydrodynamic variables, together with the number density.
This is accomplished through the definitions

e�r,t� �
1

2
mn�r,t�U2�r,t� + e0�n�r,t�,T�r,t�� , �3�

g�r,t� � mn�r,t�U�r,t� . �4�

Here m is the mass of a particle and e0�n ,T� is some speci-
fied function of n and T. The two most common choices are
e0�n ,T�=dnT /2, where d is the dimension of the system, or
e0�n ,T�=ee�n ,T�, the thermodynamic function for the corre-
sponding equilibrium fluid. The former is common in appli-
cations of computer simulations �note that the Boltzmann
constant has been set equal to unity�, while the latter is the
historical choice in most formulations of hydrodynamics.
Both definitions coincide for the special case of hard spheres.
For normal and also for granular fluids, the choice made
constitutes a definition of temperature for nonequilibrium
states and has no a priori thermodynamic implications. The
macroscopic balance equations in terms of n, T, and U are

Dtn + n � · U = 0, �5�

DtUi + �mn�−1 �

�rj
Pij = 0, �6�

	 �e0

�T



n

�Dt + ��T + �e0 − n	 �e0

�n



T
� � · U + Pij

�Ui

�rj

+ � · q = 0, �7�

where Dt��t+U ·� is the material derivative, � is the cool-
ing rate due to the energy loss from the interaction between
granular particles, q is the heat flux, and Pij is the pressure
tensor. These equations have the same form as those for a
normal fluid, except for the presence of the term involving
the cooling rate � in the equation for the temperature.

The above balance equations are not a closed set of equa-
tions until q, Pij, and � are specified as functionals of the
hydrodynamic fields, i.e., their space and time dependence
occurs entirely through these fields. This happens for normal
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fluids on length and time scales long compared to the mean
free path and mean free time, respectively, and similar con-
ditions may be assumed for granular fluids as well. If, fur-
thermore, the state of the system is such that the spatial
variation of the fields is smooth, then an expansion of these
functionals in gradients of the fields can be performed. The
coefficients in this expansion further simplify from fluid isot-
ropy and the results to first order in the gradients must have
the form

Pij = p�n,T��ij − ��n,T�	 �Ui

�rj
+

�Uj

�ri
−

2

d
�ij � · U


− 	�n,T��ij � · U + .. .; , �8�

q = − ��n,T� � T − 
�n,T� � n + .. .; , �9�

� = �0�n,T� + �U�n,T� � · U + �T�n,T��2T

+ �n�n,T��2n + .. .; , �10�

where �ij is the Kronecker delta symbol and the ellipses de-
note terms proportional to higher powers or higher-degree
spatial derivatives of the hydrodynamic fields than those
written explicitly. These expressions represent the “constitu-
tive equations” which, together with the macroscopic bal-
ance equations, give Navier-Stokes order hydrodynamics for
a granular fluid. Note that the cooling rate is required to
second order in the gradients, while the pressure tensor and
heat flux are required only to first order �since only their
gradients occur in the balance equations�. The pressure ten-
sor has the same form as Newton’s viscosity law for a nor-
mal fluid, while the expression for the heat flux is a gener-
alization of Fourier’s law �19,20�.

The expressions �8�–�10� include unspecified functions:
the pressure p�n ,T�, the zeroth order in the gradients cooling
rate �0�n ,T�, the transport coefficients from the cooling rate
�U�n ,T�, �T�n ,T�, �n�n ,T�, the shear viscosity ��n ,T�, the
bulk viscosity 	�n ,T�, the thermal conductivity ��n ,T�, and
a new heat flux coefficient 
�n ,T�. All of these must be
provided by experiment or by the theoretical justification of
this phenomenology.

Although the Navier-Stokes equations are based on the
small-gradient forms for the constitutive equations, it does
not mean that they are limited to systems close to a global
homogeneous state. Thus, they can be applicable locally over
domains larger than the mean free path, but the hydrody-
namic fields may still vary significantly throughout the sys-
tem. Consequently, a wide range of experimental and simu-

lation conditions for granular fluids have been well-described
by the Navier-Stokes equations �21–24�.

The spatially homogeneous solution to Eqs. �5�–�7� for an
isolated system �e.g., periodic boundary conditions� is

n�r,t� = nh, U�r,t� = Uh, T�r,t� = Th�t� , �11�

where Th�t� is the solution to


�t + �0�nh,Th�t���Th�t� = 0. �12�

All time dependence of this state occurs through the homo-
geneous temperature Th�t�, so this is referred to as the homo-
geneous cooling state �25�. Once the functional form for
�0�nh ,Th�t�� has been established, the first-order nonlinear
equation �12� can be solved by direct integration for a given
initial condition.

Now consider small spatial perturbations of the HCS, as-
suming that Th�t� is known,

y��r,t� = y�,h + �y��r,t�, 
y�� � 
n,T,U� , �13�

with �y��r , t� sufficiently small that nonlinear terms in the
hydrodynamic equations can be neglected. The resulting lin-
ear equations have coefficients independent of r so the dif-
ferential equations can be given an algebraic representation
by means of the Fourier transformation,

�ỹ��k,t� =� dr eik·r�y��r,t� . �14�

Moreover, the components of the flow velocity are separated

into a longitudinal component relative to k, �Ũ� = k̂ ·�Ũ, and

d−1 transverse components �Ũ�,i= êi ·�Ũ, where k̂�k /k
and 
êi ; i=1, . . . ,d−1� are a set of d pairwise orthogonal
unit vectors. Therefore, in the following


ỹ�� � 
ñ,T̃,Ũ�,Ũ�� , �15�

with Ũ� denoting the set of the d−1 components Ũ�,i. The
linearized hydrodynamic equations have the form


�t + Khyd�nh,Th�t�;k���ỹ�k,t� = 0, �16�

where a �d+2�-dimensional matrix notation has been intro-
duced for simplicity. The transport matrix Khyd is block di-
agonal, with decoupled longitudinal and transverse submatri-
ces,

Khyd = 	K1
hyd 0

0 K2
hyd
 , �17�

K1
hyd =�

0 0 − inhk

���0Th�
�nh

+ 	 


e0,T
− �nTh
k2 ���0Th�

�Th
+ 	 �

e0,T
− �TTh
k2 − i	�UTh +

h − e0,nnh

e0,T

k

−
ipnk

nhm
−

ipTk

nhm

1

nhm
	2�d − 1�

d
� + 	
k2� , �18�
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K2
hyd =

�

nhm
k2I . �19�

In the above expressions, I is the unit matrix of dimension
d−1, h�e0+ p, and

e0,n � 	 �e0

�n



T

, e0,T � 	 �e0

�T



n

, pn � 	 �p

�n



T

,

pT � 	 �p

�T



n

. �20�

It is understood in Eqs. �18� and �19� that all the quantities
are to be evaluated at n=nh and T=Th�t�.

There are d+2 independent fundamental solutions for
Eqs. �16� in terms of which the general solution to the initial
value problem can be expressed. These are the hydrody-
namic modes. For normal fluids, they are simply the eigen-
functions of the matrix Khyd and the hydrodynamic excita-
tions are exponential in time with the corresponding
eigenvalues. Here, the identification is somewhat less direct
due to the dependence of Khyd on Th�t�. For example, the
shear modes are proportional to

exp	− �t

dt�
��nh,Th�t���

nhm
k2
 , �21�

and their time dependence is no longer exponential in time.
The general solution to the initial value problem can be

written in terms of a matrix of response functions �Green’s
function matrix� corresponding to the representation in Eq.
�1�,

�ỹ�k,t� = C̃hyd�nh,Th�t�;k,t��ỹ�k,0� , �22�

which is determined from the linearized hydrodynamic equa-
tions,


�t + Khyd�nh,Th�t�;k��C̃hyd�nh,Th�t�;k,t� = 0, �23�

C̃��
hyd�nh,Th�0�;k,0� = ���. �24�

Conversely, if C̃hyd�nh ,Th�t� ;k , t� were given, the parameters
of the transport matrix Khyd�nh ,Th�t� ;k� could be determined
from a rearrangement of �23�,

Khyd�nh,Th�t�;k� = − 
�tC̃
hyd�nh,Th�t�;k,t��

�C̃hyd-1�nh,Th�t�;k,t� . �25�

Equations �22� and �25� suggest the formally exact approach
to be developed in the next sections to identify the param-
eters of Khyd�nh ,Th�t� ;k�. First, a general response function

C̃ is defined in place of C̃hyd for �ỹ�k , t�. Next, a transport

matrix is defined as in Eq. �25� with C̃hyd replaced by C̃. If
the phenomenological description exists on long time and
small k scales, then this expression becomes
Khyd�nh ,Th�t� ;k�, providing a formal definition of the hydro-
dynamic parameters. For normal fluids, this procedure gives
the familiar Green-Kubo expressions for the transport coef-

ficients in terms of time correlation functions in the equilib-
rium reference state �15�.

Implementation of this approach for granular fluids re-
quires addressing two new features not present for normal
fluids. The first is the time dependence of the reference state
and the consequent parametrization of Khyd�nh ,Th�t� ;k� by
the time-dependent temperature Th�t� �e.g., the transport co-
efficients are functions of Th�t��. It is useful to suppress this
dynamics by the definitions

Khyd�nh,Th�t�;k� = �Khyd�n,T;k��n=nh,T=Th�t�,

C̃hyd�nh,Th�t�;k,t� = �C̃hyd�n,T;k,t��n=nh,T=Th�t�. �26�

Thus Khyd�n ,T ;k� and C̃hyd�n ,T ;k , t� are the universal func-
tions associated with a general class of reference states, and
they reduce to the hydrodynamic response functions charac-
terizing the perturbation about the HCS only when T is re-
lated to t through the particular solution for Th�t� from �12�.
In this way, t and T are treated as independent variables so,

for example, the equation for C̃hyd�n ,T ;k , t� is not Eq. �23�
but

��t − �0�n,T�T�T + Khyd�n,T;k��C̃hyd�n,T;k,t� = 0, �27�

with the initial condition C̃��
hyd�n ,T ;k ,0�=���. The time de-

rivative �t is now at constant T. The new term with the tem-
perature derivative in Eq. �27� is the generator for the dy-
namics of Th�t� in the sense that, for any arbitrary function
X�T�,

X�Th�t;T�� = exp�− t�0�nh,T�T�T�X�T� , �28�

where Th�t ;T� is the solution to Eq. �12� with Th�0�=T �the
proof is given in Appendix A�. Equation �27� now has time-
independent coefficients, but at the price of introducing a
new independent variable T and a new generator for the dy-
namics. Still, it is most convenient to work with the generic

forms Khyd�n ,T ;k� and C̃hyd�n ,T ;k , t� and the counterpart of
Eq. �25�,

Khyd�n,T;k� = − 
��t − �0�n,T�T�T�C̃hyd�n,T;k,t��C̃hyd−1

��n,T;k,t� . �29�

The above procedure is adopted at the level of statistical
mechanics in the next section as well, to distinguish the time
dependence of the reference state from all residual time de-
pendence.

The second new feature is the existence of a nonzero gen-
erator for homogeneous �zero-wave-vector� dynamics, i.e.,
Khyd�n ,T ;0��0,

K1
hyd�n,T;0� =�

0 0 0

���0T�
�n

���0T�
�T

0

0 0 0
�, K2

hyd = 0,

�30�

and consequently C̃��
hyd�n ,T ;0 , t����� �see Appendix A�:
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C̃hyd�n,T;0,t� = 	C̃1
hyd 0

0 I

 , �31�

where

C̃1
hyd�n,T;0,t� =�

1 0 0

	 �T

�n



T�−t;T�
	 �T

�T�− t;T�
n

0

0 0 1
�

�32�

and I is again the unit matrix of dimension d−1. The inter-
pretation of the above result is clear when evaluated at n
=nh, T=Th�t�, where the nontrivial matrix elements become

C̃21
hyd�nh,Th�t�;0,t� = 	 �Th�t�

�nh



Th�0�
,

C̃22
hyd�nh,Th�t�;0,t� = 	 �Th�t�

�Th�0�
nh

. �33�

This is just the linear response of the solution to Eq. �12� due
to changes in the initial conditions. It is the additional dy-
namics of the temperature beyond that of Th�t�, due to initial
homogeneous density and temperature perturbations, as the
system attempts to approach a new HCS. It is a hydrody-
namic excitation, and it is expected to be distinct from the
rapid homogeneous relaxation of other microscopic modes
on a much shorter time scale outside the scope of hydrody-
namics. Hence for granular fluids the hydrodynamic modes
cannot be identified simply as those that vanish for k→0, as
for a normal fluid. Instead, they are identified as those modes
whose homogeneous dynamics becomes that of Eq. �31� for
k→0. Their identification at the level of statistical mechanics
is a necessary first step before the linear response analysis
can be carried out. This is done in the next section.

