PHYSICAL REVIEW E 77, 031123 (2008)

Memory effects in the asymptotic diffusive behavior of a classical oscillator described
by a generalized Langevin equation

M. A. Despésito"*™ and A. D. Vifiales'
1Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
2Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
(Received 13 September 2007; published 20 March 2008)

We investigate the memory effects present in the asymptotic dynamics of a classical harmonic oscillator
governed by a generalized Langevin equation. Using Laplace analysis together with Tauberian theorems we
derive asymptotic expressions for the mean values, variances, and velocity autocorrelation function in terms of
the long-time behavior of the memory kernel and the correlation function of the random force. The internal and
external noise cases are analyzed. A simple criterion to determine if the diffusion process is normal or anoma-

lous is established.
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I. INTRODUCTION

The study of diffusive phenomena is a fundamental topic
for the analysis of stochastic processes in several areas of
natural science. A large number of these processes exhibit a
normal diffusion, which is characterized by a mean-square
displacement that grows linearly in time [1]. However, a
great number of stochastic processes show a more complex
behavior, which has been the focus of extensive research
during the last years [2]. A force-free stochastic process is
said to exhibit anomalous diffusion when the mean-square
displacement has the asymptotic form 7. In this case, the
process is called subdiffusive when A <1 and superdiffusive
when N> 1. One of the dynamical origins of anomalous dif-
fusion is the nonlocality in time. This can be handled if the
problem is formulated in terms of a generalized Langevin
equation (GLE) [3-6], which takes into account the memory
effects through an aftereffect function. This method has been
successfully used in the description of diverse anomalous
diffusion phenomena, like conformational fluctuations within
a single-protein molecule [7,8], reaction kinetics and fluores-
cence intermittency of single enzymes [9,10], and nuclear
fusion reactions [11].

The GLE of a diffusing particle evolving under the influ-
ence of an external potential U(X) and a random force F(z) is
written as follows:

X(1) + ft dt' y(r—1)X(t") + U'(X) = F(1), (1)
0

where (1) is the dissipative memory kernel and F(r) is a
zero-centered and stationary Gaussian random force charac-
terized by a correlation function

(F(nF("))y=C(jt~1")) = C(x). (2)
If the noise F(r) is an “internal noise,” the memory kernel

(1) is related to the noise correlation function via the second
fluctuation-dissipation theorem [12]
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C(1) = kT (1), 3)

where T is the absolute temperature and kg is the Boltzmann
constant. Note that when the noise is internal, the relaxation
time of the system is essentially the same as the correlation
time of the noise.

On the other hand, F(¢) is called “external noise” when
the dissipation and the noise have different sources. In this
case, the fluctuation-dissipation theorem (3) is no longer
valid.

Anomalous diffusion has been mostly investigated in the
case of a free particle. However, in several systems one en-
counters a damped harmonic motion under the action of a
time-dependent noise. We recently derived exact expressions
for the mean values, variances, and velocity autocorrelation
function (VACF) corresponding to an oscillator with a
power-law noise correlation function and in the case of in-
ternal noise [6]. Nevertheless, in several situations one wants
only to know the long-time system behavior, when the dif-
ferences between normal and anomalous diffusion are sig-
nificant.

In this work we investigate the long-time behavior of a
harmonically bounded particle in terms of the asymptotic
behavior of the memory kernel and the autocorrelation func-
tion of the fluctuating force involved in the GLE. Explicit
expressions for the first moments, variances, and velocity
autocorrelation function of the diffusing particle in the cases
of internal and external noise are given. This analysis allows
us to obtain a criterion for determining whether the diffusion
process is normal or anomalous. The outline of this paper is
as follows. In Sec. II we introduce general results valid for
arbitrary memory kernels and noise autocorrelation func-
tions. Section III is devoted to the study of the asymptotic
behavior of the first moments, variances, and VACF in the
internal noise situation. The case of external noise is ana-
lyzed in Sec. I'V. In Sec. V we apply the previous results to a
specific example. Finally, in Sec. VI we present our conclu-
sions.

