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For a linear medium, it is shown that the ratio of average relaxation to retardation time is given by the ratio
of the high- to the low-frequency limit of the dielectric constants, �M /��=�� /�s. This statement holds for
dispersive dynamics, i.e., it is not limited to the special case of exponential responses. A second general
relation is found for the relative relaxation-time dispersions, which implies that the relaxation is always more
stretched than its retardation counterpart. A difference equation for the charge buildup is established which
provides a rationale for why retardation requires more time than its relaxation counterpart. According to the
equation, the slowness of the charge buildup is due to a renewal process of continuous re-investment of
potential made redundant by relaxation. The relevance of the results to experimental situations is also
discussed.
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I. INTRODUCTION

For a condenser filled with an insulating medium with
dielectric relaxation, or, in other words, a medium that ex-
hibits a dielectric aftereffect, the condenser charge Q caused
by a potential step �V applied at time t=0 depends on time
according to the expression

Q�t� = C0��s − �����t���V, t � 0. �1�

C0 is the capacitance of the condenser in vacuum. �s and ��

are the low- and high-frequency limits of the dielectric con-
stant, respectively, and ��=�s−�� represents their differ-
ence. The relation �s	�� holds. The expression for
Q�t� / �C0�V� contained in Eq. �1� may be called the time-
dependent dielectric constant of the condenser medium.
���t� is the corresponding relaxation function. It is normal-
ized to an initial value ���t=0� of unity, from which it
decays monotonically to zero with time. An exponential
exp�−t /���, with a relaxation time ��, is a special case �1�.
���t� describes the retardation of the buildup of the con-
denser charge after the application of a potential step, as
shown in Fig. 1.

An analogous expression holds for the inverse situation,
where the condenser is loaded with a constant charge �Q at
time t=0, and the voltage V that emerges between the con-
denser plates is measured subsequently. The time depen-
dence of this voltage is described by the expression

V�t� =
1

C0
�Ms + �M�M�t���Q, t � 0. �2�

Here �M�t� is the relaxation function related to the electric
modulus M. In Eq. �2� and below, we follow common prac-
tice and use the following definitions:

M =
1

�
, Ms =

1

�s
, M� =

1

��

, �M = M� − Ms, �3�

with the above ��	0 implying �M 	0. Thus, the
frequency-dependent electric modulus is defined as the in-
verse of the frequency-dependent dielectric constant,

M��
�=1 /���
� �2,3�. �M�t�, which has the same general
properties as ���t�, describes the relaxation �4� of the con-
denser potential after a sudden loading of the condenser with
charge, as shown in Fig. 2.

It is observed that the time span of retardation is always
longer than that of relaxation, i.e., that ���t� decays with
time more slowly than �M�t� �1,5,6�. If the decay of the two
relaxation functions is measured by the relaxation times ��

and �M defined as

�� = �
0

�

���t�dt , �4�

and similarly for �M, the relation between �� and �M is pre-
cisely given by

��/�M = �s/��. �5�

The ratio �s /�� always exceeds 1, and can be large compared
with 1. For instance, many polar organic liquids display val-
ues for �s /�� in the range 5–50 �7,8�.
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FIG. 1. �Color online� Schematic view of dielectric retardation
with applied step voltage V�t�, relaxation function ���t�, and time-
dependent charge Q�t�. In this ‘‘constant voltage’’ situation, polar-
ization P�t� is proportional to Q�t�−C0�V.
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The mathematical proof of relation �5� is presented in the
following section. As will be seen, it gives no insight into the
physical reason why the relation must be obeyed. The pur-
pose of the present paper is to find arguments which explain
the logic of the observed effect: �i� Why does the retarded
buildup of the condenser charge take longer than the relax-
ation of the potential, and �ii� why does retardation take in-
creasingly more time than relaxation the more �s exceeds
��?