III. STATISTICAL MECHANICS

In this section, tools are developed to formulate the linear
response of the fluid at the microscopic level. First, the dy-
namics of observables �phase functions� and states �phase
space densities� is described. The equation for the states is
the granular Liouville equation. A special solution to the
Liouville equation corresponding to the macroscopic HCS of
the previous section is characterized. The Liouville equation
for general states is then rewritten to distinguish HCS cool-
ing from all residual dynamics. In this representation, the
HCS is a stationary state. The invariants of the associated
generator for the Liouville equation are identified, and a spe-
cial class of homogeneous solutions is constructed from
them. Finally, it is shown that these solutions correspond to
the hydrodynamic homogeneous response �31� and �32�, i.e.,
the long-wavelength hydrodynamic excitations observed at
the microscopic level of the Liouville equation. These pro-
vide the necessary ingredients to formulate the appropriate
linear response problem and to identify the corresponding

formally exact response functions C̃���n ,T ;k , t� in Sec. IV.

Consider a volume V enclosing N particles that interact
and lose energy as a result of this interaction. Also suppose
that the interactions are specified in such a way that if the
positions and velocities of each of the particles are given at a
time t0, then there exists a well-defined trajectory for the
evolution of the system for all times both earlier and later
than t0. The microscopic initial state of the system is entirely
determined by the positions and velocities of all particles,
denoted by a point in a 2dN-dimensional phase space �
�
qr ,vr ; r=1, . . . ,N�. The state of the system at a later
time t is completely characterized by the positions and ve-
locities of all particles at that time �t�
qr�t� ,vr�t� ; r
=1, . . . ,N�. In summary, the dynamics is Markovian and in-
vertible.

The statistical mechanics for this system is comprised of
the dynamics just described, a macrostate specified in terms
of a probability density 
���, and a set of observables �mea-
surables�. The expectation value for an observable A at time
t�0, given a state 
��� at t=0, is defined by

�A�t�;0� � � d� 
���A��t� . �34�

The notation A��t� indicates the function of a given phase
point shifted forward in time along a trajectory. Equivalently,
this can be considered as a function of the initial phase point
and the time, A�� , t�. This second representation allows the
introduction of a generator L for the time dependence defined
by

�A�t�;0� =� d� 
���etLA��� , �35�

where the explicit form of L is determined by the specific
rule chosen for the interactions among the particles. This is
left unspecified at the moment. Due to the assumption of
invertibility made above, the dynamics can be transferred
from the observable A��� to the state 
���, by defining an

adjoint generator L̄,

� d� 
���etLA��� � � d��e−tL̄
����A���

� � d� 
��,t�A��� . �36�

The form generated by L̄ is referred to as Liouville dynam-
ics. This equivalence of observable and state dynamics is
expressed in the above notation as

�A�t�;0� = �A;t� . �37�

In summary, the dynamics of phase functions is governed by
an equation of the form

��t − L�A��,t� = 0, �38�

and that of the probability distribution in phase space by a
Liouville equation

��t + L̄�
��,t� = 0, �39�

where L and L̄ are time-independent operators.
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Time correlation functions are defined in a similar way:

CAB�t� � �A�t�B�0�;0� � � d� 
���A��t�B��� . �40�

In terms of the generators introduced above, the correlation
functions can be written

CAB�t� =� d� 
����etLA����B��� , �41�

or, equivalently,

CAB�t� =� d� A���e−tL̄�
���B���� . �42�

Further comment on these generators and some examples
are given in Appendix B.

A. Homogeneous reference state

In contrast to normal fluids, the average energy of the
system decreases with time due to the nonconservative inter-
actions among the particles,

�t�E;t� = �LE;t� � 0, �43�

where E��� is the phase function corresponding to the total
energy and the second equality corresponds to the elastic
limit. This loss of energy is a primary characteristic of granu-
lar fluids. It is convenient to introduce a granular temperature
instead of the average energy in the same way as is done in
�3� for the phenomenological equations and to characterize
this energy loss as a “cooling” of the granular temperature.
The temperature definition for a homogeneous state then is

e0�n,T�t�� �
1

V
�E;t� −

1

2
mnU2, �44�

identified through the energy in the local rest frame, and Eq.
�43� becomes

�tT�t� = − ��t�T�t� , �45�

where the “cooling rate” is identified as

��t� = −
1

VT
	 �T

�e0



n

�LE;t� � 0. �46�

The last inequality requires the physically relevant condition
that e0�n ,T� is an increasing function of T. This shows that
there is no approach to equilibrium for a granular fluid, ex-
cept in the elastic collision limit where ��t�=0.

Consider first spatially homogeneous states. For normal
fluids there is a rapid velocity relaxation, on the time scale of
a few collisions per particle, after which the system is close
to the Gibbs state. A similar behavior can be expected for a
granular fluid, where the velocity relaxation leads to an
analogous “universal” state which, however, is not station-
ary. Instead, universality suggests that its time dependence
should not depend on the initial contitions but rather only
through the global cooling temperature Th�t�. Computer
simulations support the existence of such a state �26�, called

the homogeneous cooling state in the following. It is the
statistical ensemble underlying the macroscopic HCS of the
previous section. Accordingly, the probability density for the
HCS has the form �3,4�


h��,t� = 
h��;nh,Th�t�,Uh� , �47�

where nh is the constant density, Th�t� the decreasing tem-
perature, and Uh the uniform velocity flow. It follows that
�h�t�=�0�nh ,Th�t�� is a function of time only through the
temperature as well

�0�n,T� � −
1

VT
	 �T

�e0



n
� d� 
h��;n,T�LE��� . �48�

Substitution of this form into the Liouville equation gives the
functional form of 
h�� ;n ,T ,U�,

LT
h��;n,T,U� = 0, �49�

with the definition

LT � − �0�n,T�T�T + L̄ . �50�

The time derivative has been evaluated using �45� for the
HCS. Equations �48� and �49� constitute a pair of time-
independent equations to determine both 
h�� ;n ,T ,U� and
�0�n ,T�. Once the latter is known, Th�t� is determined from
the solution to Eq. �45�,which becomes

�tTh�t� = − �0�nh,Th�t��Th�t� . �51�

Finally, 
h�� ;n ,T ,U� is also evaluated at n=nh, T=Th�t�,
and U=Uh.

These results illustrate the leading nontrivial application
of statistical mechanics to the derivation of a macroscopic
dynamics: Eq. �51� is the long-wavelength hydrodynamics
and its only parameter, �0�nh ,Th�t��, is now given a precise
and formally exact definition, Eq. �48�, from which to deter-
mine its density and temperature dependence.

It is easily verified that the equilibrium probability densi-
ties for normal fluids �e.g., Gibbs ensembles or maximum
entropy ensembles for conserved densities� are not solutions
to Eq. �49�. Thus, the effects of inelastic collisions are two-
fold. First, they introduce an inherent time dependence due
to energy loss, through Th�t�, and second, they change the
form of the probability density in a way that cannot be sim-
ply represented by the global invariants for a normal fluid.
The HCS is defined by Eqs. �49� and �51� and no further
consideration is given to its actual construction in the rest of
this work. As noted above its existence is supported by mo-
lecular dynamics simulations that show a rapid approach to a
state whose granular temperature obeys Eq. �51�, with uni-
form density and flow velocity �26�. Mathematical proof of
existence for solutions to the Liouville equation for any non-
equilibrium state is rare. Here we assume that such a solution
exists and use only those properties that are implied by Eq.
�49�. In the weak sense of observables calculated from this
solution, generally much less detail is required �e.g., only the
reduced distributions�. This state is the reference state in
terms of which the linear response properties are determined
in the next sections.
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B. Stationary representation and Invariants

Consider an arbitrary state 
�� , t�, not necessarily homo-
geneous. There is a unique HCS state associated with it,
determined by its initial total energy, particle number, and
momentum, and consequently a corresponding function
Th�t�. From a purely formal point of view, the time depen-
dence can be decomposed into a part represented by Th�t�
and a residual time dependence


��;t� = 
��;nh,Th�t�,Uh;t� = �
��;n,T,U;t��n=nh,T=Th�t�,U=Uh
.

�52�

The Liouville equation for 
�� ;n ,T ,U ; t� becomes

��t + LT�
��;n,T,U;t� = 0. �53�

It is again understood that t and T are now independent vari-
ables and the time derivative is taken at constant T. The new
generator for the dynamics LT is given by Eq. �50�, and
includes the effect of the homogeneous cooling through the
scaling operator −�0�n ,T�T�T. A primary motivation for this
representation is the observation that the HCS 
h�� ;n ,T ,U�
is a stationary solution to this Liouville equation, as shown
by Eq. �49�. Consequently, this will be referred to as the
stationary representation. It is the most suitable one for
studying excitations about the HCS and is the one used in the
rest of this presentation.

For a normal fluid, the stationary solutions to the Liou-
ville equation are functions of the global invariants. Con-
versely, these solutions can be viewed as generators for the
invariants by suitable differentiation with respect to the en-
semble parameters. The identification of the invariants for
the granular fluid can be accomplished in the same way. To
see this, differentiate the stationary condition �49� with re-
spect to the hydrodynamic fields �11�,

�

�y�

LT
h��;n,T,U� = 0. �54�

More explictly this is

LT����;n,T,U� = ����;n,T,U�K��
hyd�n,T;0� , �55�

where

����;n,T,U� � 	 �
h��;n,T,U�
�y�




y�;����

, �56�

and K��
hyd�n ,T ;0� is the zero-wave-vector hydrodynamic

transport matrix given by �30�, now with the cooling rate �0
given by �48�. The functions �� are a set of d+2 phase space
functions that define a subspace which is left invariant under
the dynamics generated by LT,

e−LTt����;n,T,U� = ����;n,T,U�C̃��
hyd�n,T;0,t� . �57�

Here C̃��
hyd�n ,T ;0 , t� is the zero-wave-vector hydrodynamic

response matrix of Eq. �31�. This result follows directly from
�55� and is proved in Appendix C. For this reason, the ��

will be referred to as invariants.
It is significant that the Liouville dynamics on the left side

of �57� becomes precisely the long-wavelength hydrodynam-

ics in the coefficients of the right side. This can be inter-
preted further by considering an initial state for the Liouville
equation of the form


��;0� = 
h��;n,T,U� + ����;n,T,U��y��0� . �58�

This corresponds to a transformation of the HCS state by
small homogeneous perturbations 
h�� ;n ,T ,U�→
h�� ;n
+�n ,T+�T ,U+�U�. The corresponding solution to the
Liouville equation is


��,t� = e−LTt�
h��;n,T,U� + ����;n,T,U��y��0��

= 
h��;n,T,U� + ����;n,T,U��y��t� . �59�

where

�y��t� = C̃��
hyd�n,T;0,t��y��0� . �60�

The special choice of the �� for initial perturbations is seen
to excite only hydrodynamic modes, and no other micro-
scopic homogeneous excitations. In this sense, the
���� ;n ,T ,U� can be considered the microscopic hydrody-
namic modes in the long-wavelength limit. For a normal
fluid, they become functions of the global invariants and
therefore time independent, which are indeed the hydrody-
namic excitations at k=0 in that case. For a granular fluid, as
discussed in the previous section, there is a nontrivial dy-
namics even at k=0. The analogy can be made more direct
by rewriting Eq. �57� in the form

U���t,T�����;n,T,U� = ����;n,T,U� , �61�

where the new matrix evolution operator U�t ,T� is defined as

U���t,T� � C̃��
hyd−1�n,T;0,t�e−LTt. �62�

The dynamics described by U�t ,T� is the Liouville dynamics,
compensated for both effects of cooling, through the genera-
tor in LT, and the dynamics of homogeneous perturbations,

through the response function C̃hyd�n ,T ;0 , t�. Consequently,
U�t ,T� provides the dynamics associated with spatial pertur-
bations. It will be seen below that this operator defines the
time dependence of the correlation functions representing all
transport coefficients. Equation �61� shows that the functions

��� are global invariants for the generator of dynamics as-
sociated with spatial perturbations of this system and hence
give a natural reference state about which to study the relax-
ation of spatial perturbations in this system, which in turn is
the relevant object of study for the identification of hydrody-
namic transport coefficients. Note that although it is conve-
nient to keep U�0 at a formal level for the discussion here,
there is no problem in taking the limit U→0 in all the results
obtained.

IV. INITIAL PREPARATION FOR GENERAL LINEAR
RESPONSE

In this section, the response of the system to an initial
spatial perturbation in the hydrodynamic fields relative to the
HCS is studied, in order to extract the analog of the hydro-
dynamic transport matrix described on phenomenological
grounds in Eqs. �17�–�19� above. The hydrodynamic devia-
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tions 
�y��r , t��= 
�n�r , t� ,�T�r , t� ,�U�r , t�� are obtained as
phase space averages

�y��r,t� =� d��
��;t� − 
h��;n,T,U��a���;n,T;r� ,

�63�

where the phase functions 
a��� ;n ,T ;r�� are linear combi-
nations of the local number, energy, and momentum densi-
ties,


a���;n,T;r�� � �N��;r�,
1

e0,T
�E��;r�

− e0,nN��;r��,
G��;r�

nm
� . �64�

The microscopic number density N�r�, energy density E�r�,
and momentum density G�r� are given by

�N��;r�

E��;r�

G��;r�
� � �

r=1

N

��r − qr��
1

mvr
2

2
+

1

2 �
s�r

V�qrs�

mvr

� . �65�

In this expression, qrs=qr−qs and V�qrs� is the pair potential
for the conservative part of the interaction among particles,
as discussed in Appendix B.

Consider an initial inhomogeneous perturbation of the
HCS generated by the hydrodynamic fields y��r ,0� of the
form


��;0� = 
h��;n,T� +� dr ����;n,T,U;r��y��r,0� .

