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Space representation of stochastic processes with delay
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We show that a time series x; evolving by a nonlocal update rule x,=f(x,_,,x,_;) with two different delays
k<n can be mapped onto a local process in two dimensions with special time-delayed boundary conditions,
provided that n and k are coprime. For certain stochastic update rules exhibiting a nonequilibrium phase
transition, this mapping implies that the critical behavior does not depend on the short delay k. In these cases,
the autocorrelation function of the time series is related to the critical properties of the corresponding two-

dimensional model.
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I. INTRODUCTION

Dynamical systems with time-delayed feedback show in-
teresting phenomena and have attracted considerable atten-
tion due to their relevance in different research fields: non-
linear dynamics [1], neurobiology [2], chaos control [3],
synchronization [4,5], and communication [6]. In particular,
in the context of laser physics [7], recent progress on a
public-channel cryptography system based on the synchroni-
zation of chaotic lasers [8] has motivated the authors to bet-
ter understand the physics of time-delayed differential equa-
tions, a subject less explored and not as well understood as
the physics of ordinary differential equations [9]. Most of the
literature on the subject of delayed feedback concentrates on
deterministic systems [10]. However, stochastic systems
with time-delayed feedback are not so well understood [11]
and may play an important role as, for example, in the con-
text of gene regulation [12]. Moreover, for such systems the
evolution is often discrete in time.

As a step toward a better general understanding of time-
delayed systems we investigate in this paper a simple dis-
crete model with delay: a stochastic process for a single bi-
nary variable which evolves according to its own history. We
show that this model can be mapped onto a two-dimensional
stochastic cellular automaton in such a way that the time-
delayed couplings become local. As a result, the delay be-
comes a boundary effect and, if one chooses the evolution
laws properly, the autocorrelation function of the correspond-
ing time series can be related to the critical properties of the
cellular automaton, in our example a directed percolation
process. The results are, however, more general and may be
applied to a large variety of systems.

The general idea of the mapping of a time series onto a
(1+1)-dimensional system was already introduced by Gia-
comelli and Politi in the context of deterministic differential
equations with a single delay [13]. Here we generalize this
concept to discrete stochastic systems with two delays.
Moreover, we show that, for update rules that correspond to
a critical system in two dimensions, the critical exponents,
which are usually hidden in a scrambled data set, can be
extracted through an appropriate reordering of the time se-
ries.
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II. REORDERING OF THE TIME SERIES

We consider a time series x, with a discrete time variable
t € N that evolves by nonlocal stochastic updates (x,_,,x,_x)
— X, in such a way that the probability for the outcome x; is
given by

P(xt) =f(xt’xl—n’xt—k)’ t>n> k» (1)

where n and k are two different delays. The initial configu-
ration may be given by specifying n subsequent elements of
the time series, e.g., Xy, ... ,X,_1. The type of data represented
by x, and the function f are not restricted in any way; the
only important ingredient is that a new entry of the time
series x, depends on previous values of x at times r—n and
t—k.

The main result of this paper can be summarized as fol-
lows: irrespective of the structure of x, and f, it is possible to
rearrange the time series in such a way that the couplings
become local in a two-dimensional representation. More spe-
cifically, it is possible to define a reordered series y, that
evolves by updates (y,_,,v,_,) — v, with

P(y) =fVoYinYis) (2)

where s is a different delay that takes the values 1 or n+1 in
a precisely defined mathematical way (see the Appendix for
details). The only condition for this transformation to work is
that the original delays n and k have to be coprime, i.e., have
no common divisor other than 1.

Before discussing the mathematical details of this trans-
formation and the coprimality condition, we present, for the
sake of clarity, a geometrical construct which explains how
the transformation works for two special values of n and k.

Consider an arbitrary time series with delays n=7 and k
=3. One starts out with a given configuration {xy,x, ... ,xc}
and, from this initial condition, constructs a time series by
iteration of Eq. (1). This time line is represented in the upper
part of Fig. 1 where arrows indicate which terms are causally
connected. The lower part of the same figure depicts what
the causal connection would look like after reordering, as
explained below.

The transformation can be seen as a sequence of three
steps. The first one is the stacking up of different blocks of
size n. Following Giacomelli and Politi [13], the time series
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is divided into equidistant segments of n elements which are
arranged line by line on top of each other. This means that
the index ¢ is mapped to the position

(t mod n )

-

When the original time series x, is drawn in such a
(1+1)-dimensional representation, the long delay n turns
into a nearest-neighbor interaction in the vertical direction
while the short delay is still nonlocal (see Fig. 2).

