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Numerical study of diffusion on a random-mixed-bond lattice
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Diffusion on lattices with random mixed bonds in two and three dimensions is reconsidered using a random
walk (RW) algorithm, which is equivalent to the master equation. In this numerical study the main focus is on
the simple case of two different transition rates W;, W, along bonds between sites. Although analysis of
diffusion and transport on this type of disordered medium, especially for the case of one-bond pure percolation
(i.e., W;=0), comprises a sizable subliterature, we exhibit additional basic results for the two-bond case: When
the probability p of W, replacing W, in a lattice of W, bonds is below the percolation threshold p., the mean
square displacement (%) is a nonlinear function of time #. A best fit to the In{r>) vs In 7 plot is a straight line
with the value of the slope varying with p,A,d, where A=W,/W, and d is the dimension, i.e., (r?)
oc 1470 Ad) with 2> 0 for A> 1. In other terms, all the diffusion (D= (r2)/2roc ") is anomalous superdiffusion
for p<p. and A>1 for d=2,3. Previous work in the literature for d=2 with a different RW algorithm
established an effective diffusion constant D, which was shown to scale as (p.—p)"2. However, the anoma-
lous nature (time dependence) of D(7) becomes manifest with an expanded regime of 7, increased range of A,
and the use of our algorithm. The nature of the superdiffusion is related to the percolation cluster geometry and

Lévy walks.
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I. INTRODUCTION

There is an extensive and rich literature devoted to perco-
lation [1] and random-bond systems. These systems have
been the source of theoretical investigations of critical phe-
nomena [ 1-3], models of disordered media [4], transport and
diffusion (e.g., [5-7]), and a wide range of applications. One
such application [8] was to determine the influence of frac-
ture networks on the diffusion time of radioactive wastes
through very low-permeability rock. The hydraulically dis-
connected fracture networks were modeled by anisotropic
percolation clusters below the critical percolation value, p..
A random walk (RW) algorithm was invoked to calculate the
diffusion across a slab (thickness L) and determine the initial
part of the first-passage-time distribution F(L,r). The RW
algorithm we used is equivalent to solving the standard trans-
port equation, the master equation (ME); we denote it as the
ME algorithm. Our motivation for the present study was the
numerical determination of the full evolution of pure diffu-
sion using this ME algorithm.

In the past, RW algorithms seem to have been derived in
a somewhat arbitrary manner. De Gennes’ “ant in a laby-
rinth” [9] has evolved into many subspecies of termites, all
conceptually derived in attempts to better describe observed
phenomena, but all lacking physical foundations. The use of
the ME algorithm is shown here to lead to additional results
in this classical problem of diffusion in the subcritical per-
colation domain.

Scaling aspects of the overall diffusion constant D in
the subcritical percolation domain have been examined pre-
viously [5], with the finding that D, (p.—p)'2, where p is
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the probability of finding a bond with transition rate W, in
the lattice. In this study we use the ME algorithm to inves-
tigate a prototype (d=2,3)-dimensional random-bond sys-
tem with transition rates W=W,,W,, concentrating on the
region below or at the critical percolation (with A=W,/ W,
and p =p,, neglecting connected lattices). Our goal is to ex-
plore the evolution of pure diffusion in a mixed quasi-infinite
domain. We demonstrate that an effective diffusion constant
D, is not defined over the values of p (p=p,) and the range
of ¢ and lattice sizes that we explore. The basic result is that
the mean square displacement (7%} is a nonlinear function of
time . A best fit to the In{r?) vs In ¢ plot is a straight line with
the value of the slope varying with p,A.d, ie., ()
o1+ 7084 with >0 for A> 1. Defining D=(r2)/2t, we
have D«t7, i.e., anomalous superdiffusion. In many prob-
lems involving anomalous diffusion, the asymptotic behavior
of the system is diffusive, but the time taken to reach this
limiting behavior can be extraordinarily long (e.g., [10,11]).
The present work clearly demonstrates this.