�66�

The phase functions 
��� characterizing this perturbation are
unspecified at this point �beyond normalization�. The formal
solution to the Liouville equation for this initial condition is


��;t� = 
h��;n,T� +� dr e−LTt����;n,T,U;r��y��r,0� .

�67�

The response in the hydrodynamic fields is therefore, in ma-
trix notation,

�y�r,t� =� dr�C�n,T;r − r�,t��y�r�,0� , �68�

with the matrix of response functions defined by

C���n,T;r − r�,t� =� d� a���;n,T;r�e−LTt����;n,T,U;r�� .

�69�

This notation expresses the translational invariance of the
reference HCS and the generator for the dynamics. This is
the general response function, representing all the possible
excitations of the many-body dynamics. The corresponding
Fourier representation is

C̃���n,T;k,t� = V−1� d� ã���;n,T;k�e−LTt�̃���;n,T,U;− k� ,

�70�

where ã� and �̃� are the Fourier transforms of the phase
functions a� and ��, respectively. The choice of �� is still
arbitrary at this point except for the conditions for normal-
ization of both 
�� ;0� and 
h�� ;n ,T�, and the representation
�63� for �y��r ,0�,

� d� ����;n,T;r� = 0,

� d� a���;n,T;r�����;n,T,U;r�� = �����r − r�� .

�71�

The second relation above shows that 
a�� and 
��� comprise
biorthogonal sets.

To identify the macroscopic hydrodynamic equations, an
equation for the response function in a form similar to �27� is
written,

��t − �0�n,T�T�T + K�n,T;k,t��C̃�n,T;k,t� = 0,

C̃���n,T;k,0� = ���, �72�

which provides a definition for the generalized transport ma-
trix,

K�n,T;k,t� = − 
��t − �0�n,T�T�T�C̃�n,T;k,t��C̃−1�n,T;k,t�

= Khyd�n,T;0� − 
��t − �0�n,T�T�T

+ Khyd�n,T;0��C̃�n,T;k,t��C̃−1�n,T;k,t� . �73�

In the second equality, the contribution from k=0 has been
extracted explicitly, anticipating the expansion in k needed to
obtain Navier-Stokes order hydrodynamics. This form also
provides a motivation for an optimal choice of the initial
perturbation. Consider the k=0 limit. In general the second
term on the right side of �73� does not vanish, but instead
represents initial transients due to nonhydrodynamic excita-
tions which ultimately must vanish at long times. Such tran-
sients occur at each order in the k expansion leading to for-
mally correct, but awkward, forms for the hydrodynamic
parameters. This complication happens for both normal and
granular fluids, and can be minimized by choosing a special
initial perturbation such that the second term of �73� is iden-
tically zero at k=0. The possibility to do so is provided by
identification of the invariants �� of the last section, which
are shown by Eq. �57� to excite only the k=0 hydrodynam-
ics. Therefore, the initial perturbation considered here is such
that
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����;n,T,U� =� dr ����;n,T,U;r� = �̃���;n,T,U;0� .

�74�

With this choice, the second term of �73� vanishes at k=0
and K�n ,T ;0 , t�=Khyd�n ,T ;0� for all times; there are no ini-
tial long-wavelength transients.

Equation �74� shows that the ���� ;r� needed for the op-
timal initial perturbation are the densities associated with the
invariants. To provide a more physical interpretation, write
these densities in terms of a functional 
lh����
y���,

����;n,T,U;r� = ��
lh����
y���
�y��r� �


y��=
n,T,U�
. �75�

Then �74� becomes

�
h��;
y���
�y��r�

=� dr��
lh����
y���
�y��r� �


y��=
n,T,U�
. �76�

Therefore, the densities are generated from a local HCS
distribution, 
lh����
y���, generalizing the HCS function to a
functional. This local HCS distribution is the analog of the
local equilibrium distribution for a normal fluid. Qualita-
tively, it corresponds to the condition that each local domain
has a HCS distribution characterized by the parameters

y��r ,0�=y�,h+�y��r ,0��. The characterization as a local
form for the HCS is provided by the conditions

�y��r,0� =� d�ˆ
lh����
y��0��� − 
h��,n,T�‰a���;
y��;r� ,

�77�

�
lh����
y����
y��=
y�,h� = 
h��;
y�,h�� , �78�

� dr1 . . .� drn� �n
lh

�y��r1� ¯ �y��rn��
y��=
y�,h�

=
�n
h��;
y�,h��
�y�,h . . . �y�,h

. �79�

The first equality states that the local state has the correct
average values for the 
a��; the others refer to the uniform
limit �similar to constructing an analytic function from all of
its derivatives at a point�. This is sufficient for the conditions
�71� and �74� to be satisfied. The response function �69� with
this choice of initial preparation will be the primary object of
study in all of the following. It now has the important prop-
erty

C̃���n,T;0,t� = C̃��
hyd�n,T;0,t� , �80�

with C̃��
hyd�n ,T ;0 , t� given by Eq. �31�. By construction, all

microscopic homogeneous transients have been eliminated.
The full hydrodynamic matrix, as given by Eqs.

�17�–�19�, follows from the formal result �73� for small k
�long wavelengths� and long times,

Khyd�n,T;k� � lim
t�t0,k�k0

K�n,T;k,t� . �81�

The characteristic time t0 and wavelength k0
−1 are expected to

be the mean free time and mean free path, respectively. Com-
parison of this expression with the form �17� provides a
“derivation” of the linear hydrodynamic equations, and also
gives the coefficients of those equations in terms of the re-
sponse functions. A detailed comparison to order k2 is the
objective of the next few sections.

The result �73� is the first of three formal representations
of the transport matrix to be obtained here. Its expansion to
order k2 leads directly to the Einstein-Helfand representation
of the transport coefficients as the long-time limit of time
derivatives of correlation functions. This is analogous to the
diffusion coefficient D represented in terms of the time de-
rivative of the mean square displacement, i.e., the first rep-
resentation in Eq. �2� �27�. However, due to the homoge-
neous state dynamics, the relevant time derivative is ��t
−�0�n ,T�T� /�T+Khyd�n ,T ;0��, so this form may not be op-
timal in practice. There is an intermediate Helfand form
which entails correlation functions with nonzero long-time
limits determining the transport coefficients. Finally, the
third equivalent representation is the Green-Kubo form in
terms of time integrals of correlation functions. These second
and third forms are given in the next section and utilized to
implement the k expansion.

V. NAVIER-STOKES HYDRODYNAMICS

The linearized Navier-Stokes equations follow from an
evaluation of the transport matrix of Eq. �73� to order k2.
This can be accomplished by a direct expansion of

C̃���n ,T ;k , t� in powers of k �27�. It is somewhat more in-
structive to proceed in a different manner, using the micro-
scopic conservation laws to expose the dominant k depen-
dence. This allows interpretation of the phase functions
occurring in the correlation functions of the final expres-
sions.

A. Consequences of conservation laws

For normal fluids, the variables ã��� ;n ,T ;k� are the Fou-
rier transforms of linear combinations of the local conserved
densities, so their time derivatives are equal to

ik · f̃��� ;n ,T ;k�, where the f̃� are the associated microscopic
fluxes. The proportionality to k of the time derivatives means
that they vanish in the long-wavelength limit, as appropriate
for a conserved density. This allows evaluation of the time
derivative in Eq. �73� and shows that the transport matrix is
of order k. Then, shifting the time dependence to the other
density in the response function and using again the conser-
vation law, the dependence through order k2 is exposed in
terms of correlation functions involving the fluxes �15�. It is
somewhat more complicated for granular fluids, although the
general idea is the same.

Consider first the time derivative occurring in Eq. �73�. In
the following, the dependence on U of �� and �� will be
omitted in the notation, since Uh will be taken to vanish from
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here on. Using the definition of the matrix of response func-
tions, Eq. �70�, it can be transformed into

	�t − �0�n,T�T
�

�T
+ Khyd�n,T;0�
C̃�n,T;k,t�

= V−1� d��	L − �0�n,T�T
�

�T
+ Khyd�n,T;0�


�ã��;n,T;k��e−LTt�̃��;n,T;− k� , �82�

where the adjoint generator L of L̄ has been introduced. As

mentioned above, for normal fluids Lã�= ik · f̃��� ;n ,T ;k�.
Here, the inelastic collisions give rise to an additional energy
loss w̃�� ;k�, which is not proportional to k and therefore
cannot be absorbed in the flux. The new relationships are
�see Appendix D�

Lã���;n,T;k� = ik · f̃���;n,T;k� − ��2
w̃��;k�

e0,T
. �83�

The detailed expressions for f̃��� ;n ,T ;k� and w̃�� ;k� are
given in Appendix D. The prefactor 1 /e0,T in the energy loss
term appears because of the definition of ã2. For ��2, the
right side gives the usual fluxes for number and momentum
density. Inclusion of the additional terms −�0�n ,T�T� /�T
+Khyd�n ,T ;0� in Eq. �82� modifies this result to

	L − �0�n,T�T
�

�T

ã���;n,T;k�

+ �
�

K��
hyd�n,T;0�ã���;n,T;k�

= ik · f̃���;n,T;k� − ��2�̃��;n,T;k� , �84�

where �̃�� ;n ,T ;k� is defined by

�̃��;n,T;k� �
1

e0,T
	w̃��;k� − V−1�

�

ã���;n,T;k�

�� d� ����;n,T�w̃��;0�
 . �85�

The first contribution in this expression is the phase function
whose average in the HCS gives the cooling rate,

1

e0,T
� d� 
h��;n,T�w̃��;0� = �0�n,T�T . �86�

The remaining terms assure that �̃�� ;n ,T ;0� is orthogonal to
the invariants, namely, that

�̃��;n,T;0� = �1 − P†�
w̃��;0�

e0,T
= − �1 − P†�

LE���
e0,T

. �87�

Here, P† is the projection operator onto the set

ã��� ;n ,T ,0��,

P†X��� = V−1ã���;n,T;0�� d� ����;n,T�X��� . �88�

To verify that P† is really a projection operator, recall
that, as a consequence of Eq. �71�, 
ã��� ;n ,T , ;0�� and

���� ;n ,T�� form a biorthogonal set,

V−1� d� ã���;n,T;0�����;n,T� = ���. �89�

Use of Eq. �84� in Eq. �82� shows that the correlation func-

tions C̃���n ,T ;k , t� obey the equations

��t − �0T
�

�T
+ Khyd�n,T;0��C̃�n,T;k,t�

= ik · D̃�n,T;k,t� − S̃�n,T;k,t� . �90�

The new correlation functions on the right-hand side,

D̃���n ,T ;k , t� and S̃���n ,T ;k , t�, are similar to C̃���n ,T ;k , t�
but with ã� replaced by f̃� and ��2�̃, respectively,

D̃���n,T;k,t� = V−1� d� f̃���;n,T;k�e−LTt�̃���;n,T;− k� ,

�91�

S̃���n,T;k,t� = ��2V−1� d� �̃��;n,T;k�e−LTt�̃���;n,T;− k� .

�92�

The utility of Eq. �90� is that its application in Eq. �73� leads
to an expression in which the transport matrix is exposed
through first order in k,

K�n,T;k,t� = Khyd�n,T;0� − �ik · D̃�n,T;k,t�

− S̃�n,T;k,t��C̃−1�n,T;k,t� . �93�

It follows from Eqs. �57� and �87� that S̃�n ,T ;0 , t�=0, so the
term between square brackets on the right-hand side of Eq.
�93� is at least of order k. However, this representation is still
not optimal since the right-hand side has the homogeneous

dynamics of C̃�n ,T ;0 , t� that should be canceled. This tech-

nical point is addressed by introducing C̃−1�n ,T ;0 , t� in the
evolution operator for the correlation functions to transform
it to U���t ,T�, introduced in Eq. �62�, i.e., defining

�̃���;n,T;k,t� � U���t,T��̃���;n,T;k� . �94�

There is no k=0 dynamics for �̃��� ;n ,T ;k , t� since

�̃��� ;n ,T ;0� is an invariant. The transport matrix �93� then
becomes

K�n,T;k,t� = Khyd�n,T;0� − �ik · D�n,T;k,t�

− S̄�n,T;k,t��C̄−1�n,T;k,t� . �95�

The correlation functions with the overbar are the same as
those with the tilde, except that now they are defined with
the dynamics of �94�,
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C̄���n,T;k,t� = V−1� d� ã���;n,T;k��̃���;n,T;− k,t� ,

�96�

D���n,T;k,t� = V−1� d� f̃���;n,T;k��̃���;n,T;− k,t� ,

�97�

S̄���n,T;k,t� = ��2V−1� d� �̃��;n,T;k��̃���;n,T;− k,t� .

�98�

Equation �95� gives the intermediate Helfand representation
referred to at the end of the last section. It has the advantage
of being expressed in terms of the appropriate dynamics of
U���t ,T�, as well as avoiding the complex time derivative of
Eq. �73�.

