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In the first part of this series of two papers, we proposed a theoretical formalism that enables one to model
and categorize heterogeneous materials �media� via two-point correlation functions S2 and introduced an
efficient heterogeneous-medium �re�construction algorithm called the “lattice-point” algorithm. Here we dis-
cuss the algorithmic details of the lattice-point procedure and an algorithm modification using surface optimi-
zation to further speed up the �re�construction process. The importance of the error tolerance, which indicates
to what accuracy the media are �re�constructed, is also emphasized and discussed. We apply the algorithm to
generate three-dimensional digitized realizations of a Fontainebleau sandstone and a boron-carbide/aluminum
composite from the two-dimensional tomographic images of their slices through the materials. To ascertain
whether the information contained in S2 is sufficient to capture the salient structural features, we compute the
two-point cluster functions of the media, which are superior signatures of the microstructure because they
incorporate topological connectedness information. We also study the reconstruction of a binary laser-speckle
pattern in two dimensions, in which the algorithm fails to reproduce the pattern accurately. We conclude that
in general reconstructions using S2 only work well for heterogeneous materials with single-scale structures.
However, two-point information via S2 is not sufficient to accurately model multiscale random media. More-
over, we construct realizations of hypothetical materials with desired structural characteristics obtained by
manipulating their two-point correlation functions.
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I. INTRODUCTION

Random heterogeneous multiphase materials or media are
ubiquitous. Examples include composites, porous media,
biological materials, and cellular materials as well as cosmo-
logical structures, and their macroscopic properties are of
great interest �1–4�. In the first part of this series of two
papers �5� �henceforth referred to as paper I�, we proposed a
theoretical formalism to model and categorize heterogeneous
materials via two-point correlation functions S2�r�, which
can be interpreted as the probability of finding two points
separated by the displacement vector r in one of the phases
�1�. In particular, we introduced the idea of the two-point
correlation function space and its basis functions. In general,
S2 of a medium can be expressed by a map � of the associ-
ated basis functions, which is composed of convex-
combination and product operations. We also suggested a
set of basis functions by examining certain known real-
izable analytical two-point correlation functions. Moreover,
we introduced an efficient isotropy-preserving S2-sampling

algorithm—namely, the lattice-point algorithm—but left the
details of the algorithm for another paper.

Here we will provide algorithmic details of the lattice-
point methodology and consider several nontrivial applica-
tions to illustrate the practical utility of our theoretical for-
malism. In particular, we will apply the lattice-point
algorithm to generate three-dimensional �3D� digitized real-
izations of a Fontainebleau sandstone and a boron-carbide/
aluminum composite from two-dimensional �2D� tomogra-
phic images of their slices through the materials. Yeong and
Torquato �6� have shown that one can get a reasonably ac-
curate rendition of the actual 3D structure of the Fontaineb-
leau sandstone from S2 of the same 2D image that we will
use here. To justify whether the reconstructions are success-
ful, one should also measure other statistical descriptors of
the media �6�. Here we compute the two-point cluster func-
tion C2 �7� �see definition and discussions in Sec. IV�, which
contains nontrivial “connectedness” information of the
phases of interest. By comparing C2 of the target and recon-
structed media, we demonstrate that S2 is indeed sufficient to
capture the salient structural features in these cases. We also
study the reconstruction of a binary laser-speckle pattern in
two dimensions and find that the algorithm fails to reproduce*torquato@princeton.edu
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the target pattern accurately. We conclude that in general
reconstructions using S2 only work well for heterogeneous
materials with single-scale structures �those having only one
characteristic length scale�. However, two-point information
via S2 is not sufficient to accurately model multiscale media
�those composed of structural elements associated with mul-
tiple characteristic length scales�. Moreover, we will show
how the proper convex combinations of basis functions en-
able one to obtain two-point correlation functions with de-
sired properties and thus enable one to generate a variety of
structures with controllable morphological features. Note
that here we will mainly focus on modeling heterogeneous
materials in three dimensions, which complements the two-
dimensional examples that we considered in paper I.

Yeong and Torquato formulated the �re�construction prob-
lem as an energy-minimization problem using simulated an-
nealing �8�. This has become a very popular �re�construction
technique �9–13�. In this method, a nonnegative objective
function E, called the “energy,” is defined as the sum of
squared differences between the target and sampled correla-
tion functions. In our case, the energy is given by

E = �
i

�S2�ri� − Ŝ2�ri��2, �1�

where Ŝ2�r� and S2�r� are the target and sampled two-point
correlation functions, respectively. An important issue in the
�re�constructions based on the method of simulated anneal-
ing is the choice of the energy threshold Eth—i.e., the error
tolerance of discrepancies between the correlation functions
of generated medium and the imposed ones. When the en-
ergy of the �re�constructed medium is below Eth, the �re�con-
struction process is terminated. The energy threshold is a key
indicator of how accurately the medium is �re�constructed. In
our previous work, Eth was always chosen to be a very small
number—e.g., 10−6; however, no quantitative analysis on
why such a value should be chosen was given. In this paper,
we will discuss in detail the significance of the energy
threshold for both the orthogonal S2-sampling algorithm
�only sampling S2 along convenient orthogonal directions�
�6,8� and the lattice-point algorithm.

In the lattice-point procedure, we consider the digitized
medium �pixel system� to be a “lattice-gas” system, in which
the black pixels behave like nonoverlapping “particles” mov-
ing from one lattice site to another. The two-point correlation
function of the medium is obtained by binning all the dis-
tances between the black pixels and dividing the number in
each bin by the total number of distances between all lattice
sites within that bin. To generate a trial configuration, a ran-
domly selected “particle” �black pixel� is given a random
displacement subjected to the nonoverlapping constraint.
Only the distances between the moved “particle” and all the
others need to be recomputed in order to obtain S2 of the trial
configuration. In this way, all directions in the digitized me-
dium are effectively sampled; moreover, the complexity of
the algorithm is linear in NB—i.e., the number of nonover-
lapping particles.

For heterogeneous materials containing well-defined in-
clusions, we will show that the computational speed of the

�re�construction process can be increased by an algorithm
modification using surface optimization, which is essentially
a biased pixel-selection procedure. This algorithm modifica-
tion is based on the fact that in the later stages of �re�con-
structions, further refinements of the configurations are
achieved by the moves of black pixels on the surfaces of
formed pixel clusters. Thus, only the “surface pixels” are
selected and given random moves to generate trial configu-
rations; i.e., the surfaces are optimized. The physical analog
of this process is solidification, in the later stage of which the
rearrangements of solutes only occur on the surfaces of
nucleated particles. We will see in the following that one can
obtain a much lower error �discrepancies between the corre-
lation functions of the �re�constructed medium and the im-
posed ones� when surface optimization is properly applied.
This improvement enables one to quantitatively study the
nonuniqueness problem of the �re�constructions �8,14–18�.

The rest of the paper is organized as follows: In Sec. II,
we describe the lattice-point algorithm and the algorithm
modification using surface optimization in great detail. The
choice of different pixel-lattices is also discussed. In Sec. III,
we discuss the significance of the energy threshold for both
the orthogonal S2-sampling method and the lattice-point al-
gorithm. In Sec. IV, we suggest a general form of the map �
and apply the theoretical formalism to model a Fontaineb-
leau sandstone, a boron-carbide/aluminum composite, and a
binary laser-speckle pattern. We also show how to construct
materials with structural properties of interest by manipulat-
ing the parameters in the basis functions and choosing proper
combination coefficients. In Sec. V, we make concluding re-
marks.