In Sec. III such arguments are derived from a difference
equation for the retarded buildup of the condenser charge
which follows the application of a potential step. Section IV
deals with the shape difference of ���t� and �M�t�. A general
relation between the relaxation time dispersions of the two
functions is derived, which implies that the decay of ���t� is
more compressed than that of �M�t�, and that the difference
between the times ��� and �M� for the decay to 1 /e is larger
than the difference �5� between the mean time constants ��

and �M. All arguments apply equally to other cases of relax-
ation and retardation in linear media, such as mechanical or
magnetic responses �2,9�.

II. PROOF OF THE GENERAL RELAXATION- OR
RETARDATION-TIME RELATION

To find the relation between the two different relaxation
functions ���t� and �M�t�, we first need to generalize the
expression �2� to the case of an arbitrary time dependence
Q�t� of the charge placed on the condenser plates. To this
end, we apply Kubo’s formalism �10� to the steady state
relation C0V=�−1Q�MQ. The general expression reads

V�t� =
1

C0
�MsQ�t� + �M�

−�

t

�M�t − t��Q̇�t��dt�� . �6�

Here V�t� describes the time dependence of the potential
which is required to attract a given time-dependent charge
Q�t� to the condenser plates. However, if read as an integral

equation for Q�t� at given V�t�, Eq. �6� may also serve to
calculate the time dependence Q�t� of the condenser charge
that is generated by a given time-dependent potential V�t�.

Since the expression �1� describes the condenser charge
generated by a potential step switched on at t=0, it is also the
solution Q�t� of Eq. �6� with the left-hand side �LHS� given
by

V�t� = �V ��t� , �7�

where ��t� is the step function for a unit step at t=0. The
solution Q�t� defines the relaxation function ���t� according
to expression �1�. In this way the latter function is deter-
mined by the relaxation function �M�t�, which is given in the
memory integral of Eq. �6�.

The integral equation for ���t� for given �M�t� is easily
written down, and can be solved using Laplace transform.
The potential step �7� at t=0 also produces a jump of the
condenser charge given by �11�

Q�+ 0� = C0���V . �8�

To include the contribution of this jump to the integral in Eq.
�6�, the lower limit of integration is set equal to −�, and the
limit �→0 is taken at the end. By combining Eqs. �6�–�8�,
the integral of �6� then splits into two terms which are given
by

lim
�→0

�
−�

t

�M�t − t��Q̇�t��dt�

= �M�t�Q�+ 0� + �
+0

t

�M�t − t��Q̇�t��dt��t 	 0� . �9�

This yields the integral equation that connects ���t� to �M�t�
as

���t� = �M�t� −
��

��
�

0

t

�M�t − t���̇��t��dt�. �10�

For the Laplace transform of the two relaxation functions,
defined as

�̂�s� = �
0

�

e−st��t�dt , �11�

one obtains the relation �12�

1

�̂��s�
=

��

�s

1

�̂M�s�
+ s�1 −

��

�s
� . �12�

Since the definition �4� of the relaxation times implies

�� = �̂��s = 0�; �13�

and similarly for �M, relation �5� follows from Eq. �12�.
Relation �5� holds independently of whether �M�t� is of

exponential form exp�−t /�M� or not. If it is, ���t� is also
exponential. If it is not, both relaxation functions have rep-
resentations in terms of the relaxation-time probability den-
sity functions gi���, i=� or M, which read
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FIG. 2. �Color online� Schematic view of dielectric relaxation
with applied step charge Q�t�, relaxation function �M�t�, and time-
dependent voltage V�t�. In this ‘‘constant charge’’ situation, polar-
ization P�t� is proportional to �Q−C0V�t�.
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�i�t� = �
0

�

e−t/�gi���d� with gi��� � 0. �14�

Therefore the relaxation times �� and �M are relaxation-time
averages evaluated with the corresponding relaxation-time
distribution:

�i = �
0

�

�gi���d� , �15�

again with i=� or M.
For a few dielectric materials, independently measured

dielectric retardation and relaxation data are available. Here,
we examine the case of supercooled cresolphthaleindimeth-
ylether reported earlier �13�. This case is suitable for demon-
strating the applicability of relation �5�, because both data
sets ���
� and M�t� are well described by fit functions that
lead to unambiguous relaxation-time averages. As shown in
Fig. 3, the �M-�� relation predicted in �5� provides a quanti-
tative link between the experimental relaxation and retarda-
tion cases, with �s /�� amounting to 7 at T=315 K.