In the next section we derive the ME algorithm, in Sec. III
we describe the numerical methods used, and in Sec. IV we
exhibit the numerical results, the relation to solutions of the
diffusion equation, and the difference between these results
and those of [5], with a thorough discussion of the variance
of (r?). To gain some insight into the phenomenon of super-
diffusion in our case we relate, in Sec. V, the geometry of
distributed percolation clusters to ideas based on Lévy walks
[12], which also result in enhanced diffusion.

II. THE MASTER EQUATION FRAMEWORK
FOR THE RANDOM WALK

We approach the problem of the kinetics of the particle
motion in the random-mixed-bond system as a standard
transport calculation. Our starting point for this multicompo-
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nent system is a master equation [13,14], which is simply a
mass balance equation incorporating all the transition rates
associated with each bond.

We cast the master equation into the form of a completely
equivalent random-walk equation and derive s (1), the
probability per time that a transition occurs from s —s’ (it is
dependent on the location, i.e., each neighborhood is differ-
ent in a specific representation):

dc(s,t)

— =" Dw(s',s)e(s,0) + > wis,s')e(s',1), (1)

S

where c(s,f) is the normalized concentration or occupation
probability and w(s,s’) is the transition rate from s’ to s; the
dimension of % w is reciprocal time. Following the develop-
ment given in Appendix B in [15], and introducing

We= 2 wis',s), pls',s) =w(s’,s)W,, (2)

S

we obtain the result

lr//s’,s(t) =P(S',S)‘//s(f), (3)

lﬁs(t) = Ws eXP(— Wst)- (4)

The time of the displacement in the ME algorithm is calcu-
lated using a random choice from the normalized distribution
(¢) in (4). The standard approach is to calculate the cumu-
lative of the distribution, i(7), set it equal to a random num-
ber 1—x, x € (0,1], and solve for t. Hence, the transfer time
is r==In(x)/W,. It is important to note that in the ME algo-
rithm the time is always controlled by the reciprocal of W
(2). This is in sharp contrast to the previous treatment of the
“termite” and mixed diffusion case [5] (which we denote,
hereafter, as the TM algorithm), in which the diffusion of a
termite is considered with the same displacement probability
p(s’,s) from the site s to s’ as in (2), but with a discrete time
assignment of 1/w(s’,s) for the chosen bond.

If the bonds originating from a site are all equal, the main
difference between the ME and TM algorithms is the In(x)
factor and the coordination number of the lattice (this will be
discussed in Sec. IV). However, at the boundary of a cluster
the ME algorithm time calculation is significantly different
from that of the TM algorithm, especially for A>1. As an
example [in three dimensions (3D)], if there is one path
available W, to exit from a (high-diffusion) cluster, the time
calculation for the ME algorithm is inversely proportional to
the sum of the transition rates on all possible paths, e.g.,
—In(x)/(5W,+ W,). The TM algorithm transition calculation
for the exit would be 1/W,; the time differs by a factor of
(5A+1)"'. The TM algorithm is intuitively appealing, but
contradicts the master equation. The master equation takes
into account the local neighborhood (i.e., all the bonds origi-
nating from a site) to calculate the probability per time to
leave the site [ ¢(7)]. While a particle hops off a node via one
particular bond (with a particular transition rate) with a cer-
tain probability, the time for the particle to hop off the node
will still depend on the local neighborhood. In the ME algo-
rithm, it takes the same amount of time to hop off or back
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into a cluster from one of its boundary sites. In the TM
algorithm it can take a much greater time to hop off.

II1. DIFFUSION SIMULATION

We have completed computer simulations of extended dif-
fusion for many configurations in two and three dimensions.
The system is constructed by bond percolation on an or-
thogonal lattice. For each configuration we cycle through
every lattice bond and randomly place (using the NAG G035
random number generator algorithms) a W, bond with prob-
ability p and a W, bond (always set equal to 1) with prob-
ability 1—p (i.e., a cluster of W, bonds just spans the lattice
at p=p.). All of our results are for p=<p,.. For numerically
stable results, it proved necessary to use very large lattice
sizes: 300° (in 3D) and 3000% (in 2D). Periodic boundary
conditions were used, approximating the infinite boundary
condition.