The equivalent Green-Kubo form is obtained by repre-
senting the correlation functions in Eq. �95� as time integrals.
This is accomplished by observing that there are “conjugate”

conservation laws associated with �̃��� ;n ,T ;k , t�. Their ex-
istence follows from the fact that the ��’s are the densities
associated with the invariants ��. The conjugate conserva-
tion laws are

�t�̃���;n,T;k,t� − ik · �̃���;n,T;k,t� = 0. �99�

The new fluxes �̃� are identified in Appendix D as

�̃���;n,T;k,t� = U���t,T��̃���;n,T;k� �100�

with

ik · �̃���;n,T;k� � − LT�̃���;n,T;k�

+ K��
hyd�n,T;0��̃���;n,T;k� .

�101�

These new conservation laws give directly

�tC̄���n,T;k,t� + ik · E���n,T;k,t� = 0, �102�

�tD���n,T;k,t� + ik · F���n,T;k,t� = 0, �103�

�tS̄���n,T;k,t� + ik · N���n,T;k,t� = 0, �104�

where

E���n,T;k,t� = V−1� d� ã���;n,T;k��̃���;n,T;− k,t� ,

�105�

F���n,T;k,t� = V−1� d� f̃���;n,T;k��̃���;n,T;− k,t� ,

�106�

N���n,T;k,t� = ��2V−1� d� �̃��;n,T;k��̃���;n,T;− k,t� .

�107�

Note that F�� is a second-rank tensor. Integrating Eqs.

�102�–�104� allows C̄�n ,T ;k , t�, D�n ,T ;k , t�, and S̄�n ,T ;k , t�
to be eliminated from Eq. �95� in favor of E, F, and N,
exposing a higher-order dependence on k,

K�n,T;k,t� = Khyd�n,T;0� − 	ik · D�n,T;k,0� − S̄�n,T;k,0�

+ ik�
0

t

dt�N�n,T;k,t�� + kk:�
0

t

dt�F�n,T;k,t��

�	I + ik · �

0

t

dt�C̄−1�n,T;k,t��E�n,T;k,t��

�C̄−1�n,T;k,t��
 . �108�

This is the Green-Kubo form for the transport matrix. An
advantage of this form is a further exposure of the explicit
dependence on k. In both Eqs. �95� and �108�, the relevant
correlation functions are seen to be those composed from the

conserved densities 
ã� , �̃��, the fluxes of the two kinds of

conservation laws 
f̃� , �̃��, and the source term for inelastic

collisions �̃. All of the time dependence is given by the evo-
lution operator U���t ,T� which is that for the N-particle mo-
tion in phase space, but compensated for all homogeneous
dynamics.

B. Green-Kubo form to order k2

Retaining only contributions to order k2 in Eq. �108� gives

K�n,T;k,t� = Khyd�n,T;0� − ik�k̂ · D�n,T;0,0� + Z̄�n,T��

+ k2���n,T� + Ȳ�n,T�� . �109�

The terms first order in k on the right-hand side of this equa-
tion provide the parameters for Euler order hydrodynamics.
At this order, the susceptibilities �pressure and pressure de-
rivatives� are defined in terms of the time-independent cor-
relation function D���n ,T ;0 ,0�, while the transport coeffi-
cient �U is given by the Green-Kubo expression

Z̄���n,T� = ��2��3T�U�n,T� , �110�

T�U�n,T� = − k̂ · 	S23
�1��n,T;0� − lim �

0

t

dt�N23�n,T;0,t��
 .

�111�

The above identification has been made by comparison of the
expression obtained here with the phenomenological trans-
port matrix in Eqs. �17�–�19�. Here and below, the notation
for Taylor series expansion of any function X�k� is
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X�k� = X�0� + ik · X�1� − kk:X�2� + . . . . �112�

At order k2, the Navier-Stokes transport coefficients in Eq.
�109� are of two types. The first type are those obtained from
��n ,T�, and they represent the dissipative contributions to
the fluxes. They correspond to the shear and bulk viscosities,
thermal conductivity, and 
 coefficient in Eq. �9�. In the
Green-Kubo form they are determined by

����n,T� = k̂k̂:	D��
�1��n,T;0� − lim �

0

t

dt�G���n,T;t��
 ,

�113�

with

G�n,T;t� = F�n,T;0,t� − D�n,T;0,0�E�n,T;0,t� .

�114�

The transport coefficients of the second kind are those fol-

lowing from Ȳ�n ,T� in Eq. �109� and represent the second-
order gradient contributions to the cooling rate, i.e., the co-
efficients �T and �n in Eq. �10�,

Ȳ���n,T� = − ��2k̂k̂:	S2�
�2��n,T;0�

− lim �
0

t

dt�H2��n,T;0,t��
 , �115�

H2��n,T;0,t� = N2�
�1��n,T;t� + T�U�n,T�k̂E3��n,T;0,t� .

�116�

The superscripts �1� and �2� denote coefficients in the expan-
sion of correlation functions in powers of ik, as indicated in
Eq. �112�.

C. Intermediate Helfand form to order k2

The intermediate Helfand form to order k2 follows from
direct expansion of Eq. �95�. The structure is the same as in
Eq. �119� as well as the contribution from D���n ,T ;0 , t�
=D���n ,T ;0 ,0�. On the other hand, the transport coefficients
are now given by

T�U�n,T� = − lim k̂ · S23
�1��n,T;t� , �117�

��n,T� = lim k̂k̂:�D�1��n,T;t� − D�n,T;0,0�C�1��n,T;t�� ,

�118�

Ȳ���n,T� = − ��2 lim�k̂k̂:S2�
�2��n,T;t� + T�U�n,T�

�k̂ · C3�
�1��n,T;t�� . �119�

The equivalence of these results with the Green-Kubo forms
given in the previous subsection can be seen by noting that
the conservation laws of Eqs. �102�–�104� to first order in k
give

E�n,T;0,t� = − �tC
�1��n,T;t�, F�n,T;0,t� = − �tD

�1��n,T;t� ,

�120�

N�n,T;0,t� = − �tS
�1��n,T;t�, N�1��n,T;t� = − �tS

�2��n,T;t� .

�121�

These allows the time integrals in the Green-Kubo expres-
sions to be performed, giving directly Eqs. �117�–�119�.

D. Einstein-Helfand form to order k2

Finally, the Einstein-Helfand form to order k2 follows
from direct expansion of Eq. �73�,

K�n,T;k,t� = K�n,T;0� + ik · K�1��n,T;t� − kk:K�2��n,T;t� ,

�122�

with

K�1��n,T;t� = − �	�t − �0�n,T�T
�

�T
+ Khyd�n,T;0�


�C̃�1��n,T;t��C̃−1�n,T;0;t� �123�

and

K�2��n,T;t� = − �	�t − �0�n,T�T
�

�T
+ Khyd�n,T;0�


�C̃�2��n,T;t� + K�1��n,T;t�C̃�1��n,T;t��
�C̃−1�n,T,0;t� . �124�

This form does not separate explicitly the contributions lead-
ing to the transport coefficients at both Euler and Navier-
Stokes orders for the cooling rate. In the previous two rep-
resentations, this was possible because the microscopic

phase function �̃�� ;n ,T ;k�, associated with collisional en-
ergy loss, appears explicitly.

E. Dynamics and projected fluxes

The Green-Kubo expressions involve the long-time limit
of time integrals over correlation functions. This presumes
that the correlation functions decay sufficiently fast for the
integrals to exist. This decay time sets the time scale after
which the hydrodynamic description can apply. If these inte-
grals converge on that time scale then the Helfand formulas
also reach their limiting plateau values on the same time
scale.

To explore this time dependence further, consider the cor-
relation function characterizing the transport coefficients
����n ,T� associated with the heat and momentum fluxes
�see Eq. �113��,

G�n,T;t� = F�n,T;0,t� − D�n,T;0,0�E�n,T;0,t�

= V−1� d�f̃��;n,T;0�	�̃��;n,T;0,t�

− �̃��;n,T;0�V−1� d�ã��;n,T;0��̃��;n,T;0,t�

= V−1� d�f̃��;n,T;0��1 − P��̃��;n,T;0,t� . �125�
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Then both contributions to G combine to form the projected
part of the fluxes �1− P��̃, where P is the projection onto the
set 
���� ;n ,T��,

PX��� = V−1���;n,T�� d� a��;n,T;0�X���

� V−1����;n,T�� d� a���;n,T;0�X��� .

�126�

Thus �1− P� is a projection orthogonal to the invariants, and
�1− P�U�t ,T�P=0, so

�1 − P�U�t,T��̃��;n,T� = �1 − P�U�t,T��1 − P��̃��;n,T� .

�127�

The time correlation function �125� then can be rewritten as

G���n,T;t� = V−1� d� ����;n,T��U�t,T����;n,T���

= V−1� d� ����;n,T�U���t,T�����;n,T�

�128�

where �� and �� are the orthogonal fluxes

����;n,T� = �1 − P†�f̃���;n,T;0� ,

����;n,T� = �1 − P��̃���;n,T� , �129�

with the adjoint projection operator P† given by Eq. �88�.
This orthogonal projection assures that there is no time-

independent component of the correlation function due to the
invariants. Such a contribution would not lead to a conver-
gent limit for the time integral, as required for the transport
coefficients. The property expressed by Eqs. �129� is similar
to the presence of the “subtracted fluxes” in the Green-Kubo
expressions for the transport coefficients of molecular fluids,
with the subtracted fluxes being orthogonal to the global in-
variants of the dynamics �15�.

VI. EULER ORDER PARAMETERS

At Euler order, the unknown parameters of the phenom-
enological hydrodynamics in Sec. III are the cooling rate
�0�n ,T�, the pressure p�n ,T�, and the transport coefficient �U

associated with the expansion of the cooling rate to first or-
der in the gradients. The cooling rate has been already de-
fined by Eq. �48� above. The pressure and �U can also be
given explicit definitions in terms of the correlation functions
from the coefficient of k in Eq. �109�. Since �U was previ-
ously identified as given by Eq. �111�, comparison of the
remaining Euler coefficients in Eqs. �17� and �109� gives

	K1
hyd,�a� 0

0 0

 � k̂ · D�n,T;0,0� , �130�

K1
hyd,�a� =�

0 0 n

0 0
h − e0,nn

e0,T

pn

nm

pT

nm
0 � . �131�

Using the definition in Eq. �97� and taking into account once
again Eq. �74�, it follows that

k̂ · D���n,T;0,0� = V−1� d� k̂ · f̃���;n,T;0�

�� �
h��;n,T,U�
�y�

�
U=0

. �132�

It is shown in Appendix E that all the matrix elements of
�131� follow from �132� if the pressure is identified as

p�n,T� � �Vd�−1� d� 
h��;n,T�tr H��� , �133�

where tr H��� is the volume-integrated trace of the micro-
scopic momentum flux. Its detailed form is given by Eq. �E5�
of Appendix E. This is the second nontrivial result of the
linear response analysis here, providing the analog of the
hydrostatic pressure for a granular fluid. It is possible to
show that Eq. �133� leads to p�n ,T�=nT in the low-density
limit, but at finite density the dependence on temperature and
density of the pressure is determined by details of the HCS
distribution, rather than the Gibbs distribution. This is in
contrast to the appearance of e0�n ,T� in Eq. �130�, which is a
choice made in the definition of the temperature. In general,
unlike in the case of normal fluids, there is no relationship of
p�n ,T� to e0�n ,T� via thermodynamics.

The transport coefficient �U represents dissipation due to
inelastic collisions proportional to � ·U. It has no analog for
normal fluids, where the Euler hydrodynamics is referred to
as the “perfect fluid” equations, since there is no dissipation
in that case. The simplest representation of �U is the interme-
diate Helfand form, Eq. �117�. More explicitly, it is shown in
Appendix E that it can be expressed as

�U�n,T� = lim�VTe0,Td�−1� d� W��;n,T�e−LTtM�U��;n,T� ,

�134�

with the source term W�� ;n ,T� defined by

W��;n,T� � − LE��� − N� ��e0,TT�0�
�n

�
e0

− E���� ��e0,TT�0�
�e0

�
n

. �135�

The phase function M�U�� ;n ,T� is the conjugate momentum
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M�U��;n,T� � � dr r · � �
�h

�U�r��
y��=
n,T,0�

= − �
s=1

N

qs ·
�
h��;n,T�

�vs
. �136�

The second equality makes use of the local HCS distribution
form for the velocity dependence at uniform density and
temperature,

�
lh����
y����
y��=
n,T,U�r�� = 
h�
qr,vr − U�qr��;n,T� .

�137�

The corresponding Green-Kubo form follows from a similar
analysis of �111�, or by direct integration of Eq. �134�,

�U�n,T� = lim�VTe0,Td�−1� d� W��;n,T�M�U��;n,T�

− lim�VTe0,Td�−1�
0

t

dt�� d� W��;n,T�

�e−LTt�LTM�U��;n,T� . �138�

This completes the identification of the Euler order param-
eters of the linearized hydrodynamic equations, formally ex-
act expressions for the pressure and �U in terms of correla-
tion functions for the reference HCS.

