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We consider the construction of point processes from tilings, with equal-volume tiles, of d-dimensional
Euclidean space Rd. We show that one can generate, with simple algorithms ascribing one or more points to
each tile, point processes which are “superhomogeneous” �or “hyperuniform”�—i.e., for which the structure
factor S�k� vanishes when the wave vector k tends to zero. The exponent � characterizing the leading small-
k behavior, S�k→0��k�, depends in a simple manner on the nature of the correlation properties of the specific
tiling and on the conservation of the mass moments of the tiles. Assigning one point to the center of mass of
each tile gives the exponent �=4 for any tiling in which the shapes and orientations of the tiles are short-range
correlated. Smaller exponents in the range 4−d���4 �and thus always superhomogeneous for d�4� may be
obtained in the case that the latter quantities have long-range correlations. Assigning more than one point to
each tile in an appropriate way, we show that one can obtain arbitrarily higher exponents in both cases. We
illustrate our results with explicit constructions using known deterministic tilings, as well as some simple
stochastic tilings for which we can calculate S�k� exactly. Our results provide an explicit analytical construc-
tion of point processes with ��4. Applications to condensed matter physics, and also to cosmology, are briefly
discussed.
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I. INTRODUCTION

“Superhomogeneous” �1� or “hyperuniform” �2� point
patterns in d-dimensional Euclidean space Rd are defined to
be those in which infinite-wavelength density fluctuations
vanish. In other words, the structure factor �or power spec-
trum� S�k� of the number density field at wave vector k has
the following behavior:

lim
k→0

S�k� = 0. �1�

This defining characteristic of superhomogeneity �or hyper-
uniformity� is tantamount to saying that the usual mean-
square particle-number fluctuations increase less rapidly than
Rd for large R, where R denotes the linear size of an obser-
vation window in Rd �1,2�. Indeed, the magnitude of such
local density fluctuations has been suggested as a possible
“order metric” to quantify the degree of order �disorder� of
an arbitrary point pattern �2�. Any superhomogeneous point
pattern can be seen as a typical configuration of a particular
type of “critical” point in that the direct correlation function
�defined through the Ornstein-Zernicke relation� is long
ranged while the pair correlation function is short ranged �2�.
Such remarkable behavior is diametric to that seen in the
usual thermal critical points in which the inverse is true; i.e.,
the pair correlation is long ranged and the direct correlation
function is short ranged.

Although it is clear that any periodic point pattern is su-
perhomogeneous, it is less obvious that statistically transla-
tionally and even rotationally invariant random point patterns

in Rd can have this property. We now know of a variety of
intriguing translationally and rotationally invariant random
point patterns that are superhomogeneous, including the
ground state of liquid 4He �3–5�, maximally random jammed
hard-sphere packings �6�, certain one-component plasmas
�7–9�, the matter distribution in the Universe �1,8�, and cer-
tain aperiodic tilings �2,8,10�. An interesting application of
superhomogeneous point patterns in cosmology is in the
preparation of initial conditions for gravitational N-body
simulations �8–11�. Superhomogeneous distributions also ap-
pear in cosmology in the context of the determination of
bounds, first derived by Zeldovich �12�, on the mass fluctua-
tions at large scales generated by causal mechanisms �i.e.,
with physics respecting the causal constraints of cosmologi-
cal models�. Indeed, we note that in this context a simplified
form of the analysis we develop here of the small-k behavior
of the structure factor is often used �see, e.g., Ref. �13��.

It is desirable to develop both theoretical and computa-
tional methods to generate a wide class of superhomoge-
neous random point patterns. Recently, a collective coordi-
nate approach �14,15� has been employed to numerically
generate translationally invariant superhomogeneous point
processes. This procedure enables one to produce point pat-
terns that completely suppress the density fluctuations of
modes for a positive range of wave numbers around the ori-
gin. In Ref. �16� an algorithm for generating discrete pro-
cesses in one dimension with superhomogeneous mass fluc-
tuations has been given �see also Ref. �17��. An analytical
methodology to relate superhomogeneous point processes
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and Voronoi tilings of space has recently been proposed and
studied in Ref. �18�.

In this paper, we study the construction of superhomoge-
neous point patterns starting from generic tilings of Euclid-
ean space Rd with equal-volume tiles. We show how to ex-
plicitly generate such point processes in which the structure
factor for small wave numbers has the power-law form
S�k��k� for positive �, where k��k� is the wave number.
The constructions illustrate the very specific properties of
these superhomogeneous point patterns in which the expo-
nent �, characterizing the long-wavelength fluctuation in k
space, is related to the detailed arrangement of the points on
small scales. Our study also shows how the exponents of the
small-k behavior of the structure factor for these point pro-
cesses encode properties of the tilings and could thus possi-
bly be used as a method for classifying them. In a related
article by two of us �19� the two-point correlation properties
of point processes generated by replacing each particle, in a
point process with known two point properties, by a “cloud”
of particles are derived.1 One of us �15� numerically gener-
ated disordered point distributions within a cubical box un-
der periodic boundary conditions with ��4. However, to
our knowledge, prior to this paper and �19�, explicit analyti-
cal constructions of point processes with ��4 have not been
given previously in the literature.

It is instructive to recall qualitatively why tilings are a
natural starting point for the construction of superhomoge-
neous point processes. A tiling or tessellation is a partition of
Euclidean space Rd into closed regions whose interiors are
disjoint regions �20�. Let us suppose we have a tiling of
space by tiles which are �i� of equal volume �T� and �ii�
bounded, with maximal length � in any direction. Let us
now place one point in each tile and consider the number
fluctuations in the point process so generated. If N�R� is the
number of points in a sphere of radius R and of volume V�R�,
it is simple to see that

V�R − ��
�T�

� N�R� �
V�R + ��

�T�
. �2�

The lower bound is the minimal number of tiles which can
overlap the sphere of radius R−� �and all such tiles must
contribute a point to N�R��; the upper bound is the maximal
number of tiles which are fully enclosed in the sphere of
radius R+� �and only such tiles can contribute to N�R��. For
R→� we have therefore

�	N�R�� � cRd−1, �3�

where c is a constant and 	N�R�=N�R�− N̄�R� with N̄�R�
=V�R� / �T�. Averaging over configurations �or randomly

placed centers for the spheres� one anticipates that the slow-
est possible scaling of number fluctuations is