III. THE DIFFERENCE EQUATION FOR CHARGE AND
ITS INTERPRETATION

The positive time axis is divided into intervals by discrete
times

tn = n �t, n = 0,1,2, . . . . �16�

The aim is to derive from Eq. �6� the set of equations for the
discrete-time values Q�tn�, which are suitable for numerical
solution. The desired arguments will follow from careful in-
terpretation of these equations.

For a potential step �7�, Eq. �6� for time tn	0 reads

C0�V = MsQ�tn� + �M�
−�

tn

�M�tn − t��Q̇�t��dt�. �17�

Subtracting from this equation the corresponding equation
obtained for t= tn−1 leads to

0 = Ms�Q�tn� − Q�tn−1�� + �M�
tn−1

tn

�M�tn − t��Q̇�t��dt�

+ �M�
−�

tn−1

��M�tn − t�� − �M�tn−1 − t���Q̇�t��dt�. �18�

The integrals occurring on the RHS of this equation can
be evaluated using the mean-value theorem of integral cal-

culus, since Q̇�t��0 holds. The integral in the second term
yields

�
tn−1

tn

�M�tn − t��Q̇�t��dt� = �M��n��Q�tn� , �19�

where

�Q�tn� � �
tn−1

tn

Q̇�t��dt� = Q�tn� − Q�tn−1� �20�

is the charge increment in the interval �tn−1 , tn�, and �n is a
certain time in this interval �0
�n
�t�. The integral in the
third term on the RHS of Eq. �18� can be split:

�
−�

tn−1

¯dt� = �
−�

�

¯dt� + 	
n�=1

n−1 �
tn�−1

tn�
¯dt�. �21�

The first of these integrals yields

�
−�

�

¯dt� = ��M�tn� − �M�tn−1��Q�+ 0� . �22�

In the other integrals again the mean-value theorem of inte-
gral calculus is applied to obtain

�
tn�−1

tn�
¯dt� = 
�M�tn − �tn� − �n���

− �M�tn−1 − �tn� − �n�����Q�tn�� , �23�

where 0
�n�
�t. The sum of the three terms in Eq. �18� is
given by

0 = �Ms + �M�M��n���Q�tn� + �M��M�tn� − �M�tn−1��

�Q�+ 0� + �M 	
n�=1

n−1

��M�tn − tn� + �n��

− �M�tn−1 − tn� + �n����Q�tn�� . �24�

So far no approximation has been made �14�. In the follow-
ing, the fractions �n of the time-step length �t are neglected,
which causes an error of O��t�. The result of this approxi-
mation can be written as
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FIG. 3. �Color online� Experimental results for the average re-
laxation time for dielectric retardation ���, solid triangles up� and
relaxation ��M, solid triangles down� for the supercooled liquid
cresolphthaleindimethylether �CPDE� versus temperature. Values
for � are determined by reanalyzing data from Ref. �13� in terms of
Cole-Davidson fits to ���
� and Kohlrausch-Williams-Watts fits to
M�t�, both functions possessing well-defined relaxation time aver-
ages. The open triangles represent the �� data after being shifted by
a factor of �� /�s.
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�Q�tn� = − C0��V�rel�tn���, �25�

with

C0��V�rel�tn� = �M��M�tn� − �M�tn−1��

�Q�+ 0� + �M 	
n�=1

n−1

��M�tn − tn��

− �M�tn−1 − tn����Q�tn�� . �26�

The quantity ��V�rel�tn� is the reduction by relaxation during
the time interval �tn−1 , tn� of the potential that is necessary to
maintain the net charge Q�tn−1�, which has accumulated by
time tn−1. Since the potential must be kept constant, this re-
duction has to be compensated by the corresponding rein-
vestment of potential in additional charge during the same
time interval. The fresh charge �Q�tn� binds the potential set
free by relaxation. The relation between the newly added
charge and the reinvested potential is given by the high-
frequency dielectric constant ��; see Eq. �25�. Overall, the
retarded increase of Q�t� results from a series of reinvest-
ments of potential in additional charge, which compensate
potential relaxation. For every new investment of potential,
potential relaxation starts anew. This makes it clear why the
entire evolution of Q�t� takes more time than the single
potential-relaxation process, i.e., that ��	�M holds for the
corresponding relaxation times, which answers question �i�.