II. ALGORITHMS FOR GENERATING HETEROGENEOUS
MATERIALS

In paper I, we derived the exact algebraic equations for
the �re�construction problem and showed that the equations
have an infinite number of solutions and cannot be solved
rigorously. In principle, the Yeong-Torquato scheme enables
one to obtain one of the solutions efficiently. The most time-
consuming steps of the scheme are the samplings of the two-
point correlation function at every trial configuration. An ef-
ficient S2-sampling method would dramatically speed up the
�re�construction process. Furthermore, an isotropy-
preserving algorithm is required in �re�constructions when-
ever a radial two-point correlation function S2�r� �r��r�� is
employed for the case of statistically homogeneous and iso-
tropic media.

A. Lattice-point algorithm

The lattice-point algorithm is designed to sample the digi-
tized representation of a statistically homogeneous and iso-
tropic medium in all possible directions efficiently. For sim-
plicity, we will illustrate the idea in 2D. Implementation of
the algorithm in three dimensions is a straightforward exten-
sion. Instead of considering the digitized medium as a col-
lection of black and white pixels, one can think of the me-
dium as a lattice-gas system: the black pixels are the “gas
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molecules” and the white pixels are unoccupied lattice sites,
as shown in Fig. 1. The “gas molecules” are free to move
from one lattice site to another, subject to the impenetrability
condition; i.e., each lattice site can only be occupied by one
“gas molecule,” Thus, the black pixels behave like hard par-
ticles and the volume fraction of black phase is conserved
during the evolution of the system.

For a statistically homogeneous and isotropic particle sys-
tem �e.g., an equilibrium hard-sphere system or an equilib-
rium lattice-gas system in d-dimensional Euclidean space
Rd�, the most basic statistical descriptor of the spatial corre-
lations of the particles is the pair correlation function g2�r�
�1�. The quantity �g2�r�s1�r�dr is proportional to the condi-
tional probability of finding the center of a particle in a
d-dimensional spherical shell of volume s1�r�dr, given that
there is another particle at the origin. Here � is the particle
number density of the system and s1�r� is the surface area of
a d-dimensional sphere of radius r, which is given by

s1�r� =
2�d/2rd−1

��d/2�
, �2�

where ��x� is the Euler gamma function. Hence, for a finite
system, integrating �g2�r� over the volume yields all the par-
ticles except the one at the origin. Alternatively,
�g2�r�s1�r�dr is the average number of particles at a radial
distance between r and r+dr from a reference particle. Prac-
tically, g2�r� can be obtained from simulations by generating
a histogram for the number of particles n�r� contained in a
concentric shell of finite thickness �“bin” width� �r at radial
distance r from a arbitrarily chosen reference particle.

The two-point correlation function S2�r� of a statistically
homogeneous and isotropic medium can be interpreted as the
probability that both ends of a randomly oriented line seg-
ment with length r fall into the phase of interest, say, the
“black” phase. By comparison, we can see that the method of
computing g2�r� of an isotropic particle system implies a
natural way of obtaining S2�r� of a statistically homogeneous
and isotropic digitized medium, which efficiently uses all
possible vector information in the medium. For each black
pixel �or “gas molecule”� i, the distances between pixel i and
all the other pixels j are computed and binned to generate a
histogram for the number of black pixels separated from
each other by distance r. Another histogram for the number
of lattice sites separated from a reference site by distance r is
also generated by computing and binning all possible site-
separation distances. Suppose the histograms for black pixels
and lattice sites are stored in the array BN�r� and SN�r�, re-
spectively. It is easy to show that the two-point correlation
function can be obtained from

S2�r� = BN�r�/SN�r� �3�

�see Fig. 2�. In other words, to compute S2 we first calculate
the fraction of occupied lattice sites separated by distance r
�r2 is an integer� from a reference black pixel. Then we av-
erage this fraction over all black pixels �by choosing every
black pixel as reference pixel once� to obtain S2�r�. This
procedure is consistent with the geometrical probability in-
terpretation of S2. For the digitized media, a natural bin
width could be the characteristic size of the pixel of the
lattice; e.g., the edge length of a square pixel if a square
lattice is used.

At each step in the simulated annealing process, a trial
configuration is generated by moving a randomly selected
black pixel to an unoccupied lattice site. A configuration ar-
ray can be used to speed up this process. In our 2D imple-
mentation, the configuration array is a 2D array with the
entries being 1 and 0, corresponding to the occupied and
unoccupied lattice sites, respectively. When a trial move is
made, first we need to test whether it violates the impenetra-
bility condition by checking whether the underlying lattice
site is occupied or not. This process just requires constant
access time to an entry of the configuration array. Note that
several trial moves can be attempted before a trial configu-
ration is found for a high-density system. After a trial con-
figuration is generated, the old position information of the
selected pixel is stored in the array designated Pold.

(b)

(a)

FIG. 1. Digitized medium as lattice-gas system: �a� white pixels
as unoccupied lattice sites and �b� black pixels as nonoverlapping
“gas molecules.”
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The next step is to recompute the two-point correlation
function for the trial configuration. To do this efficiently, a
distance matrix is set up when the system is initialized and
updated if a trial configuration is accepted. Note that this
matrix is symmetric. For each trial configuration, only the
position of a randomly selected black pixel is changed—e.g.,
the kth pixel. Thus, only the kth row and column of the
distance matrix need to be updated, which requires NB op-
erations �NB is the total number of black pixels in the sys-
tem�. The old entries in the kth row �or column� of the dis-
tance matrix are stored in the array Dold. It is also
unnecessary to recompute the entire array BN�r�. Recall that
BN�r� contains the binned number of black pixels separated
from each other by distances between r and r+�r ��r is the
bin width�. Once the kth pixel is selected, the distances be-
tween pixel k and all the other pixels are binned and stored in
the array BN

old�r�. After the trial configuration is generated,
the new distances between pixel k and all the other pixels are
binned and stored in the array BN

new�r�. The array BN�r� is
updated as follows for each r:

BN�r� − BN
old�r� + BN

new�r� → BN�r� . �4�

S2�r� is then recomputed using Eq. �3� and the trial configu-
ration is accepted with the probability

P�Eold → Enew� = � 1, �E � 0,

exp�− �E/T� , �E � 0,
	 �5�

where the energy E is defined by Eq. �1� and �E= �Enew
−Eold�. If the trial configuration is rejected, all information of
the old configuration can be restored easily using the arrays
Pold, Dold, BN

old�r�, and BN
new�r�. For example, BN�r� of the old

configuration can be restored by

BN�r� − BN
new�r� + BN

old�r� → BN�r� . �6�

The above procedures are repeated until the energy of the
�re�constructed medium is below the energy threshold �see
Eq. �1� in Sec. III� or the total number of evolutions reaches
the prescribed limit value.

B. Algorithm modification using surface optimization

In the �re�construction of media composed of well-defined
“particles” or large clusters, we find out that in the later
stages of simulated annealing, the random pixel-selection
process is very inefficient. Many trial moves are rejected
because a majority of selected pixels are inside the formed
“particles” or clusters and it is energetically unfavorable to
move them outside. This requires the use of a biased pixel-
selection process—i.e., surface optimization.