		N2�R�
 � Rd−1, �4�

where 	¯
 denotes the ensemble �or volume� average. This
behavior of the variance, proportional to the surface, is a
characteristic of superhomogeneous point processes. If there
is appropriate long-range correlation in the tiling at arbi-
trarily large scale, the fluctuations could, however, in prin-
ciple, add coherently to give the more rapid growth up to

		N2�R�
 � R2�d−1�, �5�

which corresponds to the limit equality in Eq. �3�. While in
d=1 this still corresponds to surface fluctuations,2 for any
d
2 it implies only the limiting small-k behavior S�k��k�

with �
−d+2, which means that the point processes are not
necessarily superhomogeneous for d
2. We will recover
this result below, with the only difference that the bound is
found to be ��−d+4, which implies that even long-range
correlations between tiles give superhomogeneous processes
for d�4. The difference between this result and our naive
estimate is simply due to the fact that below we constrain the
particles to lie at the center of mass, rather than placing them
randomly. In fact, we will show here that by assigning more
than one point in an appropriately constrained manner to
each tile, we can increase these bounds on the exponents
without limit and realize superhomogeneous processes with
an arbitrary positive exponent in any dimension.

II. POINT DISTRIBUTIONS FROM TILINGS: ONE POINT
PER TILE

We consider in this section point processes generated by
ascribing one point to each tile. We first give a general analy-
sis of the small-k properties of the structure factor of the
density fluctuations and derive how the leading behavior is
determined by the properties of the tiling. We then describe
some specific explicit constructions which illustrate the re-
sult.

A. Density fluctuations and long-wavelength limit

We start from a generic �regular or irregular� tiling3 of
d-dimensional Euclidean space Rd into equal-volume tiles,
which we denote Ti. We consider the point distribution gen-
erated by ascribing one point to each tile and placing it at
position xi, which coincides with the center of mass of the
tile Ti—i.e.,

xi =
1

�T��Ti

ddx x , �6�

where �T� is the volume of the tiles. The density fluctuation
field is thus

1Results in this case are derived in �19� under the assumption that
the stochastic process describing the generation of the “clouds” and
the initial point process are independent. In the algorithm discussed
here this is not the case, as the points are ascribed to each tile in a
way which depends, in general, on the tile. For the particular case
of a Bravais lattice tiling, however, both calculations are valid be-
cause of the equivalence of all tiles and points in such a lattice.
Indeed, in this case, the different general formulas derived in the
present article and �19� give the same result.

2Note that the case of d=1 is rather trivial given our assumptions:
the only equal-volume tiling is the lattice.

3A regular tiling is periodic in space. An irregular tiling is aperi-
odic in space, including quasiperiodic as well as disordered tilings.
A congruent tiling consists of identical tiles.
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�n�x� = �
i

��d��x − xi� − n0, �7�

where n0 is the mean number density in the infinite-volume
limit4 and ��d��x� is the Dirac delta function in d dimensions.
The structure factor �SF� is defined as

S�k� = lim
V→�

��̃n�k;V��2

n0V
= 1 + n0h̃�k� , �8�

where V is the system volume,

�̃n�k;V� = �
V

ddx e−ik·x�n�x� , �9�

and

h̃�k� = �
Rd

ddx e−ik·xh�r� �10�

is the infinite-space Fourier transform of the total pair corre-
lation function h�r�, which vanishes for disordered systems
when the distance r��r� tends to infinity �2,18�.

For our point process it follows directly that

�̃n�k;V� = �
i

e−ik·xi�1 − W̃i�k�� , �11�

where the sum runs over the points enclosed in the volume V

and W̃i�k� is the normalized characteristic function of the tile
Ti, given by

W̃i�k� =
1

�T��Ti�0�
ddx e−ik·x, �12�

where Ti�0� denotes that the center of mass of the tile has

been taken as the origin of the axes. If we assume that W̃i is
an analytic function at k→0, we can expand it in Taylor
series to obtain

W̃i�k� = 1 + �
m=2

�
�− i�m

m!
k�1

¯ k�m
M�1,. . .,�m

�i� , �13�

where

M�1,. . .,�m
�i� =

1

�T��Ti�0�
ddx x�1

¯ x�m
�14�

is a �fully symmetric� tensor of rank m corresponding to the
mth moment of the mass distribution of the tile Ti �normal-
ized by the volume and total mass� and � j =1, . . . ,d are in-
dices for the Cartesian components. Note that we have used
Eq. �6�, which makes the linear term in the expansion �13�
�corresponding to the dipole moment� vanish. The assump-
tion of analyticity corresponds to the requirement that all
these moments be finite. This is true in particular if the tiles
are of finite extent. We will discuss briefly in our conclusions
the possibility of relaxing this assumption.

Using these expressions in the definition of S�k� we now
obtain

S�k� = �
n=2

�

�
m=2

�
�− i�m�i�n

m ! n!
k�1

¯ k�n
k
1

¯ k
m
I�1,. . .,�n;
1,. . .,
m

��k� , �15�

where

I�1,. . .,�n;
1,. . .,
m
�k� = lim

V→�

1

N
�

i
�

j

e−ik·�xi−xj�M�1,. . .,�n
�i�

�M
1,. . .,
m
�j� , �16�

where the sums run over the N particles contained in the
volume V. It is straightforward to verify that the coefficient
of the leading term in k �at order k4� is non-negative and that
the coefficients of all powers of k are real. Indeed the SF
S�k� is by definition a real non-negative quantity and Eq.
�15� is just the specific form of its Taylor expansion around
k=0 for the particular class of distributions we are consider-
ing.

It is convenient to rewrite the latter expression as

I�1,. . .,�n;
1,. . .,
m
�k� = lim

V→�

1

n0V
� ddx ddy e−ik·�x−y�M�1,. . .,�n

��x�M
1,. . .,
m
�y� , �17�

where

M�1,. . .,�n
�x� = �

i

��d��x − xi�M�1,. . .,�n
�i� . �18�

The distribution M�x� can be viewed as a weighted particle
density. The weight associated with each particle is the ap-
propriate component of the mass moment of the tile to which
the particle belongs.