3)

FIG. 2. (Color online) Original time series x, with delays n=7
and k=3 in a two-dimensional representation [13]. The time series
is divided into segments of size n which are plotted line by line
on top of each other. Starting with a given configuration
{x0,X1,...,x¢}, the whole time series can be constructed by iteration
of Eq. (1); here the black arrows represent the long delay between
X;_, and x, while the red ones indicate the short delay between x,_;
and x,. The figure is equivalent to the upper part of Fig. 1, the only
difference being that blocks of size 7 are arranged as a two-
dimensional grid.
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e o o
FIG. 1. Updating scheme in systems with de-
lays n=7 and k=3 before (upper figure) and after
(lower figure) the transformation (6). The arrows
indicate the couplings needed to update the vari-
able x5 as a function of x; and x,.
o o o

The second step is the reordering (shuffling) of the time
indices, a procedure applied to each separate block of size n
in such a way that they do not get mixed. For the particular
case depicted in this section the first n sites are reordered
according to
0—-0; 1—3; 2—6; 3—2;

4—5;, 5—1; 6 —4.

(4)

This should be read as: site O remains where it is; in the place
where site 1 was one should write site 3, and so on. The
pairs are obtained via the operation (new position)
=(old position) X 5 mod(7). The same reordering scheme
takes place in the subsequent blocks. As illustrated in Fig. 3,
this transformation preserves the long delay n while the short
delay k is mapped onto 1 or n+1 according to Eq. (A4). As
we will see, this also holds in the general case as long as n
and k are coprime. Note that the corresponding boundary
conditions are not periodic but shifted in the vertical direc-
tion, connecting subsequent blocks periodically in a spiral-
like manner.

Although the couplings in Fig. 3 are local, they are still
biased toward the north-east. Moreover, the coupling scheme
exhibits vertical dislocation lines. So, in order to remove
these irregularities, one may redraw the figure in such a way
that all updates have the same orientation in the xy plane as
illustrated in Fig. 4. This is the third and final step of the
transformation, and allows one to relate the original time
series to (1+1)-dimensional cellular automata on a tilted
square lattice. However, by rearranging the lattice one ob-

FIG. 3. (Color online) Corresponding reordered time series in a
two-dimensional representation according to Eq. (6), where the bulk
interactions become local.
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FIG. 4. (Color online) The same lattice as in Fig. 3 plotted in
such a way that all updates in the bulk are geometrically identical.
The boundary conditions one obtains can be seen as being time
delayed (time flows upward).

tains skewed boundary conditions with a nonlocal delay con-
necting blocks that are vertical distance n—k apart.

III. MATHEMATICAL FORMULATION

In this section we present the rigorous mathematical
formulation of the mapping introduced in the previous sec-
tion. The transformation from a one-dimensional to a
(1+1)-dimensional form is rather straightforward (steps 1
and 3 in the last section). We therefore concentrate on the
reordering (shuffling) of the time series, which makes the
short delay & local while keeping n unchanged. Starting with
the updating rule Eq. (1), the reordered time series y, of Eq.
(2) is related to the original one by

Xt =Y10)> (5)
where the map T(¢) is given by

T(t) = (tg)mod n + nlt},. (6)

In this equation [z, denotes integer division by n while ¢
€{0,...,n—1} is an integer such that

(kg)mod n=1. (7)

The existence of an integer ¢ satisfying the equation above
guarantees that the mapping is one to one and has the inverse

T7'(r) = (tkymod n + nlt),. (8)

The meaning of the mapping (6), which we prove rigorously
in the Appendix, is simple: the first term on the right-hand
side (RHS) reorders the indices, while the second term places
them into separate blocks of size n.

In mathematical parlance, Eq. (7) means that n and k are
coprime. Coprimality, albeit necessary, is not restrictive in
the sense that the number of coprimes to a given n, as given
by Euler’s totient function ¢(n), is known to _increase suffi-
ciently rapidly with increasing n (faster than yn). This means
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that in the large-n limit the transformation can be applied to
systems with various delays k. If the original delays » and k
are not coprime, then the mapping is no longer injective.
Moreover, if n is a multiple of k the original system breaks
up into |n); independent time series which evolve without
mixing.