VII. NAVIER-STOKES TRANSPORT COEFFICIENTS

The six transport coefficients at order k2 can be easily
identified in terms of elements of the correlation functions

matrices � and Ȳ introduced in Eq. �109�. The twelve inter-
mediate Helfand and Green-Kubo forms are given in Appen-
dix E. Only the shear viscosity is discussed here in some
detail. Consider first its intermediate Helfand form. The
analysis parallels closely that of �U in Appendix E, with the
result

� = − lim V−1� d� Hxy���e−LTtM���;n,T� . �139�

Here, Hij��� is the volume-integrated momentum flux of Eq.
�E5� in Appendix F, and M� is the moment defined by

M���;n,T� =� dr x� �
lh

�Uy�r��
y��=
n,T,0�

= − �
r=1

N

qrx
�

�vry

h��;n,T� . �140�

The xy components occur here because the x axis has been

taken along k̂ and the y axis along the transverse direction ê1,
to simplify the notation. The corresponding Green-Kubo
form is

� = − lim V−1� d� Hxy���M���;n,T�

+ lim �
0

t

dt�V−1� d� Hxy���e−LTt�LTM���;n,T� .

�141�

In this case, the projection operators in Eq. �128� can be
omitted since their contributions vanish from symmetry, and
the dynamics is orthogonal to the invariants without such
terms.

The transport coefficient �U vanishes for normal fluids,
but the shear viscosity remains finite, as is well known. It is
instructive at this point to compare and contrast the results
�139� and �141� for normal and granular fluids. Suppose
from the outset a local equilibrium canonical ensemble cor-
responding to the equilibrium 
c���, had been used to gen-
erate the initial perturbations. Then, assuming nonsingular
conservative forces,

M���;n,T� = − �
r=1

N

qrx
�

�vrx

c��� = mT−1
c����

r=1

N

qrxvry

= T−1
c���Mxy , �142�

with

Mxy � �
r=1

N

qr,xvr,y . �143�

Then,

LTM���;n,T� = T−1
c���LMxy = T−1
c���Hxy��� .

�144�

Therefore, the intermediate Helfand and Green-Kubo expres-
sions for a normal fluid become

� = − lim�VT�−1�HxyMxy�− t��c �145�

and

� = lim�VT�−1�
0

t

dt��HxyHxy�− t���c, �146�

respectively. The angular brackets denote an equilibrium ca-
nonical ensemble average, and the dynamics is that of the

Liouville operator L= L̄. These are the familiar results that
have been studied and applied for more than 40 years.

To make the comparison between the elastic and inelastic
cases, consider first the intermediate Helfand forms �139�
and �145�. The similarity between the structures for the nor-
mal and granular fluid results is striking, but the substantive
changes are significant. For the granular fluid, the equilib-
rium ensemble has been replaced by the HCS ensemble. In
addition, the Liouville operator has been replaced by that

including the nonconservative force and L̄�L. Finally, the
generator for the dynamics includes the effect of temperature

cooling in the reference HCS, L̄→LT= L̄−�0T� /�T. These
differences manifest themselves in the Green-Kubo expres-
sions in analogous ways. The inclusion of nonconservative

LINEAR RESPONSE AND HYDRODYNAMICS FOR… PHYSICAL REVIEW E 77, 031310 �2008�

031310-15



forces implies a time-independent contribution, the first term
of Eq. �141�, which vanishes in the elastic limit of Eq. �146�.
Also, due to the change in the ensemble, the two fluxes of
the time correlation function differ for a granular fluid, while
both are momentum fluxes for a normal fluid. Still the struc-
ture is such that these fluxes are orthogonal to the invariants
of the dynamics in both cases, so that the time integrals can
be expected to converge.

VIII. DIMENSIONLESS FORMS AND SCALING LIMIT

The previous section concludes the presentation of all the
formal results obtained in this work. The analysis presented
up to this point is quite general, and the only restriction
placed on the nature of the microdynamics is that it be Mar-
kovian and the trajectories be invertible. These restrictions
are satisfied by most models used to describe the interaction
between granular particles. Examples are the Hertzian con-
tact force model �28�, the linear spring-dashpot model �28�,
and the system of inelastic hard spheres with impact-
velocity-dependent coefficient of restitution �29�. The defini-
tion of these models and the associated generators of phase
space dynamics are reviewed briefly in Appendix B. How-
ever, the results obtained here are in the formal language of
the dynamics where both T and t are independent variables.
This section shows how the formal results simplify consid-
erably when the particles are sufficiently “hard,” by introduc-
ing dimensionless variables to expose the dependence on rel-
evant energy scales. A physically realizable limit is identified
in which a scaling form for the statistical mechanics occurs
allowing elimination of all reference to the temperature. This
is the limit considered in more detail in the following com-
panion paper.

In general, there are two energy scales in the problem
being addressed here. One is the total energy per particle or,
equivalently, the cooling temperature Th�t�. The other energy
scale is determined by a property of the specific collision
model, called � in the following. For the Hertzian spring
case, it is the average compression energy of the spring. For
hard spheres, it is fixed by some characteristic relative veloc-
ity in the dependence of the restitution coefficient on the
relative velocity of the colliding pair. It is useful to recon-
sider the Liouville equation in a dimensionless form that
identifies these two different scales. In the limit that their
ratio � /Th�t� is small, a special scaling form of the results
above is obtained. This limit holds for hard spheres with
constant restitution coefficient ��=0�, and makes precise the
conditions under which that idealized model may be approxi-
mately valid for many states of interest.

Consider the Liouville equation �53� and introduce the
dimensionless variables

qr
� =

qr

l
, vr

� =
vr

v0�T�
, �� =

�

mv0
2�T�

, �147�

s = s�t,T� , �148�

where

v0�T� � 	2T

m

1/2

�149�

is a thermal velocity, l is the mean free path, and the function
s�t ,T� verifies the partial differential equation

	 �s

�t



T

− �0�n,T�T	 �s

�T



t

=
v0�T�

l
, �150�

with the boundary condition s�0,T�=0. The corresponding
dimensionless distribution function is


����;��,s� = ��lv0�T���Nd
��;n,T,t�, �� � 
qr
�,vr

�� .

�151�

The dependence on the �dimensionless� density has been
omitted on the left-hand side to simplify the notation. In
these variables, the dimensionless Liouville equation takes
the form

�s

����;��,s� + L����;���
����;��,s� = 0, �152�

where

L����;���
� = �0
�������

�
�

���
+

�0
�����
2 �

r=1

N
�

�vr
· �vr

�
��

+ L̄����;���
�, �153�

with L̄���� ;��= lL̄��� /v0�T� and �0
�= l�0�T� /v0�T�.

To interpret this result further, it is useful to consider the
distribution of the HCS, 
h

���� ;���, which is the steady state
solution of Eq. �152�, i.e.,

L����;���
h
����;��� = 0. �154�

This solution is the dimensionless form of the universal func-
tion 
h�� ;n ,T�, where the dependence on T has been sepa-
rated into a part that simply scales the velocities, and a part
that nondimensionalizes the collisional energy scale �. This
shows that, in the appropriate variables, the distribution
function of the HCS is stationary and universal, even when
velocity scaling alone �see below� does not hold. For an iso-
lated system, ���t��� /2Th�t� grows with increasing t since
the system temperature decreases. For very large ���t�, the
collisions become elastic and the system approaches a nor-
mal fluid. However, the alternative view of �152� is to
specify the solution as a function of ��� ,��� and then study
its properties as a special nonequilibrium steady state of
granular fluids.

As just noted, for large �� the collisions become practi-
cally elastic. In the opposite limit, ���1, the dependence on
�� of the distribution function can be neglected,


����;��,s� → 
����;s� �155�

and the Liouville equation becomes independent of ��

�s

����� + L�����
����� = 0, �156�
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L�����
����� =
�0

�

2 �
r=1

N
�

�vr
� · �vr

�
������ + L̄�
����� .

�157�

This is the limit in which all temperature dependence occurs
through velocity scaling alone, as there is no other significant
energy scale. It occurs for sufficiently hard interactions
and/or sufficiently large kinetic energy, and allows many
simplifications. The HCS solution has the simple form 
h

�����
and consequently �0

� is a pure number. Equation �150� defin-
ing s can be integrated in this case to give

s = −
2

�0
� ln	1 −

�0
�v0�T�t

2l

 . �158�

Similarly, the dimensionless form of the cooling equation for
Th�t�, Eq. �45�, can be integrated to get the explicit depen-
dence on t

Th�t�
Th�0�

= 	1 +
�0

�v0�Th�0��t
2l


−2

. �159�

Finally, when �157� is evaluated at Th�t� the relationship of s
to t becomes

s =
2

�0
� ln	1 +

v0�0�
2l

�0
�t
 . �160�

The conditions for which Eq. �155� applies will be called the
“scaling limit.”

The special collisional model of inelastic hard spheres
with constant restitution coefficient has no intrinsic colli-
sional energy scale, so ��=0 and the scaling limit applies.
The generators for this dynamics are indicated in Appendix
B and can be understood as the singular limit of a soft, con-
tinuous potential, like the Hertzian contact force model. The
analysis of the preceding sections is specialized to this case
in the following paper �18�, where it is shown that the above
simplifications admit a more detailed exposition of the for-
mal expressions for the transport coefficients. The rest of this
section is a brief translation of some of the main results here
to their dimensionless, scaling limit form.

The dimensionless hydrodynamic fields are defined by


�y�
�� � � �y�

ȳ�,h
� � ��n

nh
,
�T

Th
,

�U

v0�T�� , �161�

where the definition of the ȳ�,h’s follows from the second
identity above. Then, the fundamental linear response equa-
tion Eq. �68� in the dimensionless variables ��̃�

� is

��̃ ��k�,s� = C̃��k�,s���̃��k�,0� , �162�

with

C̃��
� �k�,s� =

1

ȳ�,h�Th�t��
C̃���nh,Th�t�;k,t�ȳ�,h�Th�0�� .

�163�

It follows from Eq. �72� that C̃��
� �k� ,s� obeys the equation

��s + K��k�,s��C̃��k�,s� = 0, C̃��k�,0� = I , �164�

the dimensionless transport matrix being

K��
� �k�,s� = − ���p��0

� +
lȳ�,h�T�t��

v0�Th�t��ȳ�,h�T�t��
K���n,T;k,t� .

�165�

Here K�n ,T ;k , t� is the transport matrix analyzed in the pre-
vious sections. The additional contributions to K��k� ,s�, pro-
portional to 
p���
0,1 , 1

2 , . . . , 1
2 �, arise from differentiating

the normalization constants with respect to T. Because of the
scaling limit, K��

� �k� ,s� is independent of T�t� and the hy-
drodynamic limit can be identified as

K*hyd�k�� = K��k�,�� . �166�

The phenomenological form of K*hyd�k��, corresponding to
that of Sec. III above, is given in the following companion
paper �18�.

The dimensionless forms for the response functions

C̃��
� �k� ,s� as phase space averages follow from Eq. �70�,

C̃��
� �k�,s� = � 1

Vȳ�,h�T�
� d� ã���;n,T,k�

�e−tLT�̃���;n,T,− k��
n=nh,T=Th�t�

ȳ�,h�T�0��

=
1

Vy�,h�Th�t��� d� ã���;nh,Th�t�;k�

�e−tL̄�̃���;nh,Th�0�;− k�ȳ�,h�Th�0��

= V�−1� d��ã�
����;k��e−sL�

�̃�
����;− k�� , �167�

where V�=V / ld. More details of this transformation are
given in Appendix B of Ref. �18�. The generator for the
dynamics L� is given by Eq. �156�, and the dimensionless
phase functions are

ã�
����;k�� =

ã���;n,T,k�
ldȳ�,h�T�

, �168�

�̃�
����;k�� = �v0�T�l�Nd�̃���;n,T;k�ȳ�,h�T� . �169�

The hydrodynamic transport matrix K*hyd�k�� is therefore
given by

K*hyd�k�� = K*hyd�0� − lim
��s + K*hyd�0��C̃��k�,s��

�C̃�−1�k�,s� , �170�

which is the dimensionless form of Eq. �73�. In this way, all
relation to the cooling of the reference state through a depen-
dence on T has been removed. However, the dynamics of
homogeneous perturbations of this state remains through

C̃��0,s� = e−K*hyd�0�s. �171�

The dimensionless correlation functions defining the trans-
port coefficients are obtained in a similar way and have rep-
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resentations analogous to �167�. An important difference is
that the generator is L�−Khyd*�0�, indicating that the homo-
geneous hydrodynamics is compensated. These simplifica-
tions and further interpretation are also deferred to the fol-
lowing paper.

IX. DISCUSSION

The objective of this work has been to translate the famil-
iar methods of linear response for normal fluids to the re-
lated, but quite different case, of granular fluids. In both
cases, the linear response to perturbations of a homogeneous
reference state is described in terms of the fundamental tools
of nonequilibrium statistical mechanics. This microscopic
formulation is then compared with the corresponding de-
scription from phenomenological hydrodynamics, and the
unknown parameters of the latter are identified in terms of
associated reference state response functions. The analysis
entails several steps, and at each stage there are technical and
conceptual differences encountered for granular fluids that
have been addressed in the preceding sections. Given the
complicated technical nature of this work, this final section
provides a brief summary of the new features for granular
fluids and a summary of the primary results of this work. The
context and utility of these results is also addressed.

Generalizing linear response methods to granular fluids
entails several important differences from normal fluids. Pri-
mary among these are the following.

�1� The homogeneous reference state about which pertur-
bations are considered is not the Gibbs state, but the HCS
state. It is not simply a function of the global invariants of
number, energy, and momentum, but must be determined as
the self-consistent solution to Eqs. �48� and �49�.