Up to now we have considered implicitly a single particle
placed deterministically in each tile. We now consider aver-
aging over an appropriately defined ensemble of such
tilings.5 If the tiling is statistically translationally invariant,
we have that

	M�1,. . .,�n
�x�M
1,. . .,
m

�y�
 � gn,m�x − y� , �19�

where 	¯
 denotes the ensemble average. We have adopted
here for the correlation function gn,m�x� the tensorial notation
in which the indices are left implicit. In this notation we can
write our result for the SF S�k� as

S�k� =
1

n0
�
n=2

�

�
m=2

�
�− i�m�i�n

m ! n!
kn · g̃n,m�k� · km, �20�

where g̃n,m�k� is the Fourier transform of gn,m�x� defined as

4Since all particles have the same mass no distinction need be
made between the mass and number density fluctuations. For the
case of a single particle per tile n0=1 / �T�.

5For a deterministic tiling—e.g., the cells of a regular lattice—or
the pinwheel tiling in two dimensions discussed below, this average
can be defined by the set of configurations generated by applying an
arbitrary rigid translation to a given configuration.
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g̃n,m�k� =� ddx e−ik·xgn,m�x� , �21�

and kn denotes a tensor of order n, given by the tensor prod-
uct of n vectors k—i.e.,

k�1,. . .,�n

n � �k � k � ¯ � k��1,. . .,�n
= k�1

k�2
¯ k�n

.

�22�

The centerdot �·� in Eq. �20� denotes the contraction of the
corresponding tensor indices. If the ensemble is also statisti-
cally isotropic, the product kn · g̃n,m�k� ·km, and thus S�k�, is a
function of k= �k� only.

The behavior of S�k� at small k is thus manifestly deter-
mined by that of g̃n,m�k� in this limit. These quantities are in
fact the �tensor� SFs associated with the discrete stochastic
field defined by Eq. �18�, the two-point correlation function
of which is gn,m�x�. They thus encode information about the
tiling and, more specifically, about the correlation properties
of the second and higher moments of the tiles. We restrict
ourselves to the case that all these moments are finite and
strictly bounded �which also ensures, as noted above, the

validity of the expansion of the characteristic function W̃i�k�
we have performed�. As noted above, each component of the
tensor stochastic field Mn�x� defined in Eq. �18� above is
then a discrete stochastic process in which the points are
located at the same positions as in the point process we are
studying, but have “masses” given by the corresponding
component of the tensor Mn�i� �or rather “charges” as they
are not strictly positive� which are bounded �above and be-
low�. Just as for a generic stochastic point process such a
discrete �or indeed continuous� process can be classified into
three categories according to the small-k behavior of the
g̃n,m�k�.

�i� g̃n,m�k→0�=const�0. This means that the correlation
functions gn,m�x� of the higher-order moments are integrable
at large x and the corresponding integral is equal to a positive
constant; i.e., the higher moments of the tiles have short-
range correlations dominated by the positive contributions.
For the generated point process we have then the leading
behavior S�k→0��k4.6

�ii� g̃n,m�k→0�=0. The integral of the correlation func-
tions gn,m�x� converges to zero; i.e., the shapes and orienta-
tions of the tiles have themselves superhomogeneous prop-
erties �i.e., in which the positive and negative correlations
balance exactly in the integral�. In this case we will obtain a
leading behavior S�k→0��k� with ��4 �and with a value
depending on the leading behavior of the g̃n,m�k� at small k�.

�iii� g̃n,m�k→0�=�, with g̃n,m�k→0��k� and −d���0.
In this case, in which the correlation functions gn,m�x� are
nonintegrable—i.e., the higher moments of the tiles have
themselves long-range correlations—we can obtain a leading
behavior for our point process S�k→0��k� with 4−d��
�4.

Several remarks on this result are important. First, for
simplicity we have assumed above that the g̃n,m�k� are in the
same class for all m and n. This is, of course, a priori, not
necessarily the case. In the more general case that the differ-
ent g̃n,m�k� are in different classes, the determination using
Eq. �20� of the exponent � of the leading small-k behavior of
S�k� is nevertheless straightforward. Furthermore, it is
simple to verify that the bounds we have given on this ex-
ponent remain valid.

Second, we have assumed that the g̃n,m�k� obey the con-
dition

lim
k→0

kdg̃n,m�k� = 0. �23�

This assumption corresponds to the requirement that the dis-
crete processes defined by Eq. �18� have well-defined mean
values; i.e., the normalized fluctuations �e.g., integrated in a
sphere� of the moments of the tiles converge to zero in the
infinite-volume limit. While this seems a very weak assump-
tion, it is not a priori true of all tilings.

B. Explicit constructions

We now give various explicit constructions to illustrate
the above results.

1. Regular lattice tilings

Consider first the tiling given by the Voronoi cells of any
Bravais lattice. In a Bravais lattice, the space Rd can be
geometrically divided into identical regions F called funda-
mental cells, each of which contains just one point of the
lattice. A Voronoi cell associated with a point at r in a point
distribution is defined to be the region of space nearer to the
point at r than to any other point. Since all Voronoi cells or
tiles of a Bravais lattice have the same shape and orientation,
the mass moments Mn�i� in Eq. �14�, calculated with respect
to the center of mass, are identical for all tiles; i.e., Mn�i�
does not depend on i. The discrete processes specified by Eq.
�18� are then simply, up to a constant, equal to the density
field of the lattice, and thus it follows that all the correlation
functions gn,m�x� are proportional to the two-point correla-
tion function of the original lattice. Thus g̃n,m�k�—and also
S�k�=0—is zero in some finite region around k→0.7 This
result is in fact evident: the point process generated by plac-
ing points at the center of mass of every cell is of course
simply the lattice itself. In this case, of course, neither the
tiling nor the point process is statistically isotropic �where
the statistical average is taken over lattices rigidly translated
within the elementary lattice cell�

The same result can evidently be generalized to any tiling
of equal-volume cells constructed from a periodic point pat-
tern.

2. Congruent rotationally invariant tilings

We consider next deterministic congruent tilings with the
additional property of rotational invariance—i.e., in which

6Here and in the rest of the paper we use the notation S�k→0�
�k� to indicate that S�k� at small k= �k� is of order � in k.

7More precisely S�k�=0 at all k different from nonzero reciprocal
lattice vectors.
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all orientations of the identical tiles are equiprobable. Known
examples are the pinwheel tiling �21� in d=2 �see Fig. 1� and
the quaquaversal tiling �22� in d=3. In these cases each tile
Ti can be characterized solely by its center of mass xi and by
a matrix R�i��0�d�, the latter giving the orientation with
respect to some arbitrary chosen orientation.

