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Expansion dynamics of Lennard-Jones systems
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The dynamics of the expansion of a Lennard-Jones system, initially confined at high density and subse-
quently expanding freely in a vacuum, is compared with an expanding statistical ensemble derived in the
diluted quasi-ideal Boltzmann approximation. The description proves to be fairly accurate at predicting average
one-body global observables, but important deviations are observed in the configuration-space structure of the
events. Possible implications for finite expanding physical systems are outlined.
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I. INTRODUCTION

When a finite isolated unbound system decays in a
vacuum, its decay pattern is often characterized by an or-
dered kinetic component: the collective flow. This is the case
in cluster dissociation induced by photoionization [1-4] or
charge transfer collisions [5,6]. Here, the condensed matter
bulk limit encourages, in principle, an interpretation in terms
of liquid-vapor transition. However, the obvious fact that all
vapor flows out and no vapor comes back in makes it diffi-
cult to push the analogy further and the dynamical evapora-
tion can only be interpreted thermodynamically [1,2,5] by
making use of a time-dependent temperature within the con-
cept of an evaporative ensemble [7,8]. Flow is also a basic
feature of heavy ion collisions, where the products of frag-
mentation reactions show a velocity preferentially oriented in
the radial direction [9]. If in the low-energy regime and in
the associated multifragmentation phase transition these col-
lective flows are only a perturbation in the global energetics,
this is not true at higher energies (between 0.2 and 2.0 GeV/
nucleon), where they are likely to influence light cluster for-
mation by coalescence [10]. In the ultrarelativistic regime,
the ordered and disordered motions become comparable in
magnitude [18] and collective flows are believed to play an
essential role in the characteristics of the transition to the
quark-gluon plasma observed in the Relativistic Heavy Ion
Collider data [11-13].

In the initial stage of a nuclear collision, the complexity
of the dynamics is such that a statistical analysis of the sys-
tem might prove useful, even at low energies. If this equilib-
rium stage occurs at high density [14], the final-state inter-
action may still be important in the subsequent evolution and
it is not clear how the final partitions at the freeze-out stage,
where the fragment interactions are assumed to have ceased,
will be modified. In a previous paper [15] we addressed this
issue at the classical level through molecular dynamics simu-
lations of a Lennard-Jones system [16], initially thermalized
at high (supercritical) density and subsequently expanding
freely in the vacuum. We have shown that the dynamics of
the expansion leads to a considerable increase of fluctua-
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tions. By the time the partitions are settled and the formed
prefragments cease to interact (freeze-out), these fluctuations
are qualitatively similar to the ones expected for a thermal
system at reduced subcritical density. A naturally arising
question is then whether the expanded system at freeze-out
can still be treated as a statistical equilibrium at a lower
density.

This important question, which probably does not have a
unique answer, can only be addressed by our numerical ex-
periments in a very partial and incomplete way. In the evapo-
ration regime accessed in cluster experiments, a freeze-out
stage does not exist and a statistical treatment equivalent to
the dynamical process has to be adapted to the time window
of the experiment [1]. Conversely, the time scales are so
short in heavy-ion collisions that well-defined freeze-out
time(s) can be identified. However, the underlying dynamical
process may very different from the free expansion of a
dense system of classical particles. In particular, it is impor-
tant to stress that macroscopic statistical models in all energy
regimes [17,18] suppose that the statistical hypothesis ap-
plies at the freeze-out time, and in this sense they by-pass by
construction the problem of the out-of-equilibrium evolution
up to freeze-out.

In different physical situations flow appears to settle early
in the dynamics. Notably, this is the case of central nuclear
collisions, where flow is associated with an initial compres-
sion of the dinuclear system. In such a situation equilibrium,
if ever reached, is approached when the system is still
strongly interacting and we may expect the succeeding dy-
namics to deeply modify the system configurations. In these
situations, the model of an initially equilibrated dense mo-
lecular system, which is released to expand freely in the
vacuum, may bear some pertinent information.