For any charge increment �Q, the jump Q�+0� at t=0,
and an increment �Q�tn� at a later time tn, initially a certain
increment ��Q /C0� /�� of potential is required. The relaxing
fraction of this contribution to the potential, which becomes
available for reinvestment after relaxation, is given by
�M��=1−�� /�s. Therefore the sequence of charge incre-
ments �Q�tn� proceeds with less attenuation for larger ratio
�s /��, and �� increases accordingly. This answers question
�ii�.

The validity of the above arguments can be illustrated by
the following approximate solution of the difference equa-
tions �25� and �26�. Let �t be so large compared with �M that
�M��t� is practically zero. With the abbreviation

1 − ��/�s � � , �27�

the successive charge increments are obtained as

�Q�t1� = �Q�+ 0� , �28�

�Q�tn� = ��Q�tn−1� = �n−1�Q�t1� for n 	 1, �29�

and their sum is given by

Q�tn� = Q�+ 0� + 	
n�=1

n

�Q�tn��

= 	
n�=0

n

�n�Q�+ 0� =
1 − �n+1

1 + �
Q�+ 0� . �30�

This yields for ����t�, which is connected to Q�tn� by �see
Fig. 1�

���tn� =
Q��� − Q�tn�

Q��� − Q�+ 0�
, �31�

the result

���tn� = �n, �32�

from which �� follows according to the definition Eq. �4� as

�� = 	
n=0

�

���tn��t =
�t

1 − �
=

�s

��

�t . �33�

This result qualitatively confirms the properties �i� and �ii�. It
overestimates �� because of the sloppy choice of the interval
length larger than �M.

IV. THE COMPRESSION OF THE RETARDATION DECAY

The difference between the relaxation functions ���t� and
�M�t� is not only a change in time scale of the overall decay,
given by Eq. �5�, but also a change in shape of these func-
tions. In a plot of ��t� to log t, the decay of ���t� appears to
be more compressed, i.e., less stretched, than that of �M�t�.
The decay of ���t� differs less from a single exponential and
is therefore less dispersive, in the sense that the underlying
distribution of relaxation times � �cf. Eq. �14�� in relation to
the mean relaxation time �� is narrower. This has an impor-
tant consequence: The times ��� and �M� needed for either
function to decay from unity to 1 /e are separated by a factor
larger than the factor �s /�� separating the mean relaxation
times �� and �M. This fact is of practical relevance since the
times ��� and �M� are more conveniently determined experi-
mentally than are �� and �M, because the latter quantities
require measurements at very long times.

An example of the above behavior is shown in Fig. 4,
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FIG. 4. �Color online� Experimental results for the normalized
relaxation function for dielectric relaxation ��M�t�, triangles down�
and retardation ����t�, triangles up� for the supercooled liquid
cresolphthaleindimethylether �CPDE� at T=315 K, from Ref. �13�
���t� is obtained by a Fourier transform of ���
� results. The
dashed line represents the ���t� case after shifting by a factor of
�s /��=6.8 The KWW fits �solid lines� yield ��=19.1 s, ��=0.75,
�M =2.54 s, �M =0.52, i.e., �� /�M =7.5.
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where the triangles are experimental data points for �� and
�M versus log t for supercooled cresolphthaleindimethyl-
ether. The difference in shape is immediately apparent from a
comparison of the �M�t� curve with the time-shifted ���t�
curve, which is drawn as a dashed line. The factor of the time
shift is �� /�s. In agreement with Eq. �5�, inspection of the
�M�t� and ���t�s /��� traces shows that their average time
constants are actually equal, even though Fig. 4 might appear
to suggest otherwise. In the � versus log t plot used in Fig. 4
the decay of the dashed curve is steeper than that of the
�M�t� curve. The fact that the dashed curve does not cross
the �M�t� curve at the 1 /e level implies that ��� /�M� 	�s /��.
The actual value of the ratio in this example is ��� /�M� =12,
whereas �s /��=6.8. Incidentally, we have also confirmed via
numerical techniques that the difference Eq. �25� reproduces
these �M�t�-���t� relations quantitatively.