We can then write, in tensorial notation,

Mn�x� = �
i

��d��x − xi�Rn�i� · M̃n, �24�

where Rn�i� is the tensor product, giving a tensor of rank 2n
of which n indices are contracted with the corresponding

moment M̃n of a tile with the reference orientation—i.e.,

�R�i�n · M̃n��1,. . .,�n
� R�1
1

�i� ¯ R�n
n
�i�M̃
1,. . .,
n

n ,

�25�

where, as everywhere above, the sums over the indices
which appear twice are implicit. The correlation functions
gn,m�x� are thus direct measures of the correlation of the
orientations of tiles with center of mass separated by x.

The case of the quaquaversal tiling has been studied nu-
merically in Ref. �10� and an approximate small-k behavior
S�k��k4 found. In Ref. �23� it is noted, however, that the
numerical results agree better with S�k��k� and �
3.4.
While the former behavior would correspond, as discussed
above, to a short-range correlation of the orientation of the
tiles, the latter would instead correspond to a weak long-
range correlation �with a correlation function characterizing
the orientations decaying with distance r as �r−2.4�. Further,
superimposed on this power-law behavior there are residual
peaks at certain wave numbers, with a spacing which appears
to be consistent �10� with the hierarchical nature of the tiling
�24�. As we have discussed the small-k behavior of the con-
structed point process thus probes the correlation properties
of the underlying tiling.

3. Random binary rectangular tiling

It is instructive to illustrate our result with a nontrivial
example which, albeit not statistically isotropic, allows us to
calculate exactly the SF of a point process constructed by the
algorithm we have described. The example we now give is of
a stochastic congruent tiling. For simplicity we work in d
=2, but a generalization to any d is straightforward.

We generate the tiling as follows. We start from a regular
tiling of the plane with congruent squares. We then divide
each square tile in half, defining two identical rectangular
subtiles, as shown in Fig. 2.

The choice of the orientation of each tile is given by a
stochastic process, which can be cast as the value of a simple
up-down spin variable. The density of the point process gen-
erated using the algorithm analyzed in the previous section,
in which a point is placed at the center of mass of each tile,
can then be written

n�x� = �
R

�
n=1

2

��x − Rx −
1 + �R

2
�− 1�n���y − Ry −

1 − �R

2

��− 1�n� , �26�

where R��Rx ,Ry� are the lattice sites of the underlying
square lattice placed at the center of each square cell and
�R= �1 is the spin variable specifying the orientation of the
two elementary rectangular tiles at the lattice site R as in Fig.
2. We assume that the lattice spacing of the underlying
square lattice is l. Consequently the volume of the elemen-
tary rectangular tile is l2 /2 and therefore the average number
density of the point process is n0=2 / l2. It is simple to show
that the Fourier transform �FT� of �n�x�−n0� is

�̃n�k;V� = 2�
R

e−ik·R�cos�kxl
1 + �R

8
+ kyl

1 − �R

8
�

−
sin�kxl/2�

kxl/2
sin�kyl/2�

kyl/2
� . �27�

To calculate the SF averaged over the ensemble of possible
configurations of the binary tiles we assume that 	�R
=0

FIG. 1. Portion of a pinwheel tiling. The prototile of the pin-
wheel tiling is a right triangle with sides of length 1, 2, and �5. The
tiling is produced by performing certain “decomposition” and “in-
flation” operations on the prototile. In the first step, the prototile is
subdivided into five copies of itself and then these new triangles are
expanded to the size of the original triangle. These decomposition
and inflation operations are repeated ad infinitum until the triangles
completely cover the plane.

σ=−1

σ=1m=1

l

l

FIG. 2. Elementary binary rectangular tiling, with a unit mass
particle in the center of mass of each rectangle, and its description
in terms of an Ising-like spin variable.
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�i.e., both orientations of the binary tiles are equiprobable�
and write ��R�= 	�R0

�R0+R
 using the lattice statistical trans-
lational invariance. Moreover, since �R= �1, we have that

cos�kxl
1 + �R

8
+ kyl

1 − �R

8
� =

1 + �R

2
cos� kxl

4
�

+
1 − �R

2
cos� kyl

4
� . �28�

It is then straightforward to obtain the following exact ex-
pression for the SF:

S�k� =
�cos�kxl/4� − cos�kyl/4��2

2 �
R

e−ik·R��R� + SML�k� ,

�29�

where

SML�k� = A�k��
R

e−ik·R = �2 �
H�0

A�H���k − H� �30�

is a “modulated lattice” SF which is different from zero only
at the nonzero reciprocal lattice vectors H and

A�k� =
1

2
�cos� kxl

4
� + cos� kyl

4
� − 2

sin�kxl/2�
kxl/2

sin�kyl/2�
kyl/2

�2

.

�31�

At small k only the first term of Eq. �29� contributes, and
expanding the factor outside the sum we thus obtain a lead-
ing small-k behavior

S�k� � � l

4
�4

�kx
2 − ky

2�2�̃�k� , �32�

where

�̃�k� = lim
N→�

1

N
�
R

e−ik·R��R� . �33�

This exact result is of course a special case of the general
analysis given above, in which the moments characterizing
the tiles are particularly simple as there are only two orien-
tations. All the two-point properties of the point process are
then contained in the single correlation function ��R� of
these orientations for pairs of tiles with centers separated by
R. As �̃�k� is a power spectrum of a stochastic process with
a well-defined mean, at small k we have �̃�k��kb with b�
−d�−2. If �̃�0�=c�0—i.e., in the case in which the orien-
tations of the tiles are short-range correlated—then S�k�
=O�k4� at small k. If instead �̃�k→��=�, there are long-
range positive correlations in the orientations of the tiles
which induce a slower decay of the fluctuations in the asso-
ciated point process at large scales. Finally, if �̃�0�=0, the
stochastic spin process is itself superhomogeneous, with a
balance between positive and negative correlations creating a
sort of “stochastic order” in the spin configuration. In this
case S�k� vanishes faster than k4 at small k. In the Appendix
we describe explicitly an algorithm for generating such spin
configurations.