The idea of surface optimization is analogous to the
physical process of solidification: when the nuclei of proper
sizes have been formed, they capture more solutes from sur-
rounding solution to further decrease the total free energy. In
the simulated annealing process, once the “nuclei” are
formed, the random pixel-selection process is replaced by a
biased pixel-selection process; i.e., only those in the sur-
rounding “solution” or on the surface of a “nucleus” are se-
lected to be moved to or along the surface of randomly se-
lected “nuclei.”

It is natural and easy to incorporate the surface optimiza-
tion with the lattice-point algorithm because the black pixels
are already considered as “molecules.” Each black pixel is
assigned a “free energy,” which is the minus of the number
of the nearest neighbors of that pixel. If a pixel is inside a
“nucleus,” it has the largest number of nearest neighbors and
the lowest “free energy,” which equals −4 if a square lattice
is used and −6 if a triangular lattice is used. If the pixel is on
the surface of a “nucleus” or in the surrounding “solution,”
its “free energy” will be relatively higher. The highest free
energy is 0, which means the pixel is separated from all the
others. Thus, the black pixels are grouped into two subsets:
the low-energy subset that contains pixels with lowest “free
energy” and the high-energy subset that contains the other
pixels. When the trial move is made, only the pixels in the
high-energy subset are selected to bias the move. If the trial
move is accepted, the free energy of the moved pixel and its
neighbor pixels are recomputed; the subsets are updated.

Numerical experiments show that applying surface opti-
mization properly will further decrease the final energy of

(b)

(a)

FIG. 2. �Color online� Centers of particles contained in the con-
centric shell of a reference particle: �a� in a equilibrium hard-disk
system and �b� in a lattice-gas system �or a digitized medium�.
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the �re�constructed medium by a factor of 10−2 �see Fig. 3� if
the same cooling schedule is used. Thus, surface optimiza-
tion enables one to efficiently produce more accurate struc-
tures associated with the imposed correlation functions.
Moreover, by setting a lower energy threshold, one can ad-
dress the nonuniqueness issue quantitatively. Progress on this
topic will be reported in our future publications.

C. Choice of lattices

A 2D digitized heterogeneous material �medium� can be
represented as a 2D array and the real morphology of the
material also depends on the lattice on which the system of
pixels is built �5�. Here, we mainly focus on two commonly
used lattices in the literature: namely, the square lattice and
the triangular lattice �see Fig. 4�.

Implementation of the algorithms discussed above on a
square lattice is easier than that on a triangular lattice be-
cause the former has orthogonal lattice vectors. However, the
pixels of a square lattice �squares� only have fourfold rota-
tional symmetry while those of a triangular lattice �hexa-
gons� have sixfold rotational symmetry, as shown in Fig. 4.
We find that for the media with long-range correlations or
large-scale structures, using a square lattice usually intro-
duces undesirable anisotropy in the �re�constructed systems,
as shown in Fig. 5; while for the media without long-range
order or large-scale structures, both lattices work well.

It is worth pointing out that the triangular lattice is supe-
rior to the square lattice in the �re�construction of anisotropic
materials. In that case, one cannot count on lattice-point al-
gorithm, which only uses radial averaged structural informa-
tion. Several optimization directions need to be specified and
processed separately. The triangular lattice has six intrinsic
directions due to the higher symmetry of its pixel shape
while the square lattice only has four �see Fig. 4�. Methods
using more optimization directions have been proposed by
Sheehan and Torquato �15�—i.e., along the 45° and 135°
directions in the square lattice—but one needs to pay the cost
of complexity of implementation in these cases.

III. SIGNIFICANCE OF THE ENERGY THRESHOLD

An important issue that has not been emphasized in our
previous work on the �re�construction algorithms is the

choice of the energy threshold Eth—i.e., the error tolerance
of discrepancies between the statistical properties of the gen-
erated structure and the imposed ones. Recall that in our
case, the energy is defined as the sum of squared differences

between target Ŝ2�r� and S2�r� of the constructed medium
�see Eq. �1�� and the energy threshold Eth is a prescribed
value of E such that when E�Eth, the �re�construction is
terminated. Eth indicates how accurately the medium is �re-
�constructed. A smaller Eth means the two-point correlation
function of the generated medium matches the imposed one
better.

In the following, we will estimate the change of the en-
ergy of a digitized medium caused by a perturbation of its
original structure �i.e., displacing a randomly selected black
pixel�. This change of energy can be considered as the en-
ergy difference between the target and the �re�constructed
medium. Thus, by imposing a particular value of the energy
difference �i.e., Eth�, we can in turn estimate the number of
perturbed black pixels. In this way, we quantitatively relate
the energy threshold to the question of how well the medium
is �re�constructed. In general, the energy difference depends

0 50 100 150 200
n

-10

-8

-6

-4

-2

0

lo
g 10

(E
)

FIG. 3. Energy E of the constructed medium as a function of
stages n. The target autocovariance function is the Debye random
medium function fD given by Eq. �23�, with a=30 �pixels� and
volume fractions 	1=	2=0.5. The linear size of the system N
=200 �pixels�. Surface optimization is applied at n=100, when
large clusters have been formed in the constructed medium.

(b)

(a)

FIG. 4. �a� The pixels �squares� and intrinsic directions of a
square lattice and �b� the pixels �hexagons� and intrinsic directions
of a triangular lattice.
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on how S2 is sampled, the linear size of the system N, and the
number of black pixels NB �which determines the volume
fraction 	1 of black phase�, which will be discussed accord-
ingly.

A. Eth for the lattice-point algorithm

First, we consider the energy threshold of the lattice-point
algorithm. The two-point correlation function of a digitized
medium is computed from Eq. �3�. If the generated structure
perfectly matches the target structure, the energy given by
Eq. �1� should be exactly 0. Suppose the perfect �re�con-
structed structure is perturbed by moving one of its black
pixels to an unoccupied lattice site; then, S2�r� is different

from Ŝ2�r� and E becomes a small positive number. Note that
we assume the perturbed structure does not have the same S2
as the original structure; i.e., there is no structural degen-
eracy. Let Emin denote the smallest positive value of E. From

Eq. �1�, we see that the difference between S2 and Ŝ2 of every
bin contributes to E. From Eq. �3� and the fact that the last

bin �farthest away from the reference center� contains the
largest number of pairs of lattice sites, we have

Emin = �S2
�N

2
�
 − Ŝ2
�N

2
�
	2

=
4


N
2 , �7�

where �N /2� is the integer part of N /2 and 
N is the number
of elements of the integer set �N, which is defined by

�N = �:�m,n�� − �N

2
� � m,n � �N

2
�,


�N

2
� − 1
2

� m2 + n2 � 
�N

2
�
2

. �8�

In other words, Eq. �7� estimates Emin using the change of E
from 0 caused by removing �adding� one pair of black pixels
from �to� the last bin �the pixels bounded in pairs due to the
symmetry of the distance matrix�. Also note that the pair of
pixels are originally in �or moved to� a “bin” for the pair
distance larger than �N /2�, which we do not take into ac-
count for computation of S2.