II. GENERAL ANALYSIS

Before analyzing the GLE for some specific dissipative
memory kernel and correlation function, we recall some
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known results for the first moments, variances, and VACF
[6]. In what follows we consider the GLE (1) with an exter-
nal potential U(X)=w?X?/2 and the deterministic initial con-

ditions xo=X(0) and v,=X(0). Formal expressions for the

displacement X(7) and the velocity X(r) can be obtained by
means of the Laplace transform. The displacement X(r) sat-
isfies

X(1)=(X(0)) + f dt' G(t—t")F(t"), 4)
0
where
(X(1)) = xo[1 = &’ 1()] + voG(1). (5)
The relaxation function G(7) is the Laplace inversion of
G(s) = ! (6)

s>+ Hs)s + w*

where %(s) is the Laplace transform of the memory kernel
and

I(r) = ft dr' G(1'). (7)

0

On the other hand, the velocity X (1) satisfies

X() = (X(0)) + J d" g(t=1")F(r'), (8)
0
where
(X(1)) =vog(t) - w*xoG(1) ©))
and the relaxation function g(¢) is the derivative of G(¢), i.e.,
)
g(1)= P (10)

Note that from Egs. (5) and (9) it follows that 1(0)=0,
G(0)=0, and g(0)=1.

Using Egs. (4) and (8) and taking into account the sym-
metry property of the correlation function, the explicit ex-
pressions of the variances can be written as [3]

o (1) =([X (1) = (X(0)) T
=2ftdt,G(t,)ft1 dt,G(ty)C(t, - 1,), (11)
0 0

0, (1) = ([X(1) = (X)) ]»
=2 f dg(t)) f ldtzg(tz)c(tl_tz)» (12)
0 0

(1) = ([X(0) = (XO)[X(1) = (X(2)]) = %d-xx(t)

=f dIIG(tl)f dtg(t) C(t — 1,). (13)
0 0
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In the internal noise situation the variances can be conve-
niently simplified using Eq. (3) as [3]

Bo (1) = 21(1) = G*(1) = 0°I(1), (14)
Boy(0) =1~ g*(1) - *G*(1), (15)
Bow(0) = G(1){1 = g(1) = ?1(1)}, (16)

where B=1/kpT.

Moreover, as in the free particle case [4], the long-time
behavior of the normalized VACEF is related to the relaxation
function g(z) as [6]

(0= i KOXG ) _

. g(?). (17)
= (X(1)X(7))

III. ASYMPTOTIC BEHAVIOR

In order to investigate the asymptotic behavior of the first
moments (5) and (9), variances (11)—(13), and VACF (17) we
will analyze the behavior of the kernels I(z), G(t), and g(r)
starting from its Laplace transforms and using Tauberian
theorems. For this purpose we assume that the memory ker-
nel ¥(t) goes to zero when r— o0, Then,

limy(z) = lim s9(s) =0, (18)
P §—0
where we used the final value theorem [13]. Taking into ac-
count that the integral kernel I(r) defined in Eq. (7) is the
Laplace inversion of

A G(s) 57!
1(s)= =5 5 (19)
s ST+ 5Y(s) + w
the application of the final value theorem yields
. s . 1
limI(¢) = lim sI(s) = lim (20)

5—08> + sH(s) + w*

t—© s—0

Note that assumption (18) guarantees that the system reaches
a stationary state. The strict z=o0 limit in Eq. (20) gives

I(0) = é (21)
G() =0, (22)
¢() =0, (23)

where we use the fact that G(s)=sI(s) and gA(s)=s(A}(s). As it
is expected for a damped oscillator, the mean values of the
position and the velocity and also the VACF tend to zero.
This can easily be verified from Egs. (17), (5), and (9).

In the internal noise situation, the stationary state corre-
spond to the equilibrium state. Substituting (21)—(23) into
(14)—(16) yields

kpT
0 () = % (24)
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()'UU(OO) = kBT’ (25)

0,,(0) =0, (26)

which has been previously obtained through a similar proce-
dure [3].
To proceed with the analysis, we assume that

sH(s) > 52

which means that for long times the friction term is more
important than the inertial term.