III. POINT DISTRIBUTIONS FROM TILINGS: n�1
POINTS PER TILE

The algorithm described in Sec. II B 3 can in fact be
thought of in a different way to that in which we have pre-
sented it: one can consider it instead as a direct assignment
of two points to the tiles of the original square lattice, with-
out any construction of an intermediate SBR tiling. The pair
of particles then have two possible orientations, which are
chosen stochastically. Note that in each case the center of
mass of the particles is located at the center of the square
cell. Our results above show that if this stochastic process is
short-ranged correlated, we obtain a small-k behavior S�k�
�k4, while with a single point at the center of mass of the
lattice cell we recovered �evidently� the lattice. We now con-
sider quite generally what small-k behavior of S�k� of a point
process we can obtain by ascribing more than one point per
tile in a generic tiling with equal-volume tiles.

A. Density fluctuations and long-wavelength limit

We ascribe p points to each tile, denoting their positions
by

xi,� = xi + ui,�, �34�

with �=1, . . . , p and xi is, as above, the center of mass of the
tile Ti �so that ui,� is the position relative to the center of
mass�. We assume further that the center of mass of the
points coincides with that of the tile—i.e.,

�
�=1

p

ui,� = 0. �35�

Following the same steps as in Sec. II, we arrive at

�̃n�k;V� = �
i

e−ik·xi� 1

p
�
�=1

p

e−ik·ui,�
− W̃i�k�� , �36�

where W̃i�k� is precisely the same normalized characteristic
function of the tile as defined in Eq. �12� �and 1 / p is the
fraction of the mass of the tile ascribed to each particle�.
Expanding in Taylor series we obtain

1

p
�
�=1

p

e−ik·ui,�
− Wi�k� = �

m=2

�
�− i�m

m!
k�1

¯ k�m
M�1,. . .,�m

�i� ,

�37�

where now

M�1,. . .,�m
�i� =

1

p
�
�=1

p

u�1

i,�
¯ u�m

i,� −
1

�T��Ti�0�
ddx x�1

¯ x�m

�38�

is the totally symmetric rank-m tensor corresponding to the
difference of the mth moments of the mass distribution of the
points associated with the tile Ti and that of the tile itself. As
in the derivation with one point, we have assumed the ana-
lyticity of the quantity we expanded. This means that we
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require that all the moments in Eq. �38� be finite, which is
true in particular if all the tiles are of finite extent and the
lengths of the vectors ui,� are bounded.

All the expressions, and notably the result for S�k� in Eq.
�20�, derived in the case with one point per tile, are thus
valid. The only difference is that the tensors Mn�i� �and cor-
respondingly Mn�x�� are now given by Eq. �38�. The small-
k properties thus depend, assuming statistical translational
invariance, on those of the FT of the correlation functions of
the differences of the moments of the discrete mass distribu-
tion of the points ascribed to each tile and that of the con-
tinuous mass distribution represented by the tile itself.

The most important implication of this result is the fol-
lowing: the coefficients in the small-k expansion of Eq. �37�
are now proportional to a difference of two quantities in Eq.
�38�. Any given coefficient will vanish identically if our as-
signment of the p points satisfies the constraints

1

p
�
�=1

p

u�1

i,�
¯ u�m

i,� b =
1

�T��Ti�0�
ddx x�1

¯ x�m
�39�

in each tile—i.e., if the �tensorial� moments of the mass dis-
tribution of the points are equal to those of the tile in which
they are placed. With a sufficiently large number of points
per tile one can evidently make any desired finite number of
terms vanish in the expansion of S�k�—i.e., construct a sto-
chastic point mass distribution for each tile which has all
moments up to a certain order equal to those of the continu-
ous mass distribution of the tile.

This procedure allows one to obtain an arbitrarily large
exponent � in the small-k behavior of the SF of the point
process.

B. Explicit constructions

We again illustrate these results with some explicit ex-
amples.

1. Regular lattice tiling

In a Bravais lattice, as we have discussed above, the ten-
sorial moments of all tiles are equal so that the second term
in Eq. �38� does not contribute to S�k� in a finite region
around k→0. This can most easily be seen by using Eq. �38�
directly in the expressions �15� and �16� for S�k�: the
i-independent second term in each component of the tensor
Mn�i�, when summed over i, gives a � function proportional
to the SF of the lattice. If we have more than one point per
tile �i.e., p
2�, we may have, however, an i-dependent con-
tribution from the first term in Eq. �38�—i.e., from the mo-
ments of the mass distribution constituted by the points as-
signed to the single tile, which are not constrained �beyond
the dipole moment�. If we allow the distribution of these
points to vary stochastically from cell to cell, we will generi-
cally have a nonzero contribution for the SF �ensemble

averaged over the stochastic process� at all k; i.e., we will
have a continuous SF.8

As a simple example let us consider first the random bi-
nary rectangular �RBR� algorithm analyzed above, cast as
the ascription of two points to each cell of a simple cubic
lattice, but now allowing the pair of particles ascribed to
each cubic cell have a random orientation; i.e., we take two
points in each lattice cell with coordinates

x1�R� = R + u�R�, x2�R� = R − u�R� , �40�

where R is the generic lattice site �which is the center of
mass of the corresponding tile� and the vectors u�R� are
generated by a stochastic process. We assume further that the
vectors u�R� in different lattice cells are uncorrelated. The
ensemble is thus fully specified by the one point probability
distribution function p�u�. We call this stochastic point pro-
cess the split shuffled lattice,9 as it is a generalization of the
shuffled lattice discussed in Ref. �1� �see also Refs. �11,26��,
in which one point is randomly displaced off a perfect lattice.

The leading small-k behavior of S�k� in this case may be
found easily by taking the ensemble average of the leading
term in Eq. �15�:

S�k� =
1

4
k�k
k�k�	I�
���k�
 , �41�

where, using Eq. �38� in Eq. �16�, we have

	I�
���k�
 = lim
V→�

1

N
�
R

�
R�

e−ik·�R−R��

�	u��R�u
�R�u��R��u��R��
 . �42�

Since the vectors u�R� are, by assumption, uncorrelated at
different sites, we have

	u��R�u
�R�u��R��u��R��
 = 	u�u

	u�u�
 �43�

for R�R�. Using the fact, again, that the sum
1
N�R�R�e

−ik·�R−R�� is proportional to the SF of the original
lattice, which is zero around k→0, we can then write the
leading small-k behavior as

S�k� =
1

4
�	�k · u�4
 − 	�k · u�2
2� . �44�

If we choose a probability distribution which is isotropic in
u—i.e., p�u�� p�u� �with u= �u��—we then have

8If, on the other hand, the points are placed in the same way with
respect to the center of mass of each tile, S�k� is again zero in the
same region. The remaining nonzero piece has a modulated
�-function structure which can be easily calculated. Indeed the point
distribution so generated is in this case again a periodic lattice—i.e.,
the initial Bravais lattice with basis of p points per cell.