In this paper we compare freeze-out configurations of a
freely expanding Lennard-Jones system with different equi-
librium models for the same system. We show that, if statis-
tical models are reasonably correct as far as average quanti-
ties are concerned, important differences can be seen in the
fragmentation patterns. In particular, close to the liquid-gas
phase transition unstable configurations, inaccessible to equi-
librium models, appear to dominate the dynamics of the ex-
pansion.
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II. ISOBAR MICROCANONICAL ENSEMBLE

The system under study is composed of excited drops
made up of N=147 particles interacting via a Lennard-Jones
(LJ) 6-12 potential v,,(r) with a cutoff radius r.=30¢. Ener-
gies are measured in units of the potential well (€), o char-
acterizes the radius of a particle, and m is its mass. We adopt
adimensional units for energy, length, and time such that €
=o=1 and t,=\0?m/48€. The initial condition is given by
the microcanonical isobar statistical ensemble described by
the probability for each microstate (n):

N
SE-H")
() o 227 TLJJ (m)y2
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where " is the position of particle i within the microstate

(n), H(L”J is the corresponding Lennard-Jones energy, \ is a
Lagrange multiplier constraining a finite size, and

N
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is the associated density of states or partition sum. The dis-
tribution, Eq. (1), is the minimum biased probability distri-
bution for an isolated finite system with a finite size mea-
sured by its radius [21]:
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n

where the average is taken over microstates. To generate the
statistical ensemble, Eq. (1), we numerically proceed as fol-
lows. A harmonic potential with spring constant k=ma?,
with w:O.ltal, is added to the Hamiltonian, and the system
is coupled to a thermostat using the Andersen technique [19]
to achieve equilibrium inside the oscillator. In brief, this is
attained by stochastic impulsive forces that act occasionally
on randomly selected particles. After each collision, the se-
lected particle is endowed with a new velocity drawn from a
Maxwell-Boltzmann distribution at the desired temperature
B!, Between stochastic collisions, the system evolves at
constant energy. It has been proved that, under some general
conditions [19], the constant energy shells are visited accord-
ing to their Boltzmann weights, which in turn implies that
the ensemble of configurations at different times constitutes a
canonical ensemble at the thermostat temperature, distributed
as

1 ")k
pi';i,,,—z—exp< /3121{( i 5(%"52]
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Microcanonical ensembles are extracted at different energies
by sorting the events of the canonical distributions according
to their energy, excluding the contribution of the confining
potential (further details can be found in Refs. [23,24]).
These dense configurations correspond for all energies to the
supercritical part of the Lennard-Jones phase diagram [20].
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III. COMPARISON WITH THE FREELY
EXPANDING SYSTEM

A. Choice of comparison time

The equilibrated configurations are let to evolve in the
vacuum for a time long enough that the chemical composi-
tion of the system is settled (freeze-out time).! An interesting
observable to study the freeze-out properties of the system is
given by the normalized kinetic energy fluctuation Ag
=No%/{K)>. This quantity shows a saturation when the shar-
ing between kinetic and potential energy finishes, which
physically corresponds to the formation of surfaces within
the system, which in turn implies a chemical stabilization of
the cluster properties [15]. The behavior of this fluctuation
with time is displayed for four representative energy states in
the upper part of Fig. 1.

During the time evolution, the initially disordered kinetic
energy is partially converted into collective motion, defined
as

~ny2 N A
,,) (P ) 1 ( ~(n) r; )
t)=N——" E —\ p; . 5
fluw() 2m P 2m Pi l(l) ( )

The internal energy at each time is correspondingly given by
E, =K;,;+V,,;, where

K" () = E —(p\"

-’(n 6
25 )%, (6)

and V(L"J)=E,~¢jvu(|?§")—?;")|) is the interaction part of the
Lennard-Jones energy.