To demonstrate how the transformation works let us con-
sider a simple deterministic update rule where x,€0,1 is a
binary time series. The update rule is given by the Boolean
function

1 if x,_, # x4,

Fe= Ko @ Xk = 0 otherwise, ©)
where @ denotes a logical XOR operation. Such a binary time
series can be visualized by plotting x, as black and white
pixels at position (x,y). The results are shown in Fig. 5,
where we used the delays n=300 and k=227 (¢=263). Start-
ing with a single nonzero entry in the initial state x,,,=1, the
iteration of the update rule (1) produces an irregular pattern
of pixels, which is shown in the top panel of Fig. 5. When
the transformation (6) is applied, the pixels are ordered with
a bias to the north-east, resulting in a tilted Sierpinsky gasket
(see middle panel). Finally, plotting the same data in such a
way that the tilt is removed, one obtains the usual form of the
Sierpinsky gasket (see bottom panel). However, as exempli-
fied by the arrow, the boundary conditions are no longer
periodic; instead they involve a nonlocal shift d=n—k in the
vertical direction.

IV. STOCHASTIC UPDATE RULE RELATED
TO DIRECTED PERCOLATION

Let us now turn to a simple but nontrivial example of a
stochastic update rule. This example serves the purpose of
illustrating how the critical behavior of a time series with
delay manifests itself. For a binary time series a probabilistic
update (x,_,,x,_x) —x, according to Eq. (1) is determined by

f(l’-xi’xj) :pxi,xj’

f(o’xirxj) =1 _pxi,xj’ (10)

with four control paramters pgg,po1,P10-P11- In what follows
let us assume that po,=0. In this case the time series consist-
ing of zeros is a fixed point of the dynamics. In nonequilib-
rium statistical physics, such a configuration, which can be
reached but not left, is called an absorbing state. Whether or
not this absorbing state is stable against perturbations de-
pends on the magnitude of the remaining control parameter
Pot> P1o» and py;. For example, using an update rule inspired
by the Domany-Kinzel (DK) model, we have

Poi=Pw0=p, Pu=2p-p* (11)

In the corresponding time series, on varying p between 0 and
1 one indeed observes the following phenomenological be-
havior.

(1) If p is very small the time series quickly approaches
the absorbing series consisting of zeros.
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FIG. 5. (Color online) Visual representation of the time series
generated by the update rule (9). The three panels correspond to the
examples shown above in Figs. 2—4 (see text).

(2) For large p the dynamics approaches a fluctuating
steady state with a nonvanshing stationary expectation value
of x,. The probability of reaching the absorbing configuration
is very low and decreases with increasing n.

(3) At a certain threshold p.=0.6447, one observes a
power-law decay of the density in a finite temporal range
which grows with n.
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FIG. 6. Analogous representation of a stochastic time series
with n=300 and k=227 evolving by a directed percolation update
rule at the critical point p=p,.. Here the iteration starts with a se-
quence 111... .

Since the DK model belongs to the universality class of
directed percolation (DP) [15-18], it is natural to expect the
system to display a precursor of DP critical behavior. In fact,
using the transformation (6), the update rule becomes
equivalent to that of a Domany-Kinzel cellular automaton
[14]. Using the present notation the (1+1)-dimensional
Domany-Kinzel model is defined on a tilted square lattice
with coordinates (x,y). Each lattice site can be either active
[s(x,y)=1] or inactive [s(x,y)=0]. The model evolves by
parallel updates, i.e., the new horizontal line at y+1 is ob-
tained by setting

1 with probability py_1 ) s(+1.y)»
sty +1) = )
0 otherwise.

(12)

For the choice py;=p,o=p and p,;=2p-p? the Domany-
Kinzel model reduces to directed bond percolation. This
model is known to exhibit a continuous phase transition be-
longing to the universality class of directed percolation at the
critical point p,=0.644 700 1(2) if the system size is infinite.
In fact, as shown in Fig. 6, the transformation (6) maps an
apparently disordered time series into an ordered one, where
a typical DP cluster can be seen.

It should be stressed that in the present model the corre-
sponding DP process takes place on a finite lattice so that for
any finite n there is no phase transition in a strict sense.
Nevertheless, it is possible to observe the typical signatures
of DP critical behavior within a certain temporal range which
grows with n, as will be shown in the following.

A. Two-point correlation function

In order to see a signature of DP critical behavior we tried
to identify the critical exponents in 1+1 dimensions:

B=0.276 486(8), v, = 1.098 654(4), v, =1.733 847(6).
(13)

To this end we iterated the time series slightly above the
critical point p=p.+0.001=0.6448 and measured the con-
nected part of the two-point correlation function

(1) = (xpx,_) — (x)*. (14)

Before the average was taken, the time series was equili-
brated over 2 X 10? iterations in order to reach a stationary
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FIG. 7. (Color online) Two-point correlation function of the
time series ¢(r) defined in Eq. (14). The dashed line demonstrates
that the spike peaks decay as 7';23/””. The inset shows a zoom of the
first and the last spikes.