The general procedure for each RW was to parachute a
particle to a random spot on the lattice and measure the dis-
tance squared, 2, using the initial position as the origin, as a
function of time. Each complete set of RWs was generated
with both the ME and the TM algorithms [5] according to the
rules discussed in the previous section. We obtained (r?) for
¢t up to 10 000; A was varied from 10 to 10 000. The bond
density p was selected at intervals between 0 and 0.24 for
3D, p.=0.2488, and 0.47 for 2D, p.=0.5 (bond percolation
[1]). To obtain {r?), we calculated > for 5000 different walks
on each lattice configuration, and then took the average of
the mean value of r* over 20-40 different lattice configura-
tions with the same value of p. This small number of lattice
configurations produced a value of (%) with very little error.

The variance in the mean values of 7> over different simu-
lations involving 5000 walks in a single lattice was small,
and did not change drastically in time. However, the variance
in the value of (r?) (an average over many lattice configura-
tions) was significantly larger, and increased with time, with
A, and with proximity to p.. This problem was endemic to
the small lattices (e.g., 150° for 3D and 300 for 2D) and was
eliminated with the use of larger lattices (300 and 30002).
This will be shown in Sec. IV.

In the one-component limit, p=0, the effective diffusion
coefficient determined by (r?) equals that of the one-
component medium, yielding a solution identical to that of
the diffusion equation solved with D; (Dlzénale, n
=lattice coordination number, a=lattice constant) on an infi-
nite volume (setting W;=1 and a=1 to define our units of
length and time, i.e., ¢ and lattice size are nondimensional).

IV. RESULTS

Our prototypical result is shown in Fig. 1. The mean (r?)
at each value of p is computed from 5000 walkers in 20-40
configurations over a very long time interval. The variance in
the average is shown at each value of (r?). To obtain such
very small variances it was necessary to increase the size of
the 3D lattice to 300* and the 2D lattice to 30002. The form
of (#?) is clearly not linear, and hence an effective diffusion
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FIG. 1. {r?) vs t for A=10", varying p for 3D lattices of size of
3003; error bars represent the variance in (r2).

constant Dy={r*)/2t cannot be defined over the time range
of the simulations. In general, for anomalous diffusion, the
very long-time behavior asymptotes to a constant diffusion
coefficient [16-18]. Even with our expanded time range,
however, we do not see the evolution to this asymptotic be-
havior.

The nonlinearity of (r*) becomes more manifest with in-
creasing A and ¢. The nonlinearity is subtle at early times but
at later times becomes obvious. The data of Fig. 1 are shown
in a log-log plot in Fig. 2. The best asymptotic fit to the data
over this decade range is a linear plot; correlation coeffi-
cients of greater than 0.99 were found in all cases. It is ex-
pedient to use this power law summary of the data in the
large-time limit, (r>) o #'+”. Hence, in this time range one has
superdiffusion, i.e., 7>0. We show this result in Fig. 3 for
various values of A in the range A> 1, where the superdif-
fusive behavior increases with increasing A. In Figs. 4 and 5
the dependences (for 3D) of 1+ 7 on p.—p and A are exhib-
ited, respectively. These dependencies will be discussed in
the context of the percolation cluster structure in Sec. V.
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FIG. 2. Log-log plots of {(r?) vs t (for > 103, the asymptotic
range) for A=10%, varying p for 3D lattices of size 300°.
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FIG. 3. Log-log plots of (r?) vs t for p=0.24, varying A for 3D
lattices of size 300°.

The importance of the lattice size is seen clearly in Fig. 6,
where the coefficient of variance of (r?) vs ¢ is shown for
lattices of sizes 100° and 300°. For the smaller lattices, the
error bars grow with time and the shape of the curve of (r?)
vs t for this lattice becomes unreliable. Figure 7 shows a
comparison between the two algorithms discussed above.
For a large value of A and a small p.—p, the (r*) values
determined with the two algorithms differ significantly in the
degree of nonlinearity in f. The fitted exponents using the
ME and TM algorithms are 1.46 and 1.13, respectively. Al-
most identical behavior was found for the 2D results.