Note that if the memory kernel takes the form (r)
=v,8(t) (S-correlated white noise), the GLE (1) reduces to
the ordinary Langevin equation [1], corresponding to a sys-
tem without memory. In this situation the Laplace transform
of the memory kernel is #(s)=17, and trivially satisfies the
two conditions (18) and (27). It can be verified that in this
case the kernels 1(z), G(z), and g(r) decay with an exponen-
tial behavior. In consequence, the mean values also decay
exponentially just like variances and VACF in the internal
noise case. In particular, the asymptotic variances can be
written as

(S — O), (27)

w2at~1—1+ﬁeﬂﬁm 28
B xx() 'y2 ’ ( )
0
w? ( w2)—2w21/70

o =]l-—|14+— S 29
BU (t) 7(2) + ’)/20 ( )

2
B (1) ~ yi(l " %)e_zwz’/”’- (30)

0 0

These equations correspond to the usual expressions ob-
tained in the overdamped limit, which is a consequence of
condition (27). Note that for a classical oscillator, normal
diffusion means that the mean-square displacement decays
exponentially.

In what follows we will characterize the memory kernel
in the same way as in Refs. [4,14] according to the two
possible behaviors of its Laplace transform at s=0:

5/(s=0)=fxdt’y(t’). (31)
0

(i) If the integral (31) is finite and nonvanishing, the
memory Kernel satisfies that [4]

Hs) ~y+o(l) (s—0), (32)

where y,=%(0). Note that this kind of memory kernels sat-
isfies both conditions (18) and (27). Inserting these condi-
tions and (32) into (19) yields
-1 -1
R s s
I(s) = =~
) sHs) + w* syt @

(s —0). (33)

Using Tauberian theorems [15], the long-time behavior of
I(f) can be obtained from the Laplace inversion of (33).
Thus,
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1) = {1 - e, (4

and, from (7) and (10), one gets

1
G(1) = 76_2“’2”7‘% (35)
0
w2 2
gt) = - — e 2@, (36)

0

Then, the first moments (5) and (9) decay exponentially to
zero. Furthermore, it can be demonstrated that in the internal
noise case the variances (14)—(16) are given by expressions
(28)—(30). Consequently, the memory kernel that satisfies
(32) leads to a normal diffusion. Note that, in accordance
with Ref. [14], a long-range memory kernel does not imply
necessarily an anomalous diffusive behavior.

(ii) The other possible behavior is found when the integral
(31) vanishes or diverges. Taking into account conditions
(18) and (27), the limit s— 0 of the Laplace transform (19)
can be approximated as

R 57! 57! sY(s)

I(s) 30+ w2{1 o } (s—0). (37)
Applying Tauberian theorems [15] in (37) it can be deduced
that the long-time behavior of I(r) becomes

1) = ﬁ—% (39)

where %(t) denotes the asymptotic behavior of the memory
kernel. Using relations (7) and (10) the kernels G(z) and g(z)
can be written as

1 dy
G() ~ - E%’ (39)
@z_ifw) (40)
g ot d

Substitution of the asymptotic expressions (38)—(40) into
Egs. (5) and (9) allows one to obtain the long-time behavior
of the mean displacement and velocity, which can be written
as

1 dy
(X(1)) = E{%?(ﬂ - %%} 41)

~ 0~
() = i{xo‘”—(” _bod 7(’)} 42)

»? dt o &t

On the other hand, in the internal noise case the variances
(14)—(16) can be written as

1 %0

Bo(t) = P (43)
1 (dy(0)\’
B, (1) = 1- N\ ) (44)
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1 dy)
0 ~— — (L=, 45
oo (1) = = —55(1) P (45)
and the asymptotic behavior of the VACF (17) is given by
1 d*¥(1)
G~~~ 2 (46)