�2� The reference state is time dependent, due to the col-
lisional energy loss. Here, it has been given a stationary rep-
resentation by including the temperature as a dynamical vari-
able �see Eqs. �50� and �53��. In this form, the granular linear
response problem becomes the response to the spatial pertur-
bation of a homogeneous, stationary state, similar to that for
a normal fluid. However, the generators for that dynamics are
now more complex, due both to the nonconservative forces
responsible for collisional energy loss and a generator for
changes in the granular temperature.

�3� The response functions contain information about both
hydrodynamic and microscopic collective excitations. Ex-
traction of the hydrodynamic modes at long wavelengths and
long times can lead to complex formal expressions of little
use. However, if the perturbation is chosen to excite only the
hydrodynamic modes this analysis becomes simpler and
more direct. Practically, this can be done only in the long-
wavelength limit. For a normal fluid, the long-wavelength
hydrodynamic modes are the dynamical invariants and the
associated perturbation is generated by the corresponding
densities of global conserved quantities �number, energy,
momentum�. The granular fluid is more complex, since there
is a nontrivial hydrodynamics even in the extreme long-
wavelength limit, due to the homogeneous nonlinear tem-
perature cooling that is linearized about a reference cooling
state. The hydrodynamic modes are therefore identified from

this nonzero long-wavelength dynamics, and identification of
the perturbations corresponding to this dynamics is the ana-
log of finding the invariants for a normal fluid. This has been
addressed in Sec. IV. When the homogeneous dynamics of
cooling and its homogeneous response are included in the
Liouville dynamics, these perturbations become the new in-
variants for a granular fluid �see Eqs. �61� and �62��.

�4� With this knowledge of the special long-wavelength
hydrodynamic perturbations, spatial perturbations are con-
structed from their corresponding local densities, just as for a
normal fluid. In the latter case, these are the microscopic
local densities of number, energy, and momentum, and are
generated by a local equilibrium ensemble. In the same way,
the densities of the invariants for the granular fluid are gen-
erated from a corresponding local HCS. Since the HCS is not
the Gibbs state, these densities are no longer the local con-
served densities for a normal fluid, but instead are new con-
served quantities associated with the generator of dynamics
for spatial perturbations.

Resolution of these important conceptual issues has led to
the identification of formally exact expressions for all of the
phenomenological parameters of Navier-Stokes hydrody-
namics in terms of HCS averages and the dynamics of HCS
fluctuations. This is the formal objective of linear response
for both normal and granular fluids—representation of spa-
tial excitations in terms of the reference homogeneous state.
Such results provide the appropriate basis for further practi-
cal studies of how these parameters depend in detail on the
state conditions, such as density and temperature. That is the
task of many-body theory or molecular dynamics simula-
tions.

To summarize, the primary results obtained here are as
follows.

�1� The cooling rate and the pressure in the linear hydro-
dynamic equations are identified as specific averages over
the HCS solution. In particular, the pressure is the same av-
erage of the trace of the microscopic stress tensor as for an
equilibrium fluid, but with the equilibrium Gibbs distribution
replaced by the HCS. This shows how the dependence of the
pressure on density and temperature is to be determined.

�2� The transport coefficients are of two types, those as-
sociated with the heat and momentum fluxes, and those as-
sociated with the cooling rate. In each case they can be dis-
played collectively in matrix form. Those associated with the
fluxes have a Green-Kubo representation,

����n,T� = ���
�0��n,T� − lim �

0

t

dt�G���n,T;t�� . �172�

The first term on the right-hand side is a time-independent
correlation function for the HCS. It vanishes for normal flu-
ids with continuous potentials of interaction, and occurs here
due to the inelasticity of the collisions. Such a term can
occur even in the elastic limit for singular forces, such as
hard spheres �30�. The limit indicated in the second term is
the usual thermodynamic limit of large volume V and par-
ticle number N, followed by the limit of large time. The
integrand G���n ,T ; t� is a flux-flux correlation function
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G���n,T;t� �
1

V
� d� ����;n,T�U���t,T�����;n,T� .

�173�

The first flux �� is one of those associated with the usual
densities of number, energy, and momentum. The second
flux �� is one of those associated with the densities for the
new granular fluid invariants. The evolution operator for the
dynamics U���t ,T� is the usual Liouville dynamics, but in
addition compensated for the homogeneous dynamics of col-
lisional cooling and its homogeneous perturbation. This
shifts the spectrum of the generator for the dynamics so that
the homogeneous dynamics becomes stationary with corre-
sponding invariants. These would pose a problem for the
limit in �172� if it were not for the fact that the fluxes
���� ;n ,T� are all orthogonal to these invariants. This is
similar to the Green-Kubo expressions for a normal fluid,
and is an important self-consistency requirement for the
analysis.

Finally, the context and utility of the results in this work
are discussed. The analysis has focused on the response of
the system for small perturbations from the HCS. In many
experimental conditions of interest, for both normal and
granular fluids, the system is not close to a global homoge-
neous state. Nevertheless, the reference states studied here
are relevant locally for more complex and realistic physical
conditions �31�. For example, the transport coefficients such
as viscosity and thermal conductivity obtained from linear
response, are the same functions of density and temperature
as those in the associated nonlinear equations applicable un-
der more general conditions. Thus the context of relevance of
these results transcend the limitations associated with the
starting point of the linear response analysis itself and extend
to states for which the nonlinear Navier-Stokes equations are
required.

Stated differently, the transport coefficients do not have
the limitations of approximate solutions to the hydrodynamic
equations in which they occur. For example, the linearized
hydrodynamic equations considered here are valid only over
an initial time interval due to a long-wavelength instability,
after which the full nonlinear equations must be used. The
transport coefficients characterize that instability, but do not
depend on it. This can be seen from the form of �172� which
is strictly translationally invariant and whose homogeneous
hydrodynamics has been projected out. The long-time limit
can be taken even though its expression has been extracted
from response functions applicable for only a finite time.
These same expressions for the transport coefficients have
been rederived recently by a different method leading to the
nonlinear hydrodynamic equations, for which the instability
is not an issue �32�.

The utility of these formal results rests on further studies
of appropriate ways to evaluate them. The status now is that
expressions for the quantities of interest �e.g., pressure and
transport coefficients� are given formally without any inher-
ent uncontrolled approximations �e.g., as in some chosen ki-
netic theory� in terms of the reference HCS. This is the ap-
propriate point for the introduction of practical methods for

evaluation, and is analogous to the study of normal fluids
where the pressure and transport coefficients are given only
formally in terms of the reference Gibbs state. A number of
methods have proved useful, including molecular dynamics
simulations, density expansions, memory function models
incorporating initial dynamics, and linear kinetic theory. The
formal expressions obtained here provide the basis to explore
the relevance of these and similar approaches for granular
gases. As an example, consider again the new Euler order
transport coefficient given by Eq. �134�, make the tempera-
ture scaling of the generator explicit, and evaluate the entire
expression at T=Th�t� to get the result

�U�n,Th�t�� = − lim†VTh�t�e0,T�Th�t��d‡−1

�� d� W��;n,Th�t��e−L̄t�
s=1

N

qs ·
�
��;n,T�0��

�vs
.

�174�

The generator for the dynamics is now that for the trajecto-
ries alone, so this is a form suitable for molecular dynamics
simulation. The simulation method must be constructed in
such a way as to represent the HCS appearing in �174�. Else-
where, the evaluation by kinetic theory �13� is described, and
the original representation given by Eq. �134� is found to be
more suitable.

It is worth recalling that liquid state transport for simple
atomic fluids remains a prototypical strongly coupled many-
body problem, with limited progress beyond simulation of
formal expressions such as those given here. More should
not be expected for “complex” granular fluids. The formal
representations of transport coefficients by methods of statis-
tical mechanics provides a new perspective on a difficult old
problem. As for normal fluids, significant further progress
can be expected for the idealized model of hard spheres. That
is the subject of the following companion paper.
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APPENDIX A: HOMOGENEOUS STATE DYNAMICS

The dynamics associated with the homogeneous cooling
state of interest here is twofold. The first is the cooling of the
temperature, determined from the solution to Eq. �12�. For a
given initial condition T, the solution is denoted by
Th�t ;nh ,T�. The density is a constant parameter and some-
times it is left implicit in the notation of the text. The second
dynamics is the linear response to small homogeneous
changes in the initial conditions,
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�Th�t;nh,T� = 	 �Th�t;nh,T�
�nh



T

�nh + 	 �Th�t;nh,T�
�T



nh

�T .

�A1�

In this appendix, it is shown how the response function for
this second type of dynamics is obtained from the linearized
hydrodynamic equations to give Eq. �31�.

A useful identity for any function of the temperature, X�T�
is

X�T�t2�� = exp	− �t2 − t1��0�T�t1��T�t1�
�

�T�t1�
X�T�t1�� .

�A2�

Here T�t� is a solution to Eq. �12�. The identity can be
proved by performing a Taylor series of X�T�t2�� in powers
of �t2− t1� and using Eq. �12� to evaluate the time derivatives
in terms of T�t1� derivatives. The above identity gives, in
particular,

T�0� = exp	t�0�T�t��T�t�
�

�T�t�
T�t� ,

T�t� = exp	− t�0�T�0��T�0�
�

�T�0�
T�0� , �A3�

and

	 �T�t�
�T�0�
nh

=
�0�T�t��T�t�
�0�T�0��T�0�

. �A4�

Consider some function X�T�t ;T� , t� that depends on time
through T�t ;T� plus some residual time dependence. Use the
second equation of �A3� to write

X�T�t;T�,t� = exp�− t�0�T�T�T�X�T,t� �A5�

and, consequently,

�tX�T�t;T�,t� = exp�− t�0�T�T�T�
��t − �0�T�T�T�X�T,t��

= 
��t − �0�T�T�T�X�T,t��T=T�t;T�. �A6�

The time dependence due to T�t ;T� can be replaced by treat-
ing T as an independent variable, with the additional genera-
tor for its dynamics �0T�T. It is then equivalent to determine
X�T , t�, and evaluate it finally at T=T�t ;T�. In the case of Eq.
�23�, this leads to

��t − �0�T�T�T + Khyd�n,T;k��C̃hyd�n,T;k,t� = 0, �A7�

C̃��
hyd�n,T;k,0� = ���, �A8�

with the definition in Eq. �26�. For k=0, use of Eqs.
�17�–�19� gives

C̃��
hyd�n,T;0,t� = ��� �A9�

for ��2, while for �=2 we get:

��t − �0�T�T�T + K22
hyd�n,T;0��C̃2�

hyd�n,T;0,t�

+ K21
hyd�n,T;0��1� = 0, �A10�

or, more explicitly,

��t − �0T�T + 	 ���0T�
�T



n
�C̃2�

hyd�n,T;0,t� + 	 ���0T�
�n



T

�1� = 0.

�A11�

The solution of this equation is

C̃2�
hyd�n,T;0,t� = 	 �T

�n



T�−t;T�
�1� + 	 �T

�T�− t;T�
n

�2�,

�A12�

as can be verified by direct substitution into Eq. �A11� and
repeated use of Eq. �A4�. This is the result �31� of the text.

APPENDIX B: GENERATORS OF DYNAMICS

The interaction between the constituent particles of the
dissipative fluid enters the presentation here via the Liouville
operators that generate the dynamics. The analysis of the text
places few restrictions on these generators and admits a large
class of models to represent real systems. For example, it is
not necessary that they be pairwise additive, although the
examples of this appendix all assume that case. There is a
qualitative difference between the generators for continuous
or piecewise continuous forces, and those for singular forces
�e.g., hard spheres�. Examples of each are given here for
illustration.

1. Dissipative soft spheres

The fluid is assumed to be comprised of monodisperse
spherical particles with pairwise additive central interactions.
The latter implies that the forces are “smooth,” without tan-
gential momentum transfer, and Newton’s third law holds.
The simplest realistic model for the force F that particle s
exerts on particle r is the smooth, frictional contact model
�28,29� given by

F�qrs,grs� = q̂rs��� − qrs��f�� − qrs� − ��� − qrs��grs · q̂rs�� ,

�B1�

where ��x� is the Heaviside step function, qrs�qr−qs is the
relative coordinate, grs�vr−vs is the relative velocity of the
two particles, and q̂rs�qrs /qrs is the unit normal vector join-
ing the centers of the two particles. Moreover, f�x� and � are
a function and a constant, respectively, to be described be-
low. This is a piecewise continuous force that vanishes for
separations greater than �, which therefore can be thought of
as the diameter of the particles. The first term between the
square brackets describes a conservative force representing
the elastic repulsion due to the deformation of real granular
particles. If f�x� is chosen to be linear, the deformation is that
of a spring. The amount of deformation can be adjusted by
the choice of the spring constant. A second, more realistic,
choice is the Hertzian contact model for which f�x��x3/2.
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The second term of �B1� is a nonconservative force rep-
resenting the energy loss of the particle pair on collision. It is
proportional to the relative velocity of approach during the
collision, and the amount of energy loss is adjusted by the
choice of the friction constant �.