9In the context of causality bounds on fluctuations in cosmology,
this construction has been studied in Ref. �25�.
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S�k� =
k4

4d2 �C�d�	u4
 − 	u2
2� , �45�

where C�d�
1 is a constant �C�1�=1, C�3�=9 /5�. We thus
obtain the same exponent � as in the RBR tiling model, but
now the fluctuations at small k are isotropic at leading order
because of the isotropy in the attribution of the displacement
vectors. Note that we have assumed here, as we do through-
out this paper, that the moments of the mass distribution in
each tile are finite, which requires here manifestly in Eq. �45�
the finiteness of at least the first four moments of p�u�. It is
simple, however, to generalize this kind of model to the case
when moments of order lower than the fourth diverge, just as
done for the shuffled lattice in Ref. �26� �see also �16��. In
this case one can obtain any small-k behavior �0���4�.

This kind of algorithm can easily be generalized, conserv-
ing a sufficiently large number of moments in such a way as
to obtain higher powers of the small-k behavior, in principle
producing any desired leading behavior. Let us suppose that
we generate mass moments Mn�R� at each lattice site R de-
fined by Eq. �38�, with an uncorrelated stochastic process—
i.e., so that

	Mn�R�Mm�R��
 = 	Mn�R�
	Mm�R��
 �46�

for each tensor component of the tensor product, for R
�R� �and any n and m�. As in the example given above
starting from Eqs. �15� and �16�, it is straightforward to show
that S�k� may then be written, in a finite region around k
=0, as

S�k� = �
n=2

�

�
m=2

�
�− i�m�i�n

m ! n!
kn · �	MnMm
 − 	Mn
	Mm
� · km,

�47�

where all the tensors Mn are evaluated at the same arbitrary
lattice cell, i.e.,

�	MnMm
��1,. . .,�n;
1,. . .,
m
� 	M�1,. . .,�n

�R�M
1,. . .,
m

m �R�
 ,

�48�

and kn�k�1
k�2

¯k�n
, etc.

Thus, for example, we can obtain �=6 with an algorithm
of this type which allows the third moment M3 of the mass
distribution to vary from cell to cell while keeping the sec-
ond �quadrupole� moment M2 fixed. This can be done in a
rotationally invariant manner by using a configuration of
points with a quadrupole moment �relative to its center of
mass� proportional to the identity matrix—e.g., points placed
at the corners of a regular tetrahedron in d dimensions. Plac-
ing such a configuration at each lattice site, but rotated by a
random rotation in SO�d�, the variance in the second moment
of the cell is thus zero. However, it is easy to verify that the
random rotation engenders a variation in the third moment,
so that one obtains the leading small-k behavior S�k��k6.
The coefficient of the k6 term can most easily be made zero
by taking instead a configuration whose quadrupole moment
is again diagonal, but whose third mass moment M3 is zero.
Since the latter is in fact zero for any configuration of points
which is invariant under inversion symmetry, a possible

choice is to add to each tetrahedron a reflection of itself in its
center of mass. Alternatively, and using fewer points, one can
use a randomly rotated configuration consisting of d couples
of points with equal separation placed orthogonally with
common center of mass. In this case we obtain a leading-
order small-k behavior S�k��k8. Further discussion of this
kind of point process generation can be found in Ref. �19�. In
this context they arise as a special case of “cloud processes,”
in which points in a generic initial point process, of which
the correlation properties are assumed known, are replaced
by a “cloud” of point particles.

2. Congruent rotationally invariant tilings

We have seen that superhomogeneous point processes
with a small-k behavior S�k��k� and ��4 can be generated
starting from a regular lattice tiling by using a stochastic
process to determine the positions of an appropriately con-
strained set of points in each cell. While the point process so
generated is not statistically translationally and rotationally
invariant, we saw that a leading behavior proportional to k
was obtained if the stochastic process assigning the points
had itself no preferred direction. Thus at large scales the
system approximates very well statistical translational and
rotational invariance.

Starting from a translation and rotation invariant tiling we
can obtain a statistically translation and rotation invariant
point process in an analogous way. It suffices in this case,
however, to assign the points deterministically to each tile, in
the same way relative to each tile �e.g., at the center of mass
of the tile�. We do not need now the additional stochasticity
provided either by taking more points per tile or random
positions inside the tile. The reason is that the moments of
the tiles given by Eq. �14� already depend on the tile itself
because of the orientation. Consequently the quantities
g̃n,m�k� are nonzero around k→0 just as in the case when we
had one point per tile. The difference is, as we have dis-
cussed at length above, that we can make certain terms zero
so that the leading term appears at higher order in k.

To see how this can be done in a little more detail, let us
consider, to be specific, a pinwheel tiling �d=2� or quaqua-
versal tiling �d=3� as in Sec. II B 2 above. It is convenient to
study the SF S�k� as given in Eq. �20�, where now the Mn in
Eq. �14� are given by the expressions in Eq. �38�. To define a
point distribution in which the leading term in this expres-
sion vanishes, one can proceed as follows. First one deter-
mines the location of the center of mass and the quadrupole
moment of the elementary tile. From the latter one can then
find the principal axes, in which it is diagonal. In each tile of
the tiling one then places on each such axis a pair of points,
with their center of mass at that of the tile, at the appropriate
distance to produce the component of the second moment
along the corresponding axis. The leading contribution to
S�k� should then be determined by the small-k behavior of
g̃3,3�k�—i.e., by the correlation properties of the third mo-
ment M3 as in Eq. �38�. Because of the inversion symmetry
in the point distribution in each tile, the first term in Eq. �38�
vanishes. It is therefore the correlation properties of the third
moment of the tiles alone which determines the coefficient of
the term at order k6. Given the results discussed above of the
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numerical studies �10� for the quaquaversal tiling with a
single point at the center of mass, we expect that such cor-
relations are short range, or at most, very weakly long range.
One would expect therefore to obtain an S�k��k� with �

6.