The time evolution of the system with different initial
energies is represented in the (E;,) versus (r*) plane in the
lower part of Fig. 1. We can see that the time evolution
corresponds to a rapid expansion and a development of col-
lective flow which enlarges with increasing total energy. If at
the entropy-saturation time or freeze-out time 7, the system
were still close to statistical equilibrium, it should be de-
scribed by Eq. (1) with E=(E,,)(t;) and a new volume con-
straint @ such that the average over the statistical ensemble
(1) of the mean-square radius is (r2>=(r2)(tf). The mean-
square radius of an equilibrated system with the looser con-
straint cu=0.01t6l is also represented in the lower part of Fig.
1. The points where this curve intersects the time evolution
of the freely expanding systems give the times we have cho-
sen to compare the statistical and dynamical ensembles. As
can be seen in the upper part of the figure, these times are
long enough for the configurations to be safely considered as
frozen for all chosen energies. At later times, the dynamics
will not further affect significantly energy and fragment par-
titions, meaning that the comparison we show will also be
pertinent.

'For each energy, 1000 events were simulated using the velocity
Verlet algorithm. For more technical details on the implementation
see Ref. [15].

031109-2



EXPANSION DYNAMICS OF LENNARD-JONES SYSTEMS

T T T T

-1.0e - R
i (@) 00e o ]
1.0 v
. 20e —8—
08 6. 0%c@%0000® T g
o o
v 061 Ko ,0-0-6-94@«.’9‘6’@-@ .................. o 3
< ; 0
04 i oo T@®TVVIIVIg. S J
0.2
10000
1000

<r2> (units of 02)
>
o

—_
(=1

-5 -1 -0.5 0 0.5 1 15 2
<e;p> (units of €)

FIG. 1. (Color online) (a) Kinetic energy fluctuation Ag (see
text) as a function of time for the freely expanding system at four
different energies. (b) Mean-square radius as a function of the in-
ternal energy (E;,;)/N of a confined LJ system in a harmonic trap
with @=0.017;" (solid line) and w=0.17;" (dashed line), compared
to LJ systems in free expansion, at different total energies and times
between 0¢ and #,=250¢, (symbols). The large solid circles in both
pictures correspond to the time at which the confined and freely
expanding systems have the same mean spatial extension. All quan-
tities are expressed in reduced units.

B. Energy sharing and effective temperature

The time-dependent sharing of the internal energy E;,,
=K;,,+V between the kinetic and interaction components is
shown in Fig. 2, which displays the average disordered ki-
netic energy (K;,,) as a function of the internal energy for the
different evolutions. The equilibrium correlations for the ini-
tial and final states are also represented.

We can see that the equilibrium sharing is well verified at
the freeze-out time, except for a slight underestimation at the
lower energies. This result implies that the kinetic energy at
freeze-out, once the collective component is subtracted, can
be used as a thermometer measuring a physically well-
defined temperature for the expanding system.

The deviation at low energies is also interesting. At E/N
=-1e¢, the system evolution consists essentially of a simple
evaporation of monomers and light fragments from the sur-
face of a single excited condensed drop. The poor reproduc-
tion by the statistical ansatz (1) of the drop in the kinetic
energy implies that the evaporation rate can only approxi-
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FIG. 2. (Color online) Average Kinetic energy per particle,
(K;n)/ N, as a function of the internal energy per particle, (E;,,)/N,
of a confined LJ system in a harmonic trap with (1):0.011‘51 (solid
line) and w=0.lt(_)1 (dashed line) compared to LJ systems in free
expansion at different total energies at times between Of, and #;
=2501, (symbols). Large solid circles correspond to the time at
which the confined and freely expanding systems have the same
mean spatial extension. Error bars correspond to one standard de-
viation, over 1000 events corresponding to each energy.

mately be described in terms of an effective pressure [22],
due to the irreducible time dependence of the evaporation
process.

C. Statistical treatment of the expansion dynamics

At first sight it may be surprising that the best agreement
with the equilibrium picture is obtained at the two highest-
energy values, where the flow contribution is the most im-
portant and the dynamics is the fastest (see Fig. 1). This
counterintuitive result can be understood if we consider that
the structure (1) for the microstate distribution is exactly pre-
served by the time evolution in the case of noninteracting
particles or local interactions, as we now show [21,23]. For a
Hamiltonian system, the time dependence of any mean ob-
servation (A) is given by d{A)=—({H,A}). If the system is
noninteracting (H=K), this immediately gives

)= 247 ),

HF- 7 =),

az<ﬁ2> =0. (7)