The Liouville operators L and L̄, defined in Eqs. �35� and
�36�, for the dynamics of phase functions and distributions
for these models can be identified as

LX��� � �
r=1

N

vr ·
�

�qr
X��� +

1

m
�
r=1

N

�
s�r

N

F�qrs,grs� ·
�

�vr
X���

�B2�

and

L̄X��� � LX��� +
1

m
�
r=1

N

�
r�s

N

X���
�

�vr
· F�qrs,grs� . �B3�

It is readily verified that the total momentum is conserved,
since Newton’s third law is satisfied, i.e., F�qrs ,grs�
=−F�qsr ,gsr�. The total energy is

E��� = �
r=1

N
1

2
mvr

2 +
1

2�
r=1

N

�
s�r

N

V�qrs� , �B4�

where the potential energy function V�q� satisfies

�V�qrs�
�qrs

= − ��� − qrs�f�� − qrs� . �B5�

The microscopic energy loss is easily computed by using Eq.
�38� with the result

LE��� = −
1

2�
r=1

N

�
s�r

N

��� − qrs���� − qrs��grs · q̂rs�2,

�B6�

showing that it is associated with the nonconservative part of
the interactions as it should be.

2. Hard sphere dynamics

For a given energy of activation, the contact forces con-
sidered above may have small deformations, i.e., the region
in which the forces differs from zero verifies ��−qrs� /�
�1. In that case, the conservative part of the force ap-
proaches that of elastic hard spheres. The primary effect of
the nonconservative force is to decrease the magnitude of
grs · q̂rs after the collision. This can be represented by the
scattering law

grs� = grs − �1 + ��grs����̂ · grs��̂ , �B7�

where grs� is the relative velocity after collision and ��grs� is
a coefficient of restitution that depends on the relative veloc-
ity. The total momentum of the pair is, by definition, un-
changed in the collision. The elastic limit corresponds to
��grs�→1. Subsequent to the change in relative velocity for
the pair �r ,s�, the free streaming of all particles continues
until another pair is at contact, and the corresponding instan-

taneous change in their relative velocities is performed. The
collision rule is assumed to be invertible, i.e., ��grs� is speci-
fied so that the trajectory can be reversed.

Since there is no longer a potential energy, the total en-
ergy for the system is its kinetic energy, which changes on a
pair collision by

�	1

2
m�vr

2 + vs
2�
 =

1

4
m�grs�

2 − grs
2 �

= −
1

4
m�1 − �2�grs����̂ · grs�2. �B8�

This is clearly the analog of the terms on the right-hand side
of Eq. �B14�. In fact, the velocity dependence of the coeffi-
cient of restitution can be modeled from a comparison of the
two equations.

There are two components of the generators L and L̄,
corresponding to each of the two steps of free streaming and
velocity changes at contact,

L = �
r=1

N

vr ·
�

�rr
+

1

2�
r=1

N

�
s�r

N

T�r,s� , �B9�

L̄ = �
r=1

N

vr ·
�

�rr
−

1

2�
r=1

N

�
s�r

N

T̄�r,s� . �B10�

The operators T�r ,s� and T̄�r ,s� describe the binary collision
for a pair,

T�r,s� = ��qrs − ����− grs · q̂rs��grs · q̂rs��brs − 1� ,

�B11�

T̄�r,s� = ��qrs − ���J�vr,vs�brs
−1 − 1���− grs · q̂rs��grs · q̂rs� .

�B12�

Here brs is a substitution operator,

brsX�grs� = X�brsgrs� = X�grs� � , �B13�

which changes the relative velocity grs into its scattered
value grs� , and brs

−1 is its inverse. Finally, J�vr ,vs� is the Jaco-
bian for the transformation from 
vr ,vs� to 
vr� ,vs��,

J�vr,vs� = � ��brsvr,brsvs�
��vr,vs�

�−1

. �B14�

The � function in �B11� and �B12� requires that the pair is
at contact, while the � function requires that the directions
of velocities are such as to assure a collision. A derivation of
these results and further details are given in the companion
paper following this one.

APPENDIX C: HOMOGENEOUS COOLING SOLUTION

In this appendix, Eqs. �55� and �57� are proved, leading to
the solution of the Liouville Eq. �59� for homogeneous per-
turbations of the HCS. The HCS is the stationary solution to
the Liouville equation �52�, i.e.,
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LT
h��;n,T,U� = 0, �C1�

LT � − �0�n,T�T�T + L̄ . �C2�

The action of the operator LT on �� can be evaluated as
follows:

LT����;n,T,U� = 	 ��LT
h��;n,T,U��
�y�



y���

+ 	 ���0�n,T�T�
�y�



y���

�
h��;n,T,U�
�T

= 	 ���0�n,T�T�
�y�



y���

�2��;n,T,U�

= ����;n,T,U�K��
hyd�n,T;0� , �C3�

where K��
hyd�n ,T ;0� has been identified in the last equality

from Eqs. �17�–�19� particularized for k=0. This proves Eq.
�55�.

Next, using this result,

LT
2����;n,T,U� = �LT����;n,T,U��K��

hyd�n,T;0�

+ ����;n,T,U�LTK��
hyd�n,T;0�

= ����;n,T,U�K��
hyd�n,T;0�K��

hyd�n,T;0�

+ ����;n,T,U�

��− �0�n,T�T�T�K��
hyd�n,T;0�

= ����;n,T,U��K��
hyd�n,T;0�

− ����0�n,T�T�T�K��
hyd�n,T;0� , �C4�

or, in a compact matrix notation,

LT
2� = ��Khyd − I�0T�T�Khyd, �C5�

with I denoting here the d+2 unit matrix. Applying the in-
duction method,

LT
l � = LT���Khyd − I�0T�T�l−2Khyd�

= �LT���Khyd − I�0T�T�l−2Khyd

+ �T��Khyd − I�0T�T�l−2Khyd�

= ��Khyd��Khyd − I�0T�T�l−2Khyd

+ ��− �0T�T��Khyd − I�0T�T�l−2Khyd

= ��Khyd − I�0T�T�l−1Khyd

= ��Khyd − I�0T�T�l. �C6�

This implies

e−LTt����;n,T,U� = ����;n,T,U�
exp − �Khyd�n,T;0�

− I�0�n,T�T�T�t���

= ����;n,T,U�C̃��
hyd�n,T;0,t� , �C7�

which proves Eq. �57�. In the last transformation, the formal
solution of Eq. �27� has been used.

APPENDIX D: MICROSCOPIC CONSERVATION LAWS
(BALANCE EQUATIONS)

1. Fluxes associated with ã�(� ;n ,T ;k)

The microscopic balance equations for the phase func-
tions ã��� ;n ,T ;k� follow from those for the Fourier-

transformed number density Ñ�� ;k�, energy density Ẽ�� ;k�,
and momentum density G̃�� ;k� defined in Eq. �65�. These
balance equations relate the time dependence of the densities
to appropriate fluxes

�te
Lt�Ñ��;k�

Ẽ��;k�

G̃��;k�
� = ik · eLt� G̃��;k�

m

s̃��;k�

h̃��;k�
� − eLt� 0

w̃��;k�
0 � .

�D1�

These are microscopic conservation laws for Ñ�� ;k� and

G̃�� ;k�. For granular fluids, the energy density has a source
w̃�� ;k� due to the inelasticity of the collisions. The forms of

the fluxes of Ñ�� ;k� and G̃�k� are obtained from

LÑ��;k� =
i

m
k · G̃��;k�, LG̃��;k� = ik · h̃��;k� .

�D2�

The expression for the tensor momentum flux h̃ is

h̃ij��;k� = �
r=1

N

mvr,ivr,je
ik·qr

+
1

2
�

0

1

dx�
r=1

N

�
s�r

N

qrs,iFj�qrs,grs�eik·�xqrs+qs�.

�D3�

This is the usual result for nonsingular forces F, generalized
here to include a nonconservative contribution as well. Some
examples are discussed in Appendix B. In all of this appen-
dix only nonsingular forces are considered. The correspond-
ing results for hard spheres are given in the following com-
panion paper.

The right sides of Eqs. �D2� are proportional to k, indicat-
ing that they are densities of conserved variables. For the
energy density there is both a flux and a source,

LE��;k� = ik · s̃��;k� − w̃��;k� . �D4�

The energy flux is given by

s̃��;k� = �
r=1

N 	mvr
2

2
+

1

2 �
s�r

N

V�qrs�
vre
ik·qr

+
1

4
�

0

1

dx�
r=1

N

�
s�r

N

qrs�vr + vs� · F�qrs,grs�eik·�xqrs+qs�

�D5�

and the source term is
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w̃��;k� = −
1

2�
r=1

N

�
s�r

N

grs · Fnc�qrs,grs�eik·qr, �D6�

where Fnc�qrs ,grs� is the nonconservative part of the force.

The functional forms for the fluxes G̃�� ;k�, s̃�� ;k�, and

h̃�� ;k� are the same as those for a normal fluid, except that
the total force, including its nonconservative part, occurs.
The source w̃�� ;k� depends only on the nonconservative part
of the force. For the special case of the force given in Eq.
�B1�, Eq. �D6� becomes

w̃��;k� =
1

2�
r=1

N

�
s�r

N

��� − qrs���� − qrs��grs · q̂rs�2eik·qr,

�D7�

which agrees with Eq. �B6� for k=0.
The corresponding fluxes associated with the

ã��� ;n ,T ;k� follow from their definition, Eq. �64�, in terms
of the above densities,

Lã���;n,T;k� = ik · f̃���;n,T;k� −
1

e0,T
w̃��;k���2,

�D8�

with

f̃1��;n,T;k� =
G̃��;k�

m
, �D9�

f̃2��;n,T;k� =
1

e0,T
	s̃��;k� −

e0,n

m
G̃��;k�
 , �D10�

f̃3,ij��;n,T;k� =
h̃ij��;k�

nm
. �D11�

The last equation above gives the tensor flux associated with
the vector a3=G /nm.

Next, calculate the quantity �̃�� ;n ,T ;k� appearing in Eq.
�85�. Use of Eq. �83� gives directly Eq. �85� with

�̃��;n,T;k� =
1

e0,T
w̃��;k� + �0�n,T�T

�

�T
ã2��;n,T;k� − �

�

K2�
hyd�n,T;0�ã���;n,T;k�

=
1

e0,T
w̃��;k� −

�0�n,T�T
e0,T

�e0,T

�T
ã2��;n,T;k� −

�0�n,T�T
e0,T

�e0,n

�T
ã1��;n,T;k�

−
���0�n,T�T�

�n
ã1��;n,T;k� −

���0�n,T�T�
�T

ã2��;n,T;k�

=
1

e0,T
�w̃��;k� − 	 ��e0,T�0�n,T�T�

�n



T

ã1��;n,T;k� − 	 ��e0,T�0�n,T�T�
�T



n

ã2��;n,T;k�� . �D12�

From the expression for the cooling rate in the HCS given in
Eq. �48�,

e0,T�0�n,T�T = − V−1� d� 
h��;n,T�LE���

= V−1� d� 
h��;n,T�w̃��;0� �D13�

and, since w̃�� ;0� is independent of n and T as seen from its
definition in Eq. �D1�,

	 ��e0,T�0T�
�n



T

= V−1� d� �1��;n,T�w̃��;0� ,

	 ��e0,T�0T�
�T



n

= V−1� d� �2��;n,T�w̃��;0� . �D14�

Substitution of the above relations into Eq. �D12�, noting that
the sum can be extended to include �=3, since the new

contribution vanishes by symmetry as a consequence of w̃
being a scalar, gives Eq. �85� in the text.

2. Fluxes associated with �̃�(� ;n ,T ;k)

From Eq. �74�, it is seen that the set of ���� ;n ,T ;r� are
densities associated with the invariants, i.e.,

�̃���;n,T;0� = ����;n,T� , �D15�

and so

�
�

U���t,T��̃���;n,T;0� = �̃���;n,T;0� �D16�

and

�t�̃���;n,T;0,t� = 0. �D17�

Note that U has been set equal to zero and it has been sup-
pressed in the notation. The time derivative of

�̃��� ;n ,T ;k , t� must be of order k, so there exists a flux
�̃��� ;n ,T ;k , t� such that
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�t�̃���;n,T;k,t� − ik · �̃���;n,T;k,t� = 0. �D18�

The generator of the dynamics U�t ,T� is defined by Eq. �62�,
and taking the time derivative there, it is seen to obey the
equation

�tU�t,T� = − �LT − Khyd T�n,T;0��U�t,T� , �D19�

where Khyd T is the transpose of Khyd. This equation can be
formally integrated to write

U�t,T� = exp
− t�LT − Khyd T�n,T;0��� , �D20�

which shows that Eq. �D19� is equivalent to

�tU�t,T� = − U�t,T��LT − Khyd T�n,T;0�� . �D21�

Use of this in Eq. �94� yields

�t�̃��;n,T;k,t� = − U�t,T��LT − Khyd T�n,T;0���̃��;n,T;k� .

�D22�

Comparison with Eq. �D18� leads to the identifications given
in Eqs. �100� and �101�.