For a particular value of Eth, the maximum number of
misplaced pairs of black pixels can be estimated by

Nm =
Eth

Emin
=

1

4

N

2 Eth. �9�

The ratio of the number of misplaced pairs of black pixels
over the total number of pairs of black pixels is given by

� =
Nm

Ntot
=


N
2 Eth

4	1
2N4 . �10�

Instead of specifying Eth, one can also specify the ratio �
=�s and the threshold can be computed from Eq. �10�:

Eth =
4


N
2 �s	1

2N4. �11�

For example, consider a system composed of 200

200 pixels �N=200� and 	1=0.5. The total number of lat-
tice sites is NS=40 000 and the total number of black pixels
is NB=20 000. 
N can be obtained numerically, which is

N�106. From Eq. �7�, we have Emin�10−12. Suppose we
choose the threshold Eth=10−9; from Eq. �9�, we have the
number of misplaced pairs of black pixels Nm�103, which
seems to be a large number. However, when considering the
total number of pairs in the system, we have Ntot=NB

2 =4

108; from Eq. �10�, the ratio is given by

� =
Nm

Ntot
�

103

4 
 108 = 2.5 
 10−6, �12�

which means only 1 out of a half a million pairs is put in the
wrong bin. Thus, the medium is �re�constructed to a very
high accuracy. In our simulations, we choose the threshold
Eth=10−9.

B. Eth for the orthogonal S2-sampling algorithm

For the orthogonal S2-sampling algorithm, S2�r� is
sampled line �column� by line �column� by moving a line

(b)

(a)

FIG. 5. �Color online� Constructions of media with large-scale
structures: �a� medium generated on a square lattice with a square
unit cell and �b� medium generated on a triangular lattice with a
rhombus unit cell.
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�column� segment of length r one pixel distance each time
and counting the times that both ends of the segment are
black pixels. This number is then divided by the total number
of times that one moves the line �column� segment �total
number of pixels on the line �column�� to obtain S2 of that
line �column�. Finally, the S2 sampled from different lines
and columns of the digitized medium are averaged to com-
pute the S2 of the whole medium. Similarly, consider that the
perfect �re�constructed structure is perturbed by moving one
of its black pixels to an unoccupied lattice site and there is
no structural degeneracy; Emin is given by

Emin =
1

N4 , �13�

where N is the linear size of the system. For a particular Eth,
the maximum number of misplaced black pixels is given by

Nm =
Eth

Emin
= N4Eth. �14�

Thus, the ratio of misplaced black pixels over the total num-
ber of black pixels can be obtained by

� =
Nm

NP
=

1

	1
N2Eth. �15�

If, instead, �=�s is specified, the required energy threshold
Eth can be obtained from Eq. �15�:

Eth =
�s	1

N2 . �16�

Consider the same system used in the previous section �N
=200, 	1=0.5�. If we require only 10 black pixels be mis-
placed, thus the ratio �s=10 /N2=2.5
10−4. From Eq. �16�,
we have

Eth =
2.5 
 10−4 
 0.5

4 
 104 � 10−9. �17�

In other words, if we choose the threshold Eth=10−9, only 10
black pixels in the system are misplaced. The medium is
�re�constructed to a high accuracy.

It is worth noting that in the above discussions, we as-
sume that the perturbed structure does not have the same S2
of the original structure; i.e., there is no structural degen-
eracy. In general, however, structural degeneracy does exist
�i.e., media with the same S2 but different S3, S4, . . .�. Results
concerning these nonuniqueness issues will be reported in
our future publications.

IV. APPLICATIONS OF THE THEORETICAL
FORMALISM

In this section, we illustrate the practical utility of our
theoretical formalism in both two and three dimensions. In
particular, we will consider two kinds of applications. First,
given a set of basis functions �may not be complete�, one can
express the scaled autocovariance functions �two-point cor-
relation functions� of a statistically homogeneous and isotro-
pic medium in terms of the specified basis functions with

certain accuracy. Realizations of the materials can be gener-
ated using proper �re�construction procedures and subse-
quent analysis can be performed on the images to obtain
effective macroscopic properties of interest; see, e.g., Ref.
�13�. Second, the map � �see the discussion below� enables
one to construct candidates of realizable two-point correla-
tion functions with properties of interest, which in turn en-
ables one to design and investigate materials with desired
structural characteristics.

The �re�construction of realizations of 3D medium from
the information obtained from a 2D micrograph or image is
of great value in practice �6�. Therefore, we will apply the
lattice-point algorithm to generate three-dimensional digi-
tized realizations of a Fontainebleau sandstone and a boron-
carbide/aluminum composite from two-dimensional tomog-
raphic images of their slices through the materials. In a
successful reconstruction, other deemed crucial structural
characteristics besides S2 obtained from the reconstructed
medium should also agree closely with that of the target
medium. Consequently, in order to judge quantitatively how
well the reconstructions are, we will measure and compare
another important morphological descriptor—i.e., the two-
point cluster function C2�x1 ,x2�, defined to be the probability
of finding two points at x1 and x2 in the same cluster of the
phase of interest �7�. For statistically homogeneous and iso-
tropic media, C2 only depends on the relative scalar distances
between the points—i.e., C2�x1 ,x2�=C2��x1−x2��=C2�r�.
Note that C2 contains nontrivial topological “connectedness”
information. When large clusters are present in the medium,
C2 becomes a long-ranged function and its integral will di-
verge if the phase of interest percolates. The measurement of
C2 for a 3D material sample cannot be made from a 2D cross
section of the material, since it is an intrinsically 3D micro-
structural function �1�. To sample C2 from a digitized me-
dium, we associate each pixel with a cluster-index that indi-
cates to which cluster the pixel belongs and only bin the
distances of pixel-pairs in the same cluster. Then the number
of pair distances in each bin is normalized by the total num-
ber of distances between the lattice sites within that bin,
which is similar to the procedure of sampling S2 discussed in
Sec. II.

We will also study the reconstruction of a binary laser-
speckle pattern in two dimensions and show that the algo-
rithm cannot reproduce the pattern accurately. Moreover, we
introduce and discuss a classification of heterogeneous ma-
terials into multiscale media and single-scale media. A mul-
tiscale medium �MSM� is the one in which there are multiple
characteristic length scales associated with different struc-
tural elements. Examples of MSM include fractal patterns
and hierarchical laminate composites �19�. A single-scale
medium �SSM� is the one composed of structural elements
associated with only one characteristic length scale, such as a
Fontainebleau sandstone and a boron-carbide/aluminum
composite. We conclude that in general reconstructions using
S2 only work well for heterogeneous materials with single-
scale structures. However, two-point information via S2 is
not sufficient to capture the key structural features of multi-
scale media. Before presenting the aforementioned applica-
tions, we will first consider a general form of �, which in-
cludes all possible convex combinations of the basis
functions.
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A. General form of �

In paper I, we introduced the idea of expressing the two-
point correlation function of a statistically homogeneous and
isotropic medium through a selected set of bases of the two-
point correlation function space. In practice, it is convenient
to use the scaled autocovariance functions that are equivalent
to the two-point correlation functions, which are defined as
follows:

f�r� �
S2

�i��r� − 	i
2

	1	2
. �18�

Suppose �f i�r��i=1
m is a set of bases of scaled autocovariance

functions and � is an map on �f i�r��i=1
m composed of convex

combinations and products of f i�r� �i=1, . . . ,m�; thus,

f�r� = ���f i�r��i=1
m � = ��f1�r�, f2�r�, . . . , fm�r�� �19�

is also a realizable scaled autocovariance function. Note that
the choice of basis functions is not unique.