The 2D results for the ME algorithm are shown in Fig. 8
for p (=0.47) close to p. (2D) and varying A. These results
are similar to Fig. 3 for the 3D case. This is also true for the
comparison between the plots of 1+ 7 vs A in Figs. 9 and 5
for 2D and 3D, respectively.

Finally, the (r?) vs ¢ plot in Fig. 10 is a validation of the
use of the ME algorithm. We simulate diffusion in a uniform
lattice of the same bonds (A=1). The dependence of (r?) vs
t is perfectly linear (i.e., (r*)=6¢ and (r*)=41). The coeffi-

o a=10*
15[ o A=5x10° 1

o

0.01 0.02 0.03 0.04 0.05

FIG. 4. Dependence of 1+ 7 on p.—p when A is varied for 3D
results.
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FIG. 5. Dependence of 1+7 on A when p is varied for 3D
results.

cients 6 and 4 are the coordination numbers for 3D and 2D
lattices, respectively. These coefficients do not appear when
using the TM algorithm. In the units we chose, these rela-
tions are the same as the solution of the diffusion equation,
since the second moment of the diffusion equation solution is
(x*y=2Dt, and in the isotropic case ((x>)=(y>)=(z%)), so
(r?y=2dDt (i.e., {(r*y=6Dt for the 3D results and 4Dt for the
2D results). In our units, D=1.

V. CLUSTER GEOMETRY, LEVY WALKS,
AND SUPERDIFFUSION

The features of the geometry of percolation clusters for
p<p, that we will use are its size distribution and ramified
nature. As p— p,, a relatively small number of clusters grow
large and at p,. one cluster spans the lattice. The probability
of finding a cluster of size S for p=<p, varies as S77 for S less
than a cutoff size depending on p, where 7 is referred to as

O lattice size 100° o
02511 o |attice size 300° o ]
0.2} ° ]

o
. 0.15 ° ]
o
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0.1 o B
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b b ° o . . ° ° .
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t

FIG. 6. Dependence of the coefficient of variance (CV) in (12
(variance/mean) on ¢ for p=0.24, A=10" for 3D results. Data rep-
resent 80 realizations of 5000 particles on 100? lattices and 10
realizations of 5000 particles on 3007 lattices.
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FIG. 7. {r*) vs t for A=10*, p=0.24 on 3D lattices for TM and
ME algorithms. ME algorithm ran on 300 lattices, TM algorithm
ran on 1007 lattices; error bars represent the variance in (r?). Note:
The TM algorithm results were multiplied by 6 (for 3D) and 4 (for
2D) to allow for comparison.

the cluster number. The radius of gyration Rg of a cluster
varies with the size as R? o« § [1], where D is referred to as
the fractal dimension. The probability of encountering a clus-
ter of length Ry varies as Rg”, where u=7D. The ramified
nature of these clusters plays a dynamic role in the effective
diffusion on a single cluster.

The RW we simulate is one where there are nodes of
standard diffusion (the W, bonds) and encounters with faster
diffusion (the W, bonds) across lengths that are distributed as
a power law (Rg"). This type of RW has similarities to a
Lévy walk [12], in which there is a high probability for tak-
ing short steps, and, while long steps can occur, they are
penalized with a longer time requirement. We relate these
long steps to the displacement of a random walker over the
length of a fast cluster, Rg, using our algorithm. We speculate
that, as the overall position is nearly completely determined
by the long, rare steps in the Lévy walk, the large, fast clus-
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FIG. 8. (r?) vs 1 for p=0.47, when A is varied for 2D lattices of
size 30002
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FIG. 9. Dependence of 1+ 7 on A for 2D results; p=0.47; error
bars represent confidence levels of 95% for the slope of the fitted
line to (r2) vs ¢ data.

ters dominate the transport in our problem. In the asymptotic
limit, the random walker encounters many of the larger finite
clusters, and this averaging process can be expected to result
in a well-defined diffusion coefficient.