APPENDIX E: DETAILS OF EULER ORDER
PARAMETERS

The Euler order time-independent correlation function

k̂ ·D���n ,T ;0 ,0�, whose expression is given in Eq. �132�, is
determined from direct evaluation. Consider first the case

�=1 for which f1�� ;n ,T ;0�=G̃�� ;0� /m. Then

k̂ · D1��n,T;0,0�

= �mV�−1� d�k̂ · G̃��;0�� �
h��;n,T,U�
�y�

�
U=0

= �mV�−1� �

�y�
� d�k̂ · G̃��;0�
h��;n,T,U��

U=0

= V−1� �

�y�

Nk̂ · U�
U=0

= ��3n , �E1�

in agreement with Eq. �130�. For �=2, use Eq. �D10� to get

k̂ · D2��n,T;0,0� = �Ve0,T�−1� d�k̂ · 	s̃��;0� −
e0,n

m
G̃��;0�
� �
h��;n,t,U�

�y�
�

U=0

= �Ve0,T�−1� �

�y�
� d�k̂ · s̃��;0�
h��;n,T,U��

U=0
− e0,n�mVe0,T�−1� �

�y�
� d�k̂ · G̃��;0�
h��;n,T,U��

U=0
.

�E2�

The second term on the right-hand side is easily evaluated using the result in Eq. �E1�. The ensemble average in the first term
can be carried out by making the change of velocity variables vr→vr+U and using the properties of the Galilean transfor-
mation,

� d�s̃��;0�
h��;n,T,U� =� d��s̃��;0��
vr→vr+U�
h��;n,T,U = 0�

=� d��s̃��;0� + 	E��;0� +
1

2
mNU2
U + h̃��;0� · U +

1

2
G̃��;0�U2 + UU · G̃��;0��
h��;n,T�

= e0�n,T�VU +
1

2
mNU2U +� d�h̃��;0� · U
h��;n,T� . �E3�

Using this result it is easily obtained that

k̂ · D2��n,T;0,0�

=
��3

e0,T
	e0 − e0,nn + �Vd�−1� d� tr H���
h��;n,T�
 .

�E4�

Here H����h�� ,0�, so tr H���=�i=1
d h̃ii�� ;0� is the volume-

integrated momentum flux. For the case of the dissipative

hard spheres discussed in Appendix B, it follows from Eq.
�D3� that

Hij��� = �
r=1

N

mvr,ivr,j +
1

2�
r

N

�
s�r

N

qrs,iFj�qrs,grs� . �E5�

For �=3, use Eq. �D11� to get
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k̂ · D3��n,T;0,0�

= �nmV�−1� �

�y�
� d�h����;0�
h��;n,T,U��

U=0

= �nmV�−1� �

�y�
� d��h� ���;0� + 2U�G���;0�

+ mnU�
2�
h��;n,T,U = 0��

U=0
, �E6�

where again the change of velocity variables has been made.

The subindex � indicates the component in the direction of k̂.
Therefore,

k̂ · D3��n,T;0,0� = �mn�−1	��1
�

�n
+ ��2

�

�T



��Vd�−1� d� tr H���
h��;n,T� .

�E7�

These results are consistent with the form of the phenomeno-
logical matrix K1

hyd,�a� in Eq. �131�, if the pressure is identi-
fied as

p�n,T� � �Vd�−1� d� tr H���
h��;n,T� . �E8�

This is Eq. �133� in the main text.
The single transport coefficient at Euler order �U�n ,T�

was identified in Eq. �117� as

T�U�n,T� = − lim k̂ · S23
�1��n,T;t� , �E9�

where the expression for S23
�1� follows from Eq. �98�,

S23
�1��n,T;t� = V−1� d��̃�1���;n,T��3��;n,T�

− V−1� d��̃��;n,T;0��̃3
�1���;n,T;t� .

�E10�

The first term on the right-hand side vanishes since

� d��̃�1���;n,T��3��;n,T�

= � �

�U�
� d��̃�1���;n,T�
h��;n,T,U��

U=0
.

�E11�

The same change of variables vr→vr+U as above shows
that this vanishes due to spherical symmetry of

h�� ;n ,T ,U=0�. The remaining contribution to �U�n ,T� as
given by Eq. �E9� is made more explicit using the definition

of �̃�� ;n ,T ;0�, Eq. �87�, and also that of U3��t ,T�, Eq. �62�,
to compute

�̃3
�1���;n,T;t� = U3��t,T��̃�

�1���;n,T� . �E12�

This gives

�U�n,T�

= + lim�VT�−1� d� l̃��;n,T;0�U3��t,T�k̂ · �̃�
�1���;n,T�

= − lim�VTe0,T�−1� d���1 − P†�LE����

���3e−LTtk̂ · �̃�
�1���;n,T�

= lim�VTe0,Td�−1� d� W��;n,T�e−LTtM�U��;n,T� .

�E13�

The phase function W�� ;n ,T� is defined by

W��;n,T� = − �1 − P†�LE���

= − LE��� − N	 �

�n
�e0,TT�0�


e0

− E���

�	 �

�e0
�e0,TT�0�


n

. �E14�

The second equality follows from explicitly evaluating the
action of the projection operator P†, defined in Eq. �88�, on
LE���. Finally, the phase function M�U�� ;n ,T� is

M�U��;n,T� = dk̂ · �̃3
�1���;n,T�d

= d� dr r�� �
�h

�U��r��
y��=
n,T,0�

= − �
r=1

N

qr ·
�
h��;n,T�

�vr
. �E15�

In the last transformation, the local equilibrium form for the
velocity dependence has been taken into account,

�
lh����
y����
y��=
n,T,U�r�� = 
h�
qr,vr − U�qr��;n,T� .

�E16�

APPENDIX F: NAVIER-STOKES ORDER TRANSPORT
COEFFICIENTS

The Helfand forms for the transport coefficients are iden-
tified from �118� and �119�. For the energy flux, these are the
thermal conductivity � and the new granular fluid coefficient

,

� = e0,T lim k̂k̂:	D22
�1��n,T;t� − �

�

D2��n,T;0,0�C�2
�1��n,T;t�
 ,

�F1�
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 = e0,T lim k̂k̂:	D21
�1��n,T;t� − �

�

D2��n,T;0,0�C�1
�1��n,T;t�
 .

�F2�

The shear and bulk viscosities, � and 	, are identified as

� = mn lim k̂k̂:	D44
�1��n,T;t� − �

�

D4��n,T;0,0�C�4
�1��n,T;t�
 ,

�F3�

	 +
2�d − 1��

d
= mn lim k̂k̂:	D33

�1��n,T;t�

− �
�

D3��n,T;0,0�C�3
�1��n,T;t�
 . �F4�

Finally, the two Navier-Stokes transport coefficients associ-
ated with the cooling rate are

�n = T−1 lim�k̂k̂:S21
�2��n,T;t� + T�U�n,T�k̂ · C31

�1��n,T;t�� ,

�F5�

�T = T−1 lim�k̂k̂:S22
�2��n,T;t� + T�U�n,T�k̂ · C32

�1��n,T;t�� .

�F6�

The corresponding Green-Kubo forms are

� = e0,Tk̂k̂:	D22
�1��n,T;0� − lim �

0

t

dt�G22�n,T;t��
 ,

�F7�


 = e0,Tk̂k̂:	D21
�1��n,T;0� − lim �

0

t

dt�G21�n,T;t��
 ,

�F8�

� = nmk̂k̂:	D44
�1��n,T;0� − lim �

0

t

dt�G44�n,T;t��
 ,

�F9�

	 +
2�d − 1��

d
= nmk̂k̂:	D33

�1��n,T;0�

− lim �
0

t

dt�G33�n,T;t��
 , �F10�

�n = T−1k̂k̂:	S21
�2��n,T;0� − lim �

0

t

dt��N21
�1��n,T;t��

+ T�U�n,T�k̂E31�n,T;0,t���
 , �F11�

�T = T−1k̂k̂:	S22
�2��n,T;0� − lim �

0

t

dt��N22
�1��n,T;t��

+ T�U�n,T�k̂E32�n,T;0,t���
 . �F12�

�1� See, for example, P. C. Martin, in Many Body Physics, edited
by C. de Witt and R. Balian �Gordon and Breach, New York,
1968�; D. Forster, Hydrodynamic Fluctuations, Broken Sym-
metry, and Correlation Functions �Benjamin, Reading, MA,
1975�.

�2� J.-P. Boon and S. Yip, Molecular Hydrodynamics �Dover, New
York, 1991�.

�3� J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87, 1051
�1997�.

�4� T. P. C. van Noije and M. H. Ernst, in Granular Gases, edited
by T. Pöschel and S. Luding �Springer, New York, 2001�.

�5� Granular Gases, edited by T. Pöschel and S. Luding �Springer,
New York, 2001�; Granular Gases Dynamics, edited by T.
Pöschel and N. Brilliantov �Springer, New York, 2003�.

�6� N. Brilliantov and T. Pöschel, Kinetic Theory of Granular
Gases �Oxford University Press, New York, 2004�.

�7� I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 �2003�.
�8� N. V. Brilliantov and T. Pöschel, Phys. Rev. E 61, 1716

�2000�.
�9� J. W. Dufty, J. Phys.: Condens. Matter 12, A47 �2000�.

�10� J. W. Dufty and V. Garzó, J. Stat. Phys. 105, 723 �2001�.
�11� J. W. Dufty, J. J. Brey, and J. Lutsko, Phys. Rev. E 65, 051303

�2002�; J. Lutsko, J. J. Brey, and J. W. Dufty, ibid. 65, 051304
�2002�.

�12� J. F. Lutsko, Phys. Rev. E 63, 061211 �2001�.
�13� A. Baskaran, J. W. Dufty, and J. J. Brey, J. Stat. Mech.: Theory

Exp. �2007�, P12002.
�14� E. Helfand, Phys. Rev. 119, 1 �1960�.
�15� J. A. McLennan, Introduction to Nonequilibrium Statistical

Mechanics �Prentice-Hall, Englewood Cliffs, NJ, 1989�.
�16� L. Onsager, Phys. Rev. 37, 405 �1931�; Phys. Rev. 38, 2265

�1931�.
�17� S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynam-

ics �North-Holland, Amsterdam, 1969�.
�18� A. Baskaran, J. W. Dufty, and J. Brey, following paper, Phys.

Rev. E 77, 031311 �2008�.
�19� J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Phys. Rev. E

58, 4638 �1998�; N. Sela and I. Goldhirsch, J. Fluid Mech.
361, 41 �1998�.

�20� R. Soto, M. Mareschal, and D. Risso, Phys. Rev. Lett. 83,
5003 �1999�; J. J. Brey and M. J. Ruiz-Montero, Europhys.
Lett. 66, 805 �2004�.

�21� See, for instance, J. J. Brey, M. J. Ruiz-Montero, and D. Cu-
bero, Europhys. Lett. 48, 359 �1999�; J. J. Brey, M. J. Ruiz-
Montero, D. Cubero, and R. García-Rojo, Phys. Fluids 12, 876
�2000�; V. Garzó and J. M. Montanero, Physica A 313, 336
�2002�; J. M. Montanero, A. Santos, and V. Garzó, in Rarefied
Gas Dynamics 24, edited by M. Capitelli, AIP Conf. Proc. No.

DUFTY, BASKARAN, AND BREY PHYSICAL REVIEW E 77, 031310 �2008�

031310-26



72 �AIP, Melville, NY, 2005�, p. 803.
�22� J. J. Brey, M. J. Ruiz-Montero, F. Moreno, and R. Garcia-

Rojo, Phys. Rev. E 65, 061302 �2002�; J. J. Brey, M. J. Ruiz-
Montero, and F. Moreno, ibid. 63, 061305 �2001�.

�23� C. Huan, X. Yang, D. Candela, R. W. Mair, and R. L.
Walsworth, Phys. Rev. E 69, 041302 �2004�.

�24� C. Bizon, M. D. Shattuck, J. B. Swift, and L. Harry Swinney,
Phys. Rev. E 60, 4340 �1999�; E. C. Rericha, C. Bizon, M. D.
Shattuck, and H. L. Swinney, Phys. Rev. Lett. 88, 014302
�2001�.

�25� P. K. Haff, J. Fluid Mech. 134, 401 �1983�; C. S. Campbell,
Annu. Rev. Fluid Mech. 22, 57 �1990�.

�26� See, for instance, I. Goldhirsch, M. L. Tan, and G. Zanetti, J.
Sci. Comput. 8, 1 �1993�; S. McNamara and W. R. Young,

Phys. Rev. E 53, 5089 �1996�; P. Deltour and J. L. Barrat, J.
Phys. I 7, 137 �1997�.

�27� J. W. Dufty, A. Baskaran, and J. J. Brey, J. Stat. Mech.: Theory
Exp. �2006�, L08002.

�28� O. R. Walton and R. L. Braun, J. Rheol. 30, 949 �1986�.
�29� N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Pöschel,

Phys. Rev. E 53, 5382 �1996�.
�30� J. W. Dufty, Mol. Phys. 100, 2331 �2002�; J. W. Dufty and M.

H. Ernst, ibid. 102, 2123 �2004�.
�31� J. W. Dufty and J. J. Brey, in Modelling and Numerics of

Kinetic Dissipative Systems, edited by L. Pareschi, G. Russo,
and G. Toscani �Nova Science, New York, 2005�; A. Baskaran
and J. W. Dufty �unpublished�.

�32� J. W. Dufty, e-print arXiv:0709.0479; e-print arXiv:0707.3714.

LINEAR RESPONSE AND HYDRODYNAMICS FOR… PHYSICAL REVIEW E 77, 031310 �2008�

031310-27