It is worth pointing out that knowledge of (z) fully deter-
mines the asymptotic behavior of the first moments and the
variances and VACF in the internal noise case. Moreover,
note that it is not necessary to know the explicit form of the
Laplace transform %(s) of the memory kernel to obtain the
asymptotic oscillator dynamics. For this purpose, one only
needs to know the behavior of the integral (31). It is inter-
esting to observe that it is possible to deduce the form of the
asymptotic memory kernel () if one knows the behavior of
one of the variances or the VACF. Finally, the previous
analysis indicates that the presence of long tails in (¢) is a
necessary condition to obtain an anomalous diffusive behav-
ior of the oscillator (but not sufficient, as is shown above).

IV. EXTERNAL NOISE

The kernels 1(r), G(r), and g(z) obtained in the previous
section are valid for internal or external noises because they
are independent of the noise correlation function C(z). In the
case of internal noise the variances could have been calcu-
lated making use of the fluctuation-dissipation theorem.

In what follows we will investigate the long-time behav-
ior of the variances in the external noise situation. For this
purpose, the position variance (11) is written as

o (t) = 2f dn,G(t))p(ty), (47)

0

where we define
5
p(t) = J dt,G(t)C(t) —1,). (48)
0

The derivatives of the position and velocity variances can
be written as

120 91, 0=26()p00). )
dt
doy,(0) _, . dp(®)
dt =200 dr ' 0

To calculate the long-time behavior of the variances it is
sufficient to know the behavior of p() for long times, which
can be done noticing that p(r) is the convolution

p(s) = G(s)C(s). (51)

To proceed with the analysis, it is necessary to characterize
the noise correlation function in the same way we have done
for the memory kernel. In the case of external noise, there
are four asymptotic possible behaviors depending on the

form of (s) and C(s) when s— 0. The Laplace transform of
C(r) at s=0 is given by
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Cls=0)= f dt' C(t'). (52)
0
(i) A possibility is that the integral (52) is finite, i.e.,

C(s) ~ Cy+0(1) (s—0), (53)

with C, a nonvanishing constant. This case can be examined
noticing that p(f) behaves as

p(t) = CoG(1)  (t— =), (54)

where G(1) is given by (35) or (39), depending on the behav-
ior of (s) when s—0.

(ia) When also %(0)=1, is a nonvanishing constant one
gets

1
G () = 0y (1) = 2Cy— €20, (55)
0
(U4 2
d.vv([) = 2C0_4€_2w t/‘yo’ (56)
Y

showing that this case corresponds to a normal diffusion.
(ib) When #(0) is zero or diverges, inserting (39) and (54)
into (49) and (50) yields

~n\2
Gorll) = 20, (1) = 2%("2—(;)) , (57)
2~ 2
=25 20 (58)

Then, in this case the presence of long tails in %(z) indicates
that the system diffuses anomalously.

(ii) In what follows, we investigate the other possibility
for the behavior of C(s) when s— 0. If the integral (52) is
zero or divergent, taking the limit s — 0 in the Laplace trans-
form (51) and using (6) one obtains

Cls) zc(j) (s—0). (59

pls) =

s2 4+ 59(s) + w? 0]

Applying Tauberian’s theorems [15] in (59), one can deduce
that for long times

p(1) = %t) (60)

where 5(t) is the behavior of the noise correlation function
for long times.

(iia) If %(0) is a nonvanishing constant, the variance be-
havior is obtained inserting (60) and (35) into (49) and (50).
Then,

2

700’2

Gall) = 20, (1) = —— C(1)e ™21, (61)
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UU(Z) - %di(t)

In this case the evolution shows an exponential component,

2w2t/y0. (62)

independently of the form of C().

(iib) Finally, when both $(0) and C(0) are zero or diverge,
the behavior of the variances is given by

Gl =200 = - s E0 2, (63)

. 2 dC(1) *¥(1)

o) ==————7

w’ dt dt

where we have inserted (39) and (60) into (49) and (50).