It is easy to show that these same relations hold for a non-
Hamiltonian dynamics in the presence of a Boltzmann colli-
sion integral accounting for local two-body interactions. Let
us consider an initial condition given by the equilibrium dis-
tribution, Eq. (4) (with v;;=0), imposing given values for the
average kinetic energy and mean-square radius through the
Lagrange multipliers 8 and A =Bmw?/2, which constrain the
observables (p?), and (i), respectively. At any succeeding
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time, the exact evolution of these observables will be given
by Egs. (7). The minimum biased distribution, fulfilling the
time-dependent constraints and additionally conserving the
total energy, is given at any time ¢ by

SE - H") S B S s
" (f) = Mw)ﬂpﬁmg kEU)
N
+un) X A | (8)
i=1
with
B=222 win=2 ©)
m m

Using the associated dynamical equation (Liouville equation
for the ideal gas or Boltzmann equation for the collision
problem), it is possible to show [21] that Eq. (8) is the exact
evolution of Eq. (4) under the action of the ideal gas Hamil-
tonian.

Equation (8) can be interpreted as a self-similar radially
expanding ideal gas in local equilibrium with a time-
dependent temperature and pressure. Indeed, the distribution
can be written as

o) 500 _ (1))
XE-H") B(t)z( mh(0)r;")

o
@)= W, (E,1) 2m

(10)

where the collective radial velocity is proportional to the

radius (self-similar motion) and h=1/t represents a Hubble
factor.

In the absence of an attractive interparticle interaction, the
whole momentum distribution participates in the flow dy-
namics. As noticed above, in the LJ case a part of the initial
kinetic energy is converted into the internal energy of the
clusters. Because of the spherical symmetry of the problem
(EN,pd=N(p,), the two contributions are decoupled,
N(ﬁ2>/2m=(K,-n,>+(Eﬂow) [see Egs. (5) and (6)] and we can
expect Eq. (7) to be still approximately satisfied, provided
the internal contribution to the kinetic energy is subtracted.
The time evolution of the average square radius, collective
flow, and square momentum is represented for different total
energies in Fig. 3. At the beginning of the evolution the
strong interactions acting in these dense supercritical systems
modify the dynamics with respect to the ideal gas or diluted
Boltzmann ansatz. However, after t=~20¢,, the trend pre-
dicted by Eq. (7) is well verified. In a first approximation, the
system is still dense and homogeneous at 1= 20z, [15] (see
Fig. 1). Therefore, we can make the assumption that at ¢
~20t,=t, the initial condition (1) still describes the ob-
served distribution with the extra constraint of a collective
flow {(p-r)(t;) #O:
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FIG. 3. (Color online) Time dependence of the average square
radius (a), radial flow (b), and square momentum (c)—all in re-
duced units—for the freely expanding system at four different en-
ergies. Symbols: numerical simulations, where the internal square
momentum of the largest cluster recognized at asymptotic times is

subtracted. Lines: free gas evolution Egs. (15)-(17) corresponding
to the statistical ansatz, Eq. (14), with an initial flow.
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In the ideal or Boltzmann gas limit, the succeeding evolution
of the distribution (11) is given again by Eq. (8), with a
modification of the time-dependent constraints to account for
the initial flow.

As far as average observables are concerned, we can
equivalently consider an initial condition in the canonical
ensemble, as the different ensembles essentially differ at the
level of fluctuations:

N
exp| = 2 Bi(p") = A (FM)?

By, xl i=1

pEIZz)no( l) =

+V2p(”) ﬁ(") ) (12)

This simplification allows a straightforward calculation of
the equations of state. Indeed, the time dependent partition

sum can be factorized into Zg 1 7 =2 ,6’ x5 with
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The time-dependent Lagrange parameters are given by

~ 2\
Bl(t) = Bl - 2V1At + _lAtz,
m
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2N
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and the time-dependent equations of state give, for any Ar
=t—t;>0, the predicted evolution of the average observ-
ables:

dlnzg x5 6m\
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The good adequacy displayed in Fig. 3 between the nu-
merical evolution and the ideal gas dynamics Egs. (15)-(17)
shows that, as far as average global observables are con-
cerned, the expansion can be represented at any time as a
statistical equilibrium in the local rest frame Eq. (8), even in
the diabatic limit. It also confirms the expected equivalence
between the microcanonical and canonical average evolu-
tion.