In general, one can consider that ���f i�r��i=1
m � takes the

form

���f i�r��i=1
m � = �

i

�i f i�r� + �
i,j

�ij f i�r�f j�r� + ¯ , �20�

where the coefficients satisfy the condition

�
i

�i + �
i,j

�ij + ¯ = 1. �21�

Then one can use standard regression methods to obtain the
set of coefficients such that f�r�=���f i�r��i=1

m � is the best ap-
proximation of the target function.

The basis functions we consider here include Debye ran-
dom medium function fD�r�, a family of polynomial func-
tions fP

�n��r�, damped oscillating function fO�r�, overlapping-
sphere function fS�r�, and symmetric-cell material function
fC�r�, which are discussed in paper I.

B. Modeling real materials

1. Fontainebleau sandstone

First, we investigate structural properties of a Fontaineb-
leau sandstone from a two-dimensional tomographic image
of a slice through the material sample. Sandstone is an im-
portant porous medium in geophysical and petroleum appli-
cations and has been the focus of many studies �6,20–22�. A
microstructural image of a slice of a Fontainebleau sandstone
is shown in Fig. 6�a�, in which the black areas are solid
phases �phase 1� and the white areas are void phases �phase
2�. The two-point correlation function of the void phase
S2

FS�r� is shown in Fig. 6�b�.
The scaled autocovariance function of the void phase in

Fontainebleau sandstone fFS�r� can be approximated by the
convex combination of fD�r� and fO�r� as follows:

fFS�r� = �1fD�r� + �2fO�r� , �22�

where �1=0.77 and �2=0.23 are the combination coeffi-
cients and

fD�r� = exp�− r/a� , �23�

fO�r� = exp�− r/b�cos�qr + �� , �24�

where a=3 �pixel� and b=6.5 �pixel� are the effective cor-
relation lengths, q=0.2 �pixel−1� is the oscillating frequency,
and �=0 is the phase angle. The two-point correlation func-
tion S2

FS�r� is approximated by

S2
FS�r� = fFS�r�	1	2 + 	2

2 + �S2�r� , �25�

where 	1=0.825 and 	2=0.175 are volume fractions of the
solid and void phases, respectively, and �S2�r� is the discrep-
ancy between the sampled two-point correlation function and
the basis-function approximation. The average of the abso-
lute values of discrepancies, �S2, which indicates how well
the sampled two-point correlation function is approximated
by the convex combination, is defined as

�S2 =
1

NL
�

r

��S2�r�� � 5.2 
 10−4, �26�

where NL=80 is the sample length. Note that although the
general form of � given by Eq. �20� would work well if a
complete set of basis functions is given, in the present case,
our practical approach is enough.

The 3D reconstruction of the Fontainebleau sandstone
from S2

FS�r� obtained from the digitized image of a 2D slice
�Fig. 6�a�� is shown in Fig. 7. Yeong and Torquato �6� have
already established that one can get a reasonably accurate
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)
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FIG. 6. �a� A microstructural image of a slice of a Fontainebleau
sandstone �20�. The black phase is the solid phase with 	1=0.825,
and the white phase is the void phase with 	2=0.175. �b� The
two-point correlation function S2

FS�r� of the void �white� phase.
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rendition of the actual 3D structure of the Fontainebleau
sandstone from the two-point function S2 extracted from
same 2D image that we use here. Visually, the reconstruction
provides a good rendition of the true sandstone microstruc-
ture, as can be seen by comparing the 2D images. As pointed
out earlier, to ascertain whether the reconstruction is quanti-
tatively successful, we also measure C2 of the target and
generated media. Since it is an intrinsically 3D microstruc-
tural function, we only compute and compare the two-point
cluster functions of the 2D slices. The measured C2

v�r� for the
void phase of the target and the reconstructed slices of the
Fontainebleau sandstone are shown in Fig. 8. The figure re-
veals that although C2

v�r� of the generated medium is slightly
below that of the target medium, the discrepancies are ac-
ceptable �e.g., the largest discrepancy ��C2

v��5
10−3�.
Thus, we consider the reconstruction is successful. Also note
that the close agreement of the two-point cluster function

indicates that C2
v�r� is largely determined by S2

FS�r� of the
medium and suggests that C2

v�r� might be expressed as a
functional of S2

FS�r�.

2. Boron-carbide/aluminum composite

A 2D digitized image of a boron-carbide/aluminum
�B4C /Al� interpenetrating composite and the sampled two-
point correlation function of the aluminum phase �white
phase� S2

Al�r� �23� are shown in Fig. 9. As we can see from

(b)

(a)

FIG. 7. �Color online� �a� The reconstructed 3D realization of
the Fontainebleau sandstone from S2

FS�r� of the void phase. The
void phase is shown in yellow �or gray in the print version� and the
solid phase is transparent for easy visualization. �b� A 2D slice of
the constructed 3D realization. The solid phase is shown in black,
and the void phase is shown in white. The linear size of the system
N=160 �pixels�.

0 10 20 30 40 50
r (pixels)

0

0.05

0.1

0.15

0.2

C
2v (r

)

C
2

v
of the target medium

C
2

v
of the reconstructed medium

FIG. 8. The two-point cluster functions C2
v�r� for the void

�white� phase of the target and reconstructed 2D slices of the Fon-
tainebleau sandstone.
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FIG. 9. �a� A digitized image of a boron-carbide/aluminum com-
posite �23�. The black phase is boron carbide with 	1=0.647, and
the white phase is aluminum with 	2=0.353. �b� The two-point
correlation S2

Al�r� of the aluminum phase.

MODELING HETEROGENEOUS … . II. ALGORITHMIC … PHYSICAL REVIEW E 77, 031135 �2008�

031135-9



Fig. 9�b�, S2
Al�r� is essentially an exponentially decreasing

function without any significant short-range correlation.
Thus, S2

Al�r� can be approximated by

S2
Al�r� = �1�	1	2fD�r� + �2�	1	2fO�r� + 	2

2 + �S2��r� ,

�27�

where �1�=0.81 and �2�=0.19 are combination coefficients;
	1=0.647 and 	2=0.353 are volume fractions of the boron-
carbide �black� and aluminum �white� phases, respectively,
and fD�r� and fO�r� are given by Eqs. �23� and �24�, respec-
tively; the parameters used are a=3 �pixel�, b=10 �pixel�,
and q=0.22 �pixel−1�, �=0. The average of the absolute val-
ues of discrepancies �S2� is given by

�S2� =
1

NL
�

r

��S2��r�� � 6.4 
 10−4, �28�

where NL=80 is the sample-length.
The 3D reconstruction of the boron-carbide/aluminum

composite from S2
Al�r� obtained from the digitized image of a

2D slice �Fig. 9�a�� is shown in Fig. 10. As in the previous
section, to verify that the reconstruction is quantitatively suc-
cessful, we compute and compare the two-point cluster func-
tion C2

Al�r� for the aluminum phase of the target and recon-
structed 2D slices of the composite. As shown in Fig. 11, the
reconstruction also slightly underestimates C2

Al�r� with ac-
ceptable discrepancies �e.g., the largest discrepancy ��C2

Al�
�8
10−3�. The medium can be considered as successfully
reconstructed. Also note that C2

Al�r� is long ranged, indicat-
ing large clusters of the aluminum phase present in the me-
dia.