Then, in this case the presence of long tails in y(¢) and C(z)

implies that the particle anomalously diffuses. As expected,

expressions (63) and (64) agree with the internal noise

solutions (43)—(45) when the validity of the fluctuation-
dissipation relation (3) is imposed.

) (64)

V. EXAMPLES

In what follows we will apply the previous results to a
specific model. For this purpose we consider a GLE charac-

terized by a memory kernel and a noise correlation function
of the form [3,6,16]

) = T (1 )\) ™, (65)
C ra
C(r) = m , (66)

where 0<\,@<<2 and N\, # 1. The proportionality coeffi-
cients y, and C, are positive, independent of time, but can
be functions of the exponents A and «. Then, the Laplace
transform of the memory kernel is given by

s) = ns (67)

Note that condition (18) is satisfied if A>0 and condition

(27) implies that A <2. On the other hand, one can realize

that $(0) diverges for 0<<A\ <1 and %(0)=0 for 1 <\ <2.
Substitution of (65) and (66) into (63) and (64) yields

P) NN R

Tl = e (- N1 —a)’ (68)
N NN + Day, C rmOFer?)
%0l == v ar 2l -G &
—(\+a+1)
(1) = D Ce! (70)

oT(1-NMT(1-a)

If the noise is internal, then a=\ and 7y, =BC). Then, insert-
ing (65) into (43)—(45) yields

"

ST 0

Bo-xx(t) ="~
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Ny

¢ =1_——2(>\+1) 72
Bo-vv( ) w6F(1 _ )\)2[ b ( )

)‘72 A1
W N, 73

and, from (46) and (65), the VACF is written as
NN+ Dy

C () =~ - ——202) 74
== (74)

Expressions (71)—(74) coincide with the long-time behavior
of the exact solutions found in Ref. [6] for the whole range
of time. Note that Eq. (74) implies that the VACF decays
with a positive power-law tail for 1 <\ <2 and with a long
negative tail when 0 <A <1. This negative correlation was
called “whip-back” effect in the free particle situation
[16—18]. This effect is responsible for the slower diffusion of
the particle (subdiffusion).

Finally, we want to stress the following issue. The previ-
ous analysis is valid for any memory kernel and noise corre-
lation function that they behave like a power law for long
times, provided that $(0) is zero or diverges. In particular,
we recently propose a memory kernel modeled as [19]

1) = 7 E\[- (/D). (75)

where E,(y) denotes the Mittag-Leffler function [20] defined
through the series

E\(y) = Er()\]+1) >0, (76)

Tacts as a characteristic memory time, 7y, is a proportionality
coefficient, and 0 <\ <2. In this case, the Laplace transform
of the memory kernel reads

A-1

VS
Ws) = —T% (77)

which again diverges for 0<<A <1 and vanishes for 1 <<\
<2.

The memory kernel (75) behaves as a stretched exponen-
tial for short times. For long times, using the asymptotic
behavior of the Mittag-Leffler function [20]

E\(-y)=DI(1-NM]",

it can be deduced that the Mittag-Leffler memory kernel (75)
behaves as an inverse power law like (65) for N # 1. There-
fore, the asymptotic solutions of the generalized Langevin
equation with a Mittag-Leffler memory kernel (75) and noise
correlation function are the same that those obtained using
the power-law functions (65) and (66).

y>0, (78)

VI. CONCLUSIONS

In this work we have investigated the memory effects in
the asymptotic behavior of a particle under the influence of a
harmonic potential and governed by a generalized Langevin
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equation with arbitrary memory kernel and noise correlation
function. We have obtained unifying expressions for the
asymptotic behavior of the displacement, velocity, variances,
and velocity autocorrelation function in the cases of internal
and external noise. This behavior depends on a simple form
of the long-time behavior of the memory kernel and the

PHYSICAL REVIEW E 77, 031123 (2008)

noise correlation function, which can be characterized

through its Laplace transforms #(s) and é‘(s) when s— 0.
The simple and quite general results presented here enable us
to characterize the long-time behavior of the diffusing oscil-
lator and make its application possible in the analysis of
diverse diffusive processes.
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