D. Deviations from equilibrium

The good reproduction of the time-dependent average ob-
servables by the equilibrium ansatz does not mean that the
configurations explored by the expanding system coincide
with the equilibrium configurations. To look for deviations
from equilibrium, we first show in Fig. 4 the behavior of
potential energy fluctuations. In the low-energy liquid re-
gime, as well as near the liquid-gas transition, the freeze-out
fluctuations for the freely expanding system are very close to
the prediction of the equilibrium model without flow. How-
ever, for intermediate energies (E/N=0¢,E/N=1¢), the fluc-
tuations are underestimated by the equilibrium calculation.

This underestimation can be partly due to the energy con-
servation constraint. Indeed, in the expansion of an isolated
system the total energy is a constant of motion. This means
that the potential energy can be converted both into internal
kinetic energy and into collective flow, inducing event-by-
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FIG. 4. (Color online) Potential energy per particle fluctuations
for the freely expanding (open circles), constrained without flow
[Eq. (1)] (open squares) and constrained with flow [Eq. (11)] (solid
diamonds) systems. The abscissa gives the total energy per particle,
E,,;/N, of the freely expanding system in all cases.

event fluctuations in both components. This effect is not con-
sidered in Eq. (1) where the flow is absent, and the conser-
vation law therefore applies to the total internal energy. In
other words, the equilibrium ansatz (1) disregards flow en-
ergy fluctuations.

To quantify this effect and assess if the fluctuation under-
estimation can be explained by it, we have also plotted in
Fig. 4 the prediction of Eq. (11).

To numerically simulate Eq. (11) we first consider its ca-
nonical counterpart Eq. (12) which can again be recast as an
isobar equilibrium in the expanding frame

50— min (077

N
1 i
P = wJ—E&@ >
Zg\| i=1 m
+>\{(r,»”))2], (18)

with h=v,/B; and )\{=)\1—mvf/2,81. This distribution is
simulated as Eq. (4) above. Then a radial momentum p,
=mbh,7 is added to each particle and a microcanonical sorting
is imposed on the total energy including flow, E'=X,(p;
+p,)* (2m)+Vy, [23].

Thus, three models are compared in this figure: the freely
expanding system at time 7, and the equilibrium model in the
local rest frame including [Eq. (11)] and not including [Eq.
(1)] flow fluctuations. The three models are tuned to have, on
average, the same internal energy (E;,,) and spatial extension
(r*). This internal energy is fixed in each event (n), K"
+VW=E, =const, in the case of Eq. (1); while it can fluc-
tuate in the free expansion and also for Eq. (11), where
K(”)+V(")zEEZB+E;;’3W:Emt=const. We can see from Fig. 4
that flow fluctuations can enhance the potential energy vari-
ance, but they cannot explain the deviation as they do not
exhibit the correct energy dependence. Indeed, at the highest
energy considered, Eq. (11) strongly overshoots the expand-
ing simulation.

To understand the origin of this deviation, we plot in Fig.
5 the matter density and radial velocity profiles associated
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FIG. 5. (Color online) (a) Average number of particles located in
a spherical shell of radius r as a function of r, calculated from the
center of mass of the system. (b) Average velocity in the radial
direction in the same spherical shells used in (a). The four energies
(=1.0€, 0.0€, 1.0€, and 2.0€) and the three models [free expansion
(open circles), equilibrium in the local rest frame with (solid dia-
monds), and without (open squares) flow fluctuations] are
displayed.

with the four different energies and the three models previ-
ously shown in Fig. 4. The statistical simulations always
present a well-pronounced density peak close to the center of
mass of the system, corresponding to a single drop of de-
creasing size. The rest of the matter concentrates on a second
density peak around r= 150, where most of the clusters are
located.