3. Binary laser-speckle pattern

Although in the above two examples our theoretical for-
malism works well, there are situations where the micro-
structural information contained in S2�r� alone is not suffi-
cient to accurately reconstruct a heterogeneous material. One
such example is the multiscale structure of a binary laser-
speckle pattern �Fig. 12�. The figure reveals that there are
three structural elements: “particles,” “stripes,” and a back-
ground “noise” �individual black pixels dispersed throughout
the white phase�. Thus, there are three characteristic length
scales in the medium associated with these structural ele-
ments.

The reconstruction of the speckle pattern is shown in Fig.
13. Comparing Fig. 13 with Fig. 12, we can see that instead
of reproducing all the structural elements in the target me-
dium, the �re�construction program seems to mix them up to
generate a single-scale structure that has the same �or to a
very high accuracy� two-point correlation function as the tar-
get medium. We note that this is a numerical example of
structural degeneracy of S2�r�.

The laser-speckle pattern we considered is also an ex-
ample of the multiscale media �MSM�. The separation of
length scales in MSM results in the inefficiency of the bulk-
based structure characteristics �e.g., n-point correlation func-

(b)

(a)

FIG. 10. �Color online� �a� The reconstructed 3D realization of
the boron-carbide/aluminum composite from S2

Al�r�. The aluminum
phase is shown in yellow �or gray in the print version� and the
ceramic phase is transparent for easy visualization. �b� A 2D slice of
the constructed 3D realization. The ceramic phase is shown in
black, and the aluminum phase is shown in white. The linear size of
the system N=160 �pixels�.

0 10 20 30 40 50 60
r (pixels)

0

0.1

0.2

0.3

0.4

C
2A

l (r
)

C
2

Al
of the target medium

C
2

Al
of the reconstructed medium

FIG. 11. The two-point cluster functions C2
Al�r� for the alumi-

num �white� phase of the target and reconstructed 2D slices of the
boron-carbide/aluminum composite.
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tions�, since usually they can only pick up structural infor-
mation associated with the largest length scale. For example,
consider the dislocations in a crystalline solid as the phase of
interest; it is clear that the two-point correlation function of
the “dislocation” phase is identically zero since the “disloca-
tion” phase has no measure compared with the bulk “crystal”
phase �i.e., the volume of dislocations is zero compared with
that of the bulk crystal�. In this extreme example, the ratio �
of the two characteristic length scales associated with the
“dislocation” phase Ld and the “crystal” phase Lc is zero—
i.e., �=Ld /Lc=0. In digitized media, the ratio of length
scales is always positive due to the discrete nature of the
system; however, when the ratio is significantly different
from unity, the two-point correlation function alone is not
able to capture the key structural features. On the other hand,
extensive experience with successful reconstructions of
single-scale media �SSM� from S2 shows that the two-point
correlation functions are indeed sufficient to determine the
structures of SSM to a high accuracy. Thus, we conclude that
in general reconstructions using S2 work well for heteroge-
neous materials with single-scale structures, while the micro-
structural information contained in S2 is not sufficient to ac-
curately model multiscale media. More morphological
information �e.g., the lineal-path function �25�, the two-point
cluster function, etc.� could be used to model MSM more
accurately. However, even the cluster-type functions contain-
ing connectedness information of the media such as C2 may

not completely characterize MSM statistically. Note that it is
also the filamentary structures in the binary speckle pattern
that make it extremely difficult to reconstruct. To the best of
our knowledge, there are currently no satisfactory statistical
descriptors that accurately characterize filamentary struc-
tures, which are also of great interest in cosmology �26�.

C. Constructing materials with desired structural
characteristics

From Eq. �19�, one can construct candidates of realizable
two-point correlation functions using the basis functions. The
constructed hypothetical functions satisfy all the known nec-
essary conditions �1,5,27�. Given a set of basis functions
with diverse and interesting properties, one would be able to
construct a two-point correlation function that exhibits all the
useful properties of the basis functions to some extent and
generate an “optimal” structure that realizes all the desired
structural features. Thus, the theoretical formalism enables
one to design materials with structural properties of interest.
Given an accurate structure-property relation, one could even
design materials with physical properties of interest by ma-
nipulating their two-point correlation functions. For ex-
ample, Adams, Gao, and Kalidindi recently developed a
methodology to obtain finite approximations of the second-
order properties closure in single-phase polycrystalline ma-
terials, from which the second-order microstructure design
can proceed �28�. Direct incorporation of the calculations of
the desired physical properties �such as the formation factor
and the fluid permeability� into the �re�constructions using
simulated annealing method would be very computationally
expensive, since normally one needs to compute and homog-
enize the corresponding field solutions of every trial configu-
ration to obtain a particular effective property. An alternative
approach is the topology optimization technique �29�, which
uses the linear programming method to find the arrangement
of prescribed phases �i.e., a microstructure� with optimized
physical properties.

As pointed out in paper I, we know very little about the
basis function set �f i�r��i=1

m at this stage. Our choice of
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FIG. 12. �a� A digitized image of a binary laser-speckle pattern
�24�. The volume fraction of the black phase is 	1=0.639, and the
volume fraction of the white phase is 	2=0.361. �b� The two-point
correlation S2

SP�r� of the black phase.

FIG. 13. The reconstruction of the binary laser-speckle pattern
from S2

SP�r�. The linear size of the system N=150 �pixels�.
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�f i�r��i=1
m is based on the criterion that f i�r�’s should have

simple analytical forms and they present typical features of
certain known two-point correlation functions. Important
features exhibited by most realizable two-point correlation
functions are monotonically deceasing or damped oscillating,
which corresponds to materials without or with significant
short-range order, respectively. Another feature of two-point
correlation functions that may affect the structures of the
corresponding materials is the smoothness of the function,
which is not emphasized in our previous work. In the follow-
ing, we will see through several examples that the properties
of basis functions can be observed in the generated struc-
tures; also the media with desired structural properties can be
obtained by manipulating the combination coefficients and
the parameters �e.g., effective correlation length� in the basis
functions.

In paper I, we already investigated hypothetical correla-
tion functions combining the exponentially decreasing and
damped-oscillating features. In this section, we provide an
example of nonsmooth correlation functions �with discon-
tinuous derivatives�—i.e., the polynomial function of order
2, fP

�2��r�, which is defined as

fP
�2��r� = ��1 − r/c�2, 0 � r � c ,

0, r � c ,
	 �29�

where the parameter c is the effective correlation length.
Other correlation functions having this nonsmooth feature
include the functions of known constructions �e.g., fS�r�,
fC�r�, etc.� and other polynomial functions �5�. A typical me-
dium associated with this type of functions is composed of
dispersions of fully penetrable “particles.” The monotoni-
cally decaying part of the functions determines the size and
shape of the “particles” and the penetrability is consistent
with the flat “tail” of the functions, which implies no spatial
correlation between the “particles.” When these functions are
use as dominant basis functions, one can expect the gener-
ated media also contain well-defined overlapping “particles”;
thus, surface optimization could be applied in the �re�con-
structions. However, when functions like Debye random me-
dium function are dominant in the convex combination, this
algorithm modification should be used with care because the
media could contain “clusters” of all sizes and shapes, which
would significantly reduce the efficiency of the modified al-
gorithm using surface optimization.