The generalization of this algorithm to higher orders is, in
principle, straightforward �albeit evidently cumbersome as
the order increases�. Further one can seek to determine the
minimal number of points per tile required to make the de-
sired number of terms in Eq. �20� vanish. Indeed the specific
algorithm described above uses 2d points, while it is easy to
see that one needs only a smaller number to make the leading
term in Eq. �20� vanish: in d=2, for example, it suffices to
have three �rather than four� points to represent the quadru-
pole moment of the elementary triangular tile of the pin-
wheel tiling.

IV. DISCUSSION AND CONCLUSIONS

We have studied a class of point processes generated by
placing one or more points in each tile of a tiling of Rd. We
have assumed that the tiles have equal volume as this is
expected to lead to the suppression of fluctuations at large
scales characteristic of superhomogeneous point processes.
We have shown explicitly that one can build superhomoge-
neous point processes with an arbitrarily large exponent
characterizing the small-k behavior of the structure factor,
and we have presented various examples. To our knowledge
exact constructions of such point processes for the case �
�4 have not previously been given in the literature.

We have shown how in these algorithms the exponent �
depends �i� on the arrangements of the points ascribed to the
tiles in the algorithm and �ii� on the correlation properties of
the shapes and orientations of the tiles. For the specific case
of regular lattice tilings a nontrivial contribution to the small-
k behavior of S�k� arises only from the former, with the
coefficients in the small-k expansion depending explicitly
only on the variance of the �tensorial� mass moments of the
points assigned to each cell. By arranging a sufficient num-
ber of points in a way which makes this variance zero for the
first n moments, one can obtain ��2n. In the case of an
irregular tiling—we have considered the example of pin-
wheel and quaquaversal tilings—an identical arrangement of
the points in each tile can be sufficient to produce continuous
SF and translational and rotational invariant superhomoge-
neous point processes. The exponent � then encodes infor-
mation about the correlation properties of the shapes and
orientations of the tiles. If these are short-range correlated,
one obtains �=4 placing a single point at the center of mass
of each tile and �=2�n+1� if one places a number of points
with all mass moments up to the nth equal to that of the
elementary tile. If there is, on the other hand, long-range
correlation in the shapes and orientations of tiles, the expo-
nent obtained will be modified in a way which depends on
the nature of this correlation.

Our results shed light on the meaning of the exponent �
�0 characterizing a superhomogeneous point process. Up to
the value �=4 previous explicit constructions of discrete
processes �see, e.g., �16,26�� have shown that the increase of

� can be associated with a suppression of fluctuations at
large scales. Here we have seen that values ��4 correspond
indeed to an increased order in the arrangement of the points,
but now at small scales: it is by changing how points are
arranged within each tile—i.e., below a finite length scale
�but subject always to the global constraints on fluctuations
imposed by the tiling�—that we can increase the exponent.
Thus to “undo” the order represented by an exponent ��4
with respect to a system with �=4 requires only the rear-
rangement of the system at small scales, while to “undo” that
in a system with ��4 requires a coherent rearrangement of
points on arbitrarily large scales �i.e., on scales inverse to the
wave number range in which the exponent is measured�.

We have mentioned that our results are relevant in cos-
mology. First, the analysis given here makes more rigorous
certain heuristic arguments used in this context regarding
“causal constraints” on the generation of fluctuations from a
uniform background �12,13�. An algorithm like that de-
scribed here, for the case of a single point placed at the
center of mass of each tile, has been considered �13� as a toy
model for the generation of fluctuations starting from an ex-
actly uniform mass density by a physical process which con-
serves mass and momentum locally. The result �=4 is ob-
tained by assuming that space is divided into finite cells
whose positions are uncorrelated. The latter assumption is in
fact not consistent: the division of space into equal-volume
cells implies that their positions are necessarily correlated.
Our more rigorous analysis shows that this exponent �=4
does result generically, however, if the shapes and orienta-
tions of these cells �i.e., tiles� are short-range correlated—
i.e., have integrable correlation functions.

Second, the generation of very uniform point processes is
of relevance to the generation of initial conditions for nu-
merical simulations of structure formation in the universe. In
this context, to represent a given set of initial conditions, one
must perturb appropriately �see �27� for a detailed discus-
sion� a point distribution representing as well as possible the
uniform �unperturbed� universe. To understand the effects
coming from this chosen point distribution �which are non-
physical� it is desirable to have different algorithms which
can generate such configurations. It is for this reason that a
special case of the algorithm we have studied here has been
built explicitly and studied numerically in this context �10�.
The analytical results we have given here complement these
studies and give further algorithms for producing even more
uniform point processes which may be useful in this context.
We note again in this respect that explicit algorithms for
producing ��4 have not previously been given. Such distri-
butions in themselves provide interesting initial conditions
�without any perturbation� for gravitational clustering, which
have not previously been studied.

We conclude with some further remarks on our results and
some other directions for further work:

�i� In our constructions of point processes we have always
constrained the center of mass of the points in each tile to
coincide with that of the tile. We have done so because our
goal here has been to generate point processes which are as
uniform as possible. It is a simple exercise to redo our cal-
culation leading to Eqs. �15� and �16� when this constraint is
relaxed—i.e., allowing the center of mass of the particles �or
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particle� in each tile to be displaced randomly from that of
the tile. The result is that the leading term in Eq. �15� is now
at order k2 rather than k4. For short-range-correlated tilings
the leading behavior of the SF will then be proportional to k2.
This result will be valid if the displacements of the center of
mass of the particles within a tile with respect to the center of
mass of the associated tiles have a finite variance. On the
other hand, if the variance of these displacements diverges,
the small-k behavior of the SF is given by S�k��k� where
0���2, the value of the exponent depending on the precise
behavior displacements PDF for large arguments. A detailed
calculation of these cases for a randomly perturbed lattice
can be found in Refs. �11,26�.