The spatial distribution of matter for the freely expanding
system is close to this picture at the lowest energy under
analysis. However, the presence of a heavy drop close to the
center of mass modifies the shape of the radial flow, which is
very far away from the self-similar assumption of Eq. (11).
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FIG. 6. (Color online) Distributions of potential energy (a) and
of the size of the largest MST fragment (b) for the highest energy
considered (2.0€) and the three models (free expansion and equilib-
rium in the local rest frame with and without flow fluctuations).

The Hubble flow in Eq. (11) comes from the ideal-gas equa-
tions of motion [Eq. (7)]. We can see from Fig. 5 that the
interparticle LJ interaction cannot be neglected in the dense
part of the system, which leads to an important deviation
from self-similarity. We expect that a better description of
the expansion dynamics would be obtained by considering
for the flow dynamics in Eq. (11) clusters instead of single-
particle degrees of freedom, as in the standard Fisher picture
of condensation [25]. At higher energies, the two distribu-
tions are completely different. Indeed, the central drop pro-
gressively disappears, leading to a smoother matter distribu-
tion along the radial direction. From previous studies [16],
we know that the resulting large bump corresponds to a high
multiplicity of clusters of approximately equal size. The
presence of clusterized matter leads to a deviation from the
Hubble flow even at the highest energy considered.

More information on the specific configurations accessed
by the flow dynamics can be obtained from Fig. 6. This
figure displays the distributions of the potential energy and
of the size of the largest fragment recognized through the
MST algorithm [16]. Tt confirms that the freely expanding
system explores configurations which are very different from
the equilibrium case. As already observed in Fig. 2, the glo-
bal energy sharing between the potential and kinetic energy
of the freely expanding system is consistent with equilib-
rium, and consequently the potential energy distributions are
close. However, the associated partitions are very different
and tend to be more fragmented in the freely expanding case,
as shown by the fact that the largest cluster size distribution
is broader and peaked at a lower value. At the particular
energy shown in the figure, the system is close to the liquid-
gas phase transition. If flow fluctuations are allowed, as in
Eq. (11), some gas partitions can be explored, leading to the
bimodal distributions observed in Fig. 6. Interestingly, the
fact that a statistical treatment of flow can lead to bimodality
was recently observed in Ref. [23]. The presence of bimodal
distributions explains the severe overestimation of the freely
expanding system fluctuations shown in Fig. 4. Indeed, a
potential energy barrier has to be overcome to access these
distributions during the actual time evolution of the expan-
sion and this does not seem to occur easily for the freely
expanding system. As was already shown in Ref. [26], flow
acts as a heat sink, precluding the exploration of gas configu-
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rations. The largest cluster distribution shows that most par-
titions of the freely expanding system present an intermedi-
ate degree of fragmentation between liquid and gas. Such
partitions are metastable or unstable at equilibrium, but can
be accessed in the free expansion due to the short time scale
of the dynamics.

IV. CONCLUSIONS

In this paper we have compared the diabatic expansion
dynamics of a Lennard-Jones system, initially confined in a
harmonic oscillator and subsequently expanding freely in the
vacuum, with a statistical ansatz in the hypothesis of a purely
Hubble flow. This hypothesis is exact in the limiting case of
a noninteracting system or a Boltzmann dynamics. For our
strongly interacting system, the presence of finite range two-
body interactions is known [21] to modify the Hubble ap-
proximation, introducing non-self-similar flow components.
In a future work, it will be very interesting to explore the
adequacy of a more sophisticated statistical ansatz including
non-self-similar flows, to reproduce the dynamics of the ex-
pansion. In the present paper, a self-similar approximation
has been revealed to be accurate enough to reasonably de-
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scribe the mean value of global one-body observables at all
times. As soon as more sophisticated observables are exam-
ined, discrepancies arise. In the self-similar statistical ansatz,
flow does not modify the partitions in configuration space,
but it acts as a heat bath, allowing important energy fluctua-
tions and the exploration of the unbound gas phase. In the
diabatic dynamics, such configurations are never reached and
metastable highly clusterized partitions dominate. Interest-
ingly, qualitatively similar behaviors have recently been ob-
served in an analysis of nuclear multifragmentation data [27]
by means of a detailed comparison between the fragmenta-
tion of central and peripheral collisions.
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