Besides fP
�2��r�, we also use Debye random medium func-

tion fD�r� and damped-oscillating function fO�r� as the basis
functions. Consider the simplest form of � for these three
basis functions: i.e.,

f�r� = �1fD�r� + �2fO�r� + �3fP
�2��r� , �30�

where �i �i=1,2 ,3� satisfies 0��i�1 and �i�i=1, and
fD�r�, fO�r�, and fP

�2��r� are given by Eqs. �23�, �24�, and �29�,
respectively. The characteristic length scales of the generated
structures are determined by the parameters in the basis func-
tions, and the ratios of the characteristic lengths are chosen
to be close to unity; i.e., the hypothetical media belong to
SSM.

Suppose we choose the combination coefficients
��1 ,�2 ,�3�= �0.3,0.2,0.5� and choose the following values
for the parameters in the basis functions: a=8 �pixel�, b
=5 �pixel�, q=1 �pixel�−1, �=0, and c=5 �pixel�. The
combined autocovariance function f�r� is shown in Fig. 14,
and the constructed structure with volume fraction of black
phase 	1=0.5 is shown in Fig. 15. From the figures, we can
see the effects of each basis function on the generated struc-
ture. The short-range correlations in the structure are deter-
mined by fP

�2��r�, which allows spatially uncorrelated “par-
ticles” with diameter c to form. These “particles” would
form clusters of different sizes as the volume fraction of the
black phase increases. The middle-range correlations in the
structure are dominated by the oscillation part in f�r�, which
is the contribution of fO�r�. As we have shown in paper I, the
parameter q is manifested as a characteristic repulsion
among different structure elements �appearing in different
forms at different volume fraction� with diameter of order q,
while b controls the overall exponential damping, and thus
the effective range of the repulsion. The large-scale correla-
tion is dominated by the long “tail” of fD�r�, which allows
clusters of all shapes and sizes to form. In Fig. 15, we can
clearly identify the structure elements associated with each
basis function. For example, the stripelike structures are as-
sociated with the oscillating feature of f�r�, the width of
which is approximately q. Several “particles” with diameter
a can be found dispersed in the white phase, which corre-
spond to the contribution of fP

�2��r�. Note that most “par-
ticles” form clusters together with the “stripes” at this rela-
tively high volume fraction 	1=0.5. Finally, the spatial
distribution of large-scale clusters is determined by the “tail”
of fD�r�.

Suppose now we would like to generate a similar struc-
ture as the one in Fig. 15, but with larger “particles” and
clusters. To “grow” the “particles,” we need to increase the
parameter c in fP

�2��r�, which controls the effective diameter
of the “particles.” To form larger clusters, we need to reduce
the “repulsion” between the structural elements, or equiva-
lently, to suppress the oscillation introduced by fO�r�. This
can be done by either increasing the parameter b in fO�r� or
decreasing the coefficient �2. We first adopt the former
method. Thus, to construct a new structure with the required
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FIG. 14. The constructed autocovariance function f�r� given by
Eq. �30�. The combination coefficients are ��1 ,�2 ,�3�
= �0.3,0.2,0.5�; the parameters in the basis functions are a
=8 �pixel�, b=5 �pixel�, q=1 �pixel�−1, �=0, and c=5 �pixel�.
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(b)

(a)

FIG. 15. �Color online� �a� The constructed 3D structure asso-
ciated with f�r� shown in Fig. 14 with volume fractions 	1=	2

=0.5. The “black phase” is shown in yellow �or gray in the print
version�, and the “white phase” is transparent for easy visualization.
�b� A 2D slice of the constructed 3D realization. The linear size of
the system N=150 �pixels�.
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FIG. 16. The constructed autocovariance function f�r� given by
Eq. �30�. The combination coefficients are ��1 ,�2 ,�3�
= �0.3,0.2,0.5�; the parameters in the basis functions are a
=8 �pixel�, b=10 �pixel�, q=0.5 �pixel�−1, �=0, and c
=15 �pixel�.
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FIG. 17. �Color online� �a� The constructed 3D structure asso-
ciated with f�r� shown in Fig. 16 with volume fractions 	1=	2

=0.5. The “black phase” is shown in yellow �or gray in the print
version�, and the “white phase” is transparent for easy visualization.
�b� A 2D slice of the constructed 3D realization. The linear size of
the system N=150 �pixels�.
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FIG. 18. The constructed autocovariance function f�r� given by
Eq. �30�. The combination coefficients are ��1 ,�2 ,�3�
= �0.45,0.05,0.5�; the parameters in the basis functions are a
=8 �pixel�, b=10 �pixel�, q=0.5 �pixel�−1, �=0, and c
=15 �pixel�.
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properties, we use the parameters a=8 �pixel�, b
=10 �pixel�, q=0.5 �pixel�−1, �=0, and c=15 �pixel� and
use the same �i �i=1,2 ,3� as the last example. The com-
bined autocovariance function f�r� is shown in Fig. 16, and
the constructed structure with volume fraction of black phase
	1=0.5 is shown in Fig. 17. From the figures, we can see
that the generated medium indeed contains larger “particles”
and clusters; besides, there are still stripelike structures asso-
ciated with the repulsion part of f�r�.

Now we would like to further increase the size of clusters
in the constructed medium while keeping all the parameters
in the basis functions unchanged. This time we need to adjust
the combination coefficients to obtain the required structure.
To generate larger clusters, the repulsion effect need to be
further suppressed; thus, we need to reduce �2. Since the
sum of the coefficients must equal 1, we also need to in-
crease the other two �i �i=1,3�. Note that further increasing
�3 makes fP

�2��r� dominant in the combination; however, as

we discussed before, fP
�2��r� corresponds to spatially uncorre-

lated “particles” and the size of clusters formed by these
“particles” is determined by the volume fraction the “par-
ticle” phase, which cannot be changed here. So we choose to
increase �1 of fD�r� based on the fact that the large correla-
tion length and long “tail” of fD�r� significantly stimulate the
forming of large clusters. Thus, in the construction we use
the combination coefficients ��1 ,�2 ,�3�= �0.45,0.05,0.5�
and use the same parameters in the basis functions as the last
example. The combined autocovariance function f�r� is
shown in Fig. 18, and the constructed structure with volume
fraction of black phase 	1=0.5 is shown in Fig. 19.

From the above examples, we see that even a simple con-
vex combination of the basis functions �the simplest form of
map �� can provide variety of candidates of realizable two-
point correlation functions. We can also obtain desired struc-
tures by manipulating the combination coefficients and the
parameters in the basis functions. Thus, we argue that in
general given a complete set of basis functions, Eq. �20�
enables one to construct candidates of realizable functions
with desired properties and to design materials with struc-
tural properties of interest.

V. CONCLUSIONS

In this paper, we described in great detail the lattice-point
algorithm, which has been shown to be both efficient and
isotropy-preserving for �re�constructing statistically homoge-
neous and isotropic media. The digitized medium �pixel sys-
tem� can be considered as a lattice-gas system, in which the
black pixels behave like nonoverlapping “particles” moving
from one lattice site to another. The two-point correlation
function of the medium is sampled by binning all distances
between black pixels and dividing the number in each bin by
the total number of distances between all lattice sites in that
bin. The energy threshold indicating to what accuracy the
medium is �re�constructed has been discussed in detail for
the first time. This quantity is directly related to the issue of
nonuniqueness of �re�constructions. We have also described
an algorithm modification using surface optimization to fur-
ther speed up the �re�construction process and discussed its
implementation based on our lattice-gas version of the digi-
tized media. Numerical experiments have shown that by ap-
plying the surface optimization algorithm properly �i.e., in
the �re�constructions of media composed well-defined “par-
ticles”�, the final energy can be reduced by a factor of 10−2 if
the same cooling schedule is used. The choice of different
pixel lattices has also been discussed.