state. Moreover, we chose a very large delay n=4096 to
prevent the system from entering the zero sequence due to
finite-size effects. Figure 7 shows a train of spikes at regu-
larly spaced times 7, which are caused by correlations be-
tween subsequent rows in the two-dimensional representa-
tion. The asymptotic envelope of these spikes seems to obey
an asymptotic power law

c(ry) ~ 7,7 (15)

with an exponent y=0.32(4). The relation to DP predicts this
exponent to be given by

y=2p/v,~ 0.318. (16)

A similar attempt to obtain the spatial correlation exponent
2B/ v, from the form of a single spike (see inset) fails. This
can be explained as follows. In the central panel of Fig. 6 the
form of the spike would correspond to a correlation function
in the horizontal direction, whereas in the symmetrized rep-
resentation shown in the right panel this correlation function
would be tilted. Therefore, the spike profile is given by an
interplay of both exponents v, and v, making it difficult to
distinguish between them.

B. Dynamical scaling of the pair connectedness function

In order to identify the DP critical exponents more clearly,
we measured the counterpart of the so-called pair connected-
ness function (see, e.g., [16]) at criticality p=p,. The itera-
tion starts with a single active seed x,,= 511,110- After reordering
the time series and representing it in the right panel of Fig. 6,
we measure the density p(A,y) at a vertical distance y and
horizontal distance A from the seed. Since the pair connect-
edness function is known to obey the scaling form

p(A,y) = AFVLh(y/AT) (17)

with a universal scaling function %, the exponents can be
determined by plotting p(A,y)A??L versus y/A"? in such a
way that data sets for different values of A collapse. Plug-

PHYSICAL REVIEW E 77, 031106 (2008)

3 A
5
> L
=%
N
< y
A Ol R 4
~ L L4 S
> [ - A=16
N
l=Y [ seed
\ L
0,01 Ll Ll R Ll
0,1 1 10 100

y/Al/z

FIG. 8. (Color online) Data collapse for the counterpart of the
pair connectedness function for n=512 and k=1.

ging in the known exponents of DP, one obtains a convincing
data collapse, as shown in Fig. 8. This confirms unambigu-
ously the critical behavior we expected to get.

V. DISCUSSION

In this paper, we have shown how a time series evolving
according to a nonlocal update rule can be mapped onto a
local process in two dimensions with special time-delayed
boundary conditions. One interesting question is whether this
result holds also for the continuous case. For example, dis-
cretizing a differential equation of the form

x(1) = Flx(t)] + G[x(t — 7)] (18)
with delay 7 and arbitrary functions F' and G, one gets
X = Xp—1 = h[F(xm) + G(xm—k)]’ (19)

where £ is the step size and k=7/h is the discrete analog of
the delay. In the present paper we have shown that the equa-
tion

X = Xm—s = h[F(xm) + G(xm—k)] (20)

with 1 <k <s exhibits (up to boundary conditions) the same
properties as long as s and k are coprime. The question is
whether it is possible to find an appropriate limit of (20) and
recover (18). Work in this direction is currently under way

[19].
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APPENDIX: PROOF OF THE TRANSFORMATION

The transformation (6) is proven in two steps. First we
show that two sites of the time series separated by a time
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delay of Ar=n are still separated by the same delay after the
transformation. Then we show that sites that were originally
separated by a time delay Ar=k are mapped onto new sites
with a time delay of either At=1 or At=n+1.

We start with the sites separated by n time steps, that is, ¢
and 7—n. According to the transformation rule we get

T(¢t) — T(t — n) = (tg)mod n + nlt],
—(t—n)g mod n—nl(t—n)],

=(tg)mod n
=nllt], -1t -n)l,]=n, (A1)

where we used the fact that for two sites of different blocks

PHYSICAL REVIEW E 77, 031106 (2008)

(which is always the case here) one has |z],~[(1—n)],=1.
Next we consider the case where sites have a delay of %,
ie.,

T(t) - T(t — k) = (tg)mod n — [(t — k)g]mod n
+n(l), =1t = 11,). (A2)

Here we have to distinguish two cases. If ¢ is a multiple of n
this expression reduces to

T(t)-T(t—k)=— g— kq)mod n+ n(\l_tj,l - IJn) =1.

T(¢t) — T(t — k) = (tqg)mod n — (tq — kg)mod n + n(|t}, - - 1],)

€{1,...,n-1} e{l,...

=n—1 =1 (A3)
On the other hand, if ¢ is not a multiple of n we get
J
= (tg)mod n — ((tg)mod n — (kg)mod n)mod n + n(|z], -t - 1],)
1 if tmodn=k,
n+1 if tmodn<k. (A4)
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