The difference in shape may be quantified by fitting both
relaxation functions by the Kohlrausch-Williams-Watts
�KWW� stretched exponential function

��t� = exp�− �t/�KWW���, 0 � � � 1. �34�

Such fits are included in Fig. 4 as full lines. Although the fits
are not very accurate, for �M�t� in particular, they may serve
to express the shape difference by approximate numbers. The
stretching exponent � is the shape parameter of the KWW
function �34�; strong stretching is described by a small �
value. The time �KWW occurring in the expression �34� is also
the time where the function has decayed to the value 1 /e.
Because of the inaccuracy of the fits, however, the times
��

KWW and �M
KWW differ somewhat from the times ��� and �M� at

which the curves to be fitted have reached the value 1 /e. For
the fits in Fig. 4 the exponents are �M =0.52 and ��=0.75,
and their offset is a measure of the shape difference between
relaxation and retardation.

A numerical analysis of the relations connecting the pa-
rameters �M

KWW,�M and ��
KWW,�� has been performed by

Richert, assuming that ���t� is exactly of KWW form �15�.
In this study the corresponding �M�t� is calculated numeri-
cally and fitted to the KWW formula. A particular fitting rule
is employed which focuses on the point of inflection in a �M
versus log t plot. For the range 1
�s /��
11 and 0.3
��


1 the parameters are related to a good approximation ac-
cording to the simple expressions

�M
KWW/��

KWW = ���/�s�1/��, �M � 0.8��. �35�

It should be noted that the fitting rule does not guarantee that
the value obtained for �M

KWW coincides with �M� , the time of
decay to 1 /e of the calculated �M�t� curve. Typical differ-
ences remain small, however. Moreover, experimental data
for times t��M� are often limited by the acquisition time
window and by signal resolution, imposing constraints on the
accuracy in deriving the true average time constants. There-
fore, Eq. �35� is bound to remain an approximation, whereas
Eq. �5� is general and exact.

The difference in shape between the two relaxation func-
tions can be explained on the basis of a second general re-
lation, which holds for the variances �i of the relaxation-time
probability densities gi���, i=� or M. The variance �i is ob-

tained from the mean-square relaxation time 
�2�i as

�i = �
0

�

�� − �i�2gi���d� = 
�2�i − �i
2. �36�

The mean-square relaxation time 
�2�i can be calculated ei-
ther from the time function �i�t� or from its Laplace trans-

form �̂i�s� as


�2�i = �
0

�

�2gi���d� = �
0

�

t�i�t�dt = − � d�̂i�s�
ds

�
s=0

.

�37�

With the last of these identities, differentiation of Eq. �12�
with respect to s immediately leads to the general relation

��

��
2 =

��

�s

�M

�M
2 . �38�

This relation implies that the relative width of the � distribu-
tion described by gi���, which is given by �i /�i=��i /�i

2 �� is

the standard deviation�, is narrower by a factor ��� /�s for
���t� than for �M�t�. In other words, the relative retardation
dispersion is weaker than its relaxation counterpart by this
factor. This explains why in fits with the KWW function �34�
the stretching parameter � is closer to 1 for �� as compared
with �M. This also explains the extra stretching of the decay
time ��� over ��. The argument is as follows. Suppose that a
set of different specific relaxation times is defined and can be
evaluated for both functions. In parallel with the relaxation-
time distributions, the distribution of the values obtained for
this set of relaxation times will also be narrower in the case
of ���t� than in the case of �M�t�. Accordingly, if the time �i�
of decay of �i�t� to 1 /e is considered as a second, shorter,
relaxation time next to the mean relaxation time �i, the rela-
tive separation of ��� and �� may be expected to be smaller
than that of �M� and �M, which is expressed by the following
inequality:

�� − ���

��

�
�M − �M�

�M
. �39�

From Eq. �39� the inequality

���/�M� 	 ��/�M �40�

follows, which expresses this extra stretching that can be
observed in Fig. 4.

The pair of general relations �5� and �38� might be com-
bined with a parametrization of both relaxation functions in
terms of the KWW function �34�. Such a procedure is faced
with practical difficulties, however. First, for the calculation
of �i and �i long-time data for �i�t� are required, which are
not always available. Second, if the KWW parameters �i

KWW

and �i are chosen to reproduce the correct values of �i and �i,
the KWW function usually fits poorly at the short times
which dominate a plot of �i�t� versus log t. This problem is
more severe for �M�t� than for ���t�. The data shown in Fig.
4 give an example of such difficulties. The relation �38�
would yield a value �M =0.46 for a �� value of 0.75. For
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�M =0.46, however, the fit of �M�t� would look rather worse
than the fit obtained for �M =0.52, which is shown in the
figure. In view of these difficulties, the combination of the
general relations �5� and �38� with KWW fits is not described
in more detail here. Qualitatively, similar behaviors can be
found for other empirical fit functions which have been sub-
ject to numerical assessments, e.g., a Gaussian distribution of
log��� �16�, and the Cole-Davidson type susceptibility �17�.

V. CONCLUDING REMARKS

In summary, this work establishes simple relations be-
tween the relaxation ��M� and retardation ���� dynamics of
linear systems for the important cases of nonexponential cor-
relation functions. Regarding the mean values �i and the rela-
tive widths �i /�i of the relaxation-time distributions, the dif-
ference between �M�t� and ���t� is completely described by
the ratio �s /��. While the equations are presented in terms of
dielectric functions, the results hold analogously for me-
chanical, magnetic, and other relaxation phenomena. In ad-
dition to the results of �5� and �38�, the difference equation
�25� that links �M�t� and ���t� provides a rationale for the
origin of the different relaxation and retardation durations.
By interpretation of the difference equation, we attribute the
slowness of the retarded buildup of charge to a renewal pro-
cess, in which the potential made redundant by relaxation is
continuously reinvested in additional charge.

The relation of dielectric retardation and relaxation times
has been addressed in various contexts. Within theories of
solvation dynamics, the faster ‘‘longitudinal’’ relaxation time
�L �=�M� �18� is often considered a better indicator of the
solvent response time than is its retardation analog, the trans-
verse or dielectric time scale �D�=��� �19,20�. In the case of
dynamics occurring on the scale of nanoseconds or faster,
typical deviations from exponential responses remain small,
and Fröhlich’s special case of relation �5� for exponential
responses is a good approximation. For the more dispersive
dynamics characteristic of the supercooled state of a liquid
�21�, the exponential approximation is bound to fail �22�,
while the present relations �5� and �38� remain valid.

A further interesting application of the fact that �M�t�
decays faster than ���t� is the reduction of the experimental
time required to assess very slow dielectric responses �5,23�.
As an example, measuring M�t� for polyvinylacetate accord-
ing to the recipe outlined in Fig. 2 made it possible to infer
average relaxation times for dielectric retardation of up to
��=3.4�107 s=1.1 years within an experimental time win-
dow of 12 days �15�. Once V�t��M�t� is recorded to the
extent that its entire time integral is sufficiently well defined,
both average time constants, �M as well as ��, are determined
unambiguously. Strictly speaking, of course, the claim of any
average time constant requires knowledge of the response
across the entire time range 0−�. Otherwise, assumptions
regarding the behavior of ��t� outside the experimental
range have to be made.
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