�ii� While we have shown analytically the existence of
point processes with arbitrarily large exponents �, we have
not done so for a case which is statistically translation and
rotation invariant. In the latter case our results for the expo-
nent are expressed in terms of the small-k behavior of the
g̃n,m�k� which encode, as we have explained, information
about the correlation properties of the shapes and orienta-
tions of the tiles. For the one such example which has been
numerically studied �in Ref. �10�, the quaquaversal tiling
with a single point at the center of mass� the result indicates
an asymptotic behavior close to �but as noted in Ref. �23�,
slightly different to� that which would arise from a purely
short-range correlation of the orientations of the tiles. Further
numerical and analytical study of these points processes
would clearly be of interest, in particular of the simpler pin-
wheel tiling.

�iii� We have made in our derivations here an assumption
of analyticity at k=0 of the window function of the tiles,
which corresponds to all moments of their mass distribution
being finite. This is certainly valid if the tiles are of finite
extent. It may, however, include other cases which might be
of interest; e.g., in d�1 one may envisage that there is a
nontrivial distribution of the shapes of the equal-volume
tiles, in which the extent of a tile is not limited. One could
also consider relaxing the assumption that the volumes of the
tiles are strictly equal, admitting a distribution of volumes
with specified correlation properties. In analogy with what
has been found in certain algorithms for ��4 �16,26�, one
would expect that such modifications would allow the gen-
eration of point processes with leading nonanalytic behavior
and any value of the exponent �. Indeed, one would expect
nonanalytic exponents to be related either to the divergence
of moments of such a distribution of extent or volume or to
the presence of long-range tile-tile correlations.

�iv� While all our explicit examples have employed tilings
which are congruent, our results for the small-k behavior of
the SF S�k� all apply only on the much weaker assumption of
equal volume of the tiles. Thus, for example, we can apply
these results to any tiling generated by a deformation of tiles
which leaves their volume fixed, which could encompass a
large range of systems of physical interest �cells, foams,
etc.�. We recall in this respect, as remarked above, that a
point placed randomly in each cell, rather than at the center
of mass, leads to the restoration of the order k2 term in the
expression given in Eq. �15�.

�v� It is useful to briefly remark on the physical realizabil-
ity of superhomogeneous point distributions with arbitrary

positive but bounded values of �. Such distributions are dis-
ordered to some degree and, although they are unusual, can
be physically constructed. For example, the maximally ran-
dom jammed �MRJ� state in three dimensions �28� is a spe-
cial disordered sphere packing that can be regarded to be a
prototypical glass because it is perfectly rigid and yet is
maximally disordered. It is a superhomogeneous point distri-
bution characterized by an exponent �=1 �6�, but it is inher-
ently a system out of equilibrium. While we have examples
like the equilibrium one-component plasma that has �=2,
can one devise equilibrium superhomogeneous point distri-
butions in which � is arbitrarily large? The answer is appar-
ently in the affirmative, but it requires more than just pair
interactions—namely, two-, three-, and four-body interac-
tions as shown in Ref. �14�.
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APPENDIX: FROM GAUSSIAN TO SPIN FIELDS

In this appendix we show explicitly how to generate a
regular lattice spin configuration with a given two-point cor-
relation function. Such a configuration has been used as the
starting point in the RBR algorithm described in Sec. II B 3.

The algorithm we propose is based on a mapping between
a set of correlated Gaussian variables �x�R�� with zero mean
and the spin set �s�R�� �where R is, as above, the generic
lattice vector�. We do so because to generate a lattice set of
correlated Gaussian variables with any possible desired cor-
relation function is very simple.

We denote by

c�R� = 	x�R0�x�R0 + R�
 �A1�

and

��R� = 	s�R0�s�R0 + R�


the two-point correlation functions of the Gaussian and the
spin sets, respectively. We have used here the statistical lat-
tice translational invariance. Both c�R� and ��R� must have
non-negative FTs as required by the Khintchine theorem for
stochastic processes �see, e.g., Ref. �11��.

The starting point is the two-variable joint probability dis-
tribution function �PDF� for correlated and monovariate
Gaussian variables. Denoting by x1 and x2 two Gaussian
variables at two lattice sites separated by the vector R, we
have

p�x1,x2;R� =
1

2��4 − c2�R�
exp�−

�2�x1
2 + x2

2 − 2c�R�x1x2�
2��4 − c2�R�� � ,

�A2�
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where c�R� is defined in Eq. �A1� and �2=c�0� is the com-
mon variance of the Gaussian variables.

The mapping we consider is the simplest possible: at the
site R we fix s�R�=1 if x�R��0 and s�R�=−1 otherwise.
We want now to find the relation between ��R� and c�R�.
This can be done simply by noting that we can write

s�R� = 2��x�R�� − 1,

where ��x� is the usual Heaviside step function. Therefore
we can write

��R� = 4�
0

+� �
0

+� dx1dx2

2��4 − c2�R�

�exp�−
�2�x1

2 + x2
2 − 2c�R�x1x2�

2��4 − c2�R�� � − 1. �A3�

Performing the double change of integration variables

y1 = x1, y1 = x2 − �c�R�/�2�x1,

it is simple to rewrite Eq. �A3� as

��R� = 2�
0

� dy1

�2��2
e−y1

2/�2�2�erf�Ay1� , �A4�

where A= c�R�
��2��4−c2�R��

and

erf�x� =
2

��
�

0

x

dt e−t2

is the usual error function. We now use the known equality

�
0

�

dx e−px2
erf�qx� =

1
��p

arctan� a
�p

� ,

which implies finally that

��R� =
2

�
arctan� c�R�

��4 − c2�R�� . �A5�

Therefore, given a lattice set of monovariate correlated
Gaussian variables, we can map it onto a lattice set of spin
variables with 	s�R�
=0 and ��R� given by Eq. �A5�.

1. Asymptotics

From Eq. �A5� it is simple to verify that

��0� = 	�2
 = 1.

Moreover, as for R= �R�→� the correlation function c�R�
must vanish, it is simple to verify that for sufficiently large R
we have

��R� �
2

�

c�R�
�2 ;

i.e., ��R� and c�R� have the same asymptotic behavior. In
particular, if the Gaussian variables are long- and short-range
correlated, the spin variables are also long- and short-range
correlated with the same scaling behavior.

We can also give the condition of superhomogeneity for
the spin lattice set. For the spin system this condition is
simply

�
R

��R� = 0,

which gives the following more complicated relation for the
correlation function of the Gaussian variables:

�
R

2

�
arctan� c�R�

��4 − c2�R�� = 0.
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