We have applied the theoretical formalism proposed in
paper I to model several examples of real materials. In par-
ticular, we used the lattice-point algorithm to generate 3D
realizations of a Fontainebleau sandstone and a boron-
carbide/aluminum composite from 2D images of their slices
through the materials. The two-point cluster functions in the
reconstructions in these two different cases matched the cor-
responding ones in the original materials, thus demonstrating
the efficiency and accuracy of the �re�construction algorithm
in these cases. We also studied the reconstruction of a binary
laser-speckle pattern in 2D, in which the algorithm fails to

(b)

(a)

FIG. 19. �Color online� �a� The constructed 3D structure asso-
ciated with f�r� shown in Fig. 18 with volume fractions 	1=	2

=0.5. The “black phase” is shown in yellow �or gray in the print
version�, and the “white phase” is transparent for easy visualization.
�b� A 2D slice of the constructed 3D realization. The linear size of
the system N=150 �pixels�.
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reproduce the target pattern accurately. We conclude that in
general reconstructions using S2 only work well for hetero-
geneous materials with single-scale structures. However,
two-point information via S2 is not sufficient to accurately
model multiscale media. In paper I, we pointed out that
given a complete set of basis functions, one can obtain the
basis-function approximations of the two-point correlation
functions for the materials of interest to any accuracy. Here
we only used a simple form of Eq. �20� due to our limited
knowledge of the basis functions set. We also constructed
realizations of materials with desired structural characteris-
tics by manipulating the combination coefficients and the
parameters in the basis functions. Thus, Eq. �20� enables one
to construct candidates of realizable functions with desired
properties and to design materials with structural properties
of interest.

We are now developing efficient �re�construction proce-
dures that take into account additional microstructural infor-

mation that characterizes the media. For example, using our
lattice-gas version of the digitized media, the two-point clus-
ter functions C2 can be directly incorporated into the Yeong-
Torquato scheme �8�, which enables one to obtain more ac-
curate �re�constructions of the target media. In the case of
particulate media, in addition to the pair correlation function
�the analog of S2�r� for general rand media�, which has been
used to reconstruct such microstructures �30�, one can also
include nearest-neighbor statistics �31� as well as “void” sta-
tistics �1�. Such work will be reported in our future publica-
tions.

ACKNOWLEDGMENTS

S.T. thanks the Institute for Advanced Study for their hos-
pitality during his stay there. Acknowledgment is made to
the Donors of the American Chemical Society Petroleum Re-
search Fund for support of this research.

�1� S. Torquato, Random Heterogeneous Materials: Microstruc-
ture and Macroscopic Properties �Springer-Verlag, New York,
2002�.

�2� L. J. Gibson and M. F. Ashby, Cellular Solids �Cambridge
University Press, Cambridge, England, 1999�.

�3� S. Torquato, L. V. Gibiansky, M. J. Silva, and L. J. Gibson, Int.
J. Mech. Sci. 40, 71 �1998�.

�4� A. Gabrielli, F. Sylos Labini, M. Joyce, and L. Pietronero,
Statistical Physics for Cosmic Structures �Springer-Verlag,
New York, 2005�.

�5� Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 76,
031110 �2007�.

�6� C. L. Y. Yeong and S. Torquato, Phys. Rev. E 58, 224 �1998�.
�7� S. Torquato, J. D. Deasley, and Y. C. Chiew, J. Chem. Phys.

88, 6540 �1988�.
�8� C. L. Y. Yeong and S. Torquato, Phys. Rev. E 57, 495 �1998�.
�9� K. Wu, M. I. J. Dijke, G. D. Couples, Z. Jiang, J. Ma, K. S.

Sorbie, J. Crawford, I. Young, and X. Zhang, Transp. Porous
Media 65, 443 �2006�.

�10� M. A. Ansari and F. Stepanek, AIChE J. 52, 3762 �2006�.
�11� R. Hilfer and C. Manwart, Phys. Rev. E 64, 021304 �2001�.
�12� D. Basanta, M. A. Miodownik, E. A. Holm, and P. J. Bentley,

Metall. Mater. Trans. A 36, 1643 �2005�.
�13� H. Kumar, C. L. Briant, and W. A. Curtin, Mech. Mater. 38,

818 �2006�.
�14� D. Cule and S. Torquato, J. Appl. Phys. 86, 3428 �1999�.
�15� N. Sheehan and S. Torquato, J. Appl. Phys. 89, 53 �2001�.
�16� M. G. Rozman and M. Utz, Phys. Rev. Lett. 89, 135501

�2002�.
�17� R. Hosemann and S. N. Bagchi, Acta Crystallogr. 7, 237

�1954�.
�18� C. Chubb and J. I. Yellott, Vision Res. 40, 485 �2000�.
�19� J. Quintanilla and S. Torquato, Phys. Rev. E 53, 4368 �1996�.
�20� D. A. Coker, S. Torquato, and J. Dunsmuir, J. Geophys. Res.

101, 17497 �1996�.
�21� L. M. Schwartz, F. Auzerais, J. Dunsmuir, N. Martys, D. P.

Bentz, and S. Torquato, Physica A 207, 28 �1994�.
�22� C. Manwart, S. Torquato, and R. Hilfer, Phys. Rev. E 62, 893

�2000�.
�23� S. Torquato, C. L. Y. Yeong, M. D. Rintoul, D. L. Milius, and

I. A. Aksay, J. Am. Ceram. Soc. 82, 1263 �1999�.
�24� The source of the original gray-scale image is http://

www.people.vcu.edu/~ecarpenter2
�25� B. Lu and S. Torquato, Phys. Rev. A 45, 922 �1992�; S.

Torquato and B. Lu, Phys. Rev. E 47, 2950 �1993�.
�26� H. T. MacGillivray and R. J. Dodd, J. Astrophys. Astron. 7,

293 �1986�.
�27� S. Torquato, J. Chem. Phys. 111, 8832 �1999�; Ind. Eng.

Chem. Res. 45, 6923 �2006�.
�28� B. Adams, X. Gao, and S. Kalidindi, Acta Mater. 53, 3563

�2005�.
�29� O. Sigmund and S. Torquato, Appl. Phys. Lett. 69, 3203

�1996�; J. Mech. Phys. Solids 45, 1037 �1997�; O. Sigmund, S.
Torquato, and I. A. Aksay, J. Mater. Sci. 13, 1038 �1998�; S.
Torquato, S. Hyun, and A. Donev, Phys. Rev. Lett. 89, 266601
�2002�.

�30� J. Crawford, S. Torquato, and F. H. Stillinger, J. Chem. Phys.
119, 7065 �2003�.

�31� S. Torquato, Phys. Rev. Lett. 74, 2156 �1995�.

MODELING HETEROGENEOUS … . II. ALGORITHMIC … PHYSICAL REVIEW E 77, 031135 �2008�

031135-15