Klafter et al. [12] use a continuous time random walk
(CTRW) with a special space-time coupled joint distribution
for the probability per time to have a displacement r in time
t,

e, t) = Crid(r—r), (5)

to generate a Lévy walk. The exponent w controls the dis-
placement probability, which we anticipate for our case is
equal to 7D. The exponent v controls the type of transport
during the displacement and the ¢ function couples r and ¢,
imposing a time penalty that is coupled to the displacement
length. We are interested in the value of vy in (r?)ot? pro-
duced with a CTRW using (5), and, in particular, the cases in
which y>1. Klafter et al. [12] develop the exponent 7y
which depends on the interplay of the three arguments d, u,
and v (two of which are combined into u*=u—-d+1).

The authors show in their Table I that, for the condition
v(u*=2)<l1, y=2—vu*+2v when vu*>2, and y=2v when
1 <wvw*<2. Hence, if u* is small enough (i.e., the probabil-
ity for large displacements is large), there is a range of v so
that y> 1. In our case we now show that vu*~2.

In the percolation geometry one has 7=187/91 and D
=91/48 for 2D and 7=2.18 and D=2.5 for 3D, with the
result that ©=187/48=3.9 and u=5.4 for 2D and 3D, re-
spectively [1]. For example, for 2D, if »=<0.7, one obtains
y=2v. Hence, for the range of u for the percolation geom-
etry we have anomalous superdiffusion if »=0.5.

In this picture, the superdiffusion through the percolation
system depends on some enhancement of the diffusion in the
individual cluster. Because these clusters are highly ramified,
there is some admixture of diffusion across fast as well as
slow bonds. On large clusters the encounters with boundary
sites are frequent, so particles on clusters will tend to be
accelerated through the cluster. As A increases the relative
diffusion is enhanced. This is most likely due to the forma-
tion of preferential pathways through the cluster. Migration
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FIG. 10. {r?) vs ¢ for 2D and 3D; A=1 (uniform lattices of size
30002 for 2D and 3003 for 3D). For 2D, data represent one realiza-
tion; for 3D, data represent ten realizations. The lines are not fits,
but rather overlaid plots of (#2)=4¢ or 67 as indicated.

off the cluster is less likely as A increases. However, if a
particle hops off a cluster, the time to make the transition
using the TM algorithm is much greater than if using the ME
algorithm [recall the factor (SA+1)~']. This may explain
why, while the y calculated using the TM algorithm (ypy,) is
superdiffusive, it is significantly smaller than yyy (recall Fig.
7).

Because u* is fixed, the maximum value of vy as a func-
tion of v occurs for vu*=2, which is the upper limit for y
=2v. The values of u* are 2.9 and 3.4 for 2D and 3D, re-
spectively, so we observe that y=2—vu"+2v decreases as a
function of », and therefore cannot produce a superdiffusive
exponent. Note also that, because uyp < u3p, the values of v
can be larger for 2D (in keeping with vu*<2). Hence 2v or
v (=1+ 1) can be larger for 2D compared to 3D, which is in
agreement with Fig. 9 compared to Fig. 5. According to [12],
the maximum values of 1+ 7 are 1.4 for 2D and 1.2 for 3D.
These values cover most of the range we calculated shown in
Figs. 5 and 9. The higher values of 147 at very large A
(~10% are not accommodated in this analogy with the Lévy
walk of (5) unless there is a small dynamic decrease in w* at
the highest A. The comparison to the Lévy walk provides
some insights into the mechanism of superdiffusion in this
system of power law distribution of cluster lengths.

VI. SUMMARY

In this study, we explore transport on a subcritical mixed
bond lattice using a RW algorithm, equivalent to the master
equation, that generates superdiffusive behavior. We examine
this system in 2D and 3D with an extended time regime and
wide range of A. Using both the TM and the ME algorithms,
it is concluded that, for long times, a constant D does not
exist, and that Do ¢7 where 7 generated by the ME algorithm
is greater than that of the TM algorithm. The time depen-
dence of D(t) becomes apparent at long times, and increases
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with A. An analogy to the Lévy walk (5) is proposed to
provide some insights into this mechanism of superdiffusion.
This surprising result is attributed to enhanced diffusion on
large clusters with complex, ramified geometries.
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