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The continuous Gaussian ensemble, also known as the v-Gaussian or v-Hermite ensemble, is a natural
extension of the classical Gaussian ensembles of real (v=1), complex (v=2), or quaternion (v=4) matrices,
where v is allowed to take any positive value. From a physical point of view, this ensemble may be useful to
describe transitions between different symmetries or to describe the terrace-width distributions of vicinal
surfaces. Moreover, its simple form allows one to speed up and increase the efficiency of numerical simulations
dealing with large matrix dimensions. We analyze the long-range spectral correlations of this ensemble by
means of the &, statistic. We derive an analytical expression for the average power spectrum of this statistic,
P,f, based on approximated forms for the two-point cluster function and the spectral form factor. We find that
the power spectrum of §, evolves from P,foc 1/k at v=1 to P,‘jfx 1/k* at v=0. Relevantly, the transition is not
homogeneous with a 1/f* noise at all scales, but heterogeneous with coexisting 1/f and 1/ #* noises. There
exists a critical frequency k. v that separates both behaviors: below k., P,f follows a 1/f power law, while
beyond k., it transits abruptly to a 1/f2 power law. For »>1 the 1/f noise dominates through the whole
frequency range, unveiling that the 1/f correlation structure remains constant as we increase the level repulsion
and reduce to zero the amplitude of the spectral fluctuations. All these results are confirmed by stringent
numerical calculations involving matrices with dimensions up to 10°.
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I. INTRODUCTION

Random matrix theory (RMT) emerged in the late 1920s
when statisticians introduced the first type of random matrix
ensembles (RMESs), known as Wishart ensembles [1]. Since
then, RMT has been applied in physics, multivariate statis-
tics, combinatorics, graph theory, number theory, biology,
genomics, and wireless communications (see Chap. 2 of Ref.
[2] and references therein).

As far as physics is concerned, RMT appeared in the mid-
1950s for the first time. It was introduced by Wigner in order
to circumvent the lack of a dynamical theory of the nucleus
at that time [3]. According to him, the Hamiltonian which
governs the behavior of a complicated system can be repre-
sented by a random matrix with no particular properties, ex-
cept for the corresponding to the symmetries of the system.
Most references of the first historical period can be found in
[4].

The basic concepts of the theory as well as its mathemati-
cal formulation were developed in the period 1950-1963.
Later, the theory was consolidated as many experimental
data were gathered, like the Ericsson’s cross-section fluctua-
tions or the nuclear data ensemble. Around 1984, two devel-
opments took place which led to an exponential development
of the theory: the adoption of Efetov’s supersymmetry
method and the ensuing coalescence of RMT and localiza-
tion theory and the link between RMT and the spectral fluc-
tuation properties of quantum systems with a chaotic classi-
cal analog. A comprehensive review of the most important
concepts and developments of RMT in quantum physics can
be found in [5].
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We deal in this paper with the continuous Gaussian en-
semble, which can be seen as a generalization of the classical
Gaussian ensembles. It was first studied as a theoretical joint
eigenvalue distribution, with applications in lattice gas
theory (here the continuous parameter is the inverse tempera-
ture of a Coulomb gas with logarithmic potential) [6], but
recently it has been found that this eigenvalue distribution
can be derived from an ensemble of random matrices [7].
The actual form of this ensemble emerged from the tridiago-
nal representation of the three classical Gaussian ensembles:
Gaussian orthogonal ensemble (GOE—v=1), Gaussian uni-
tary ensemble (GUE-w=2), and Gaussian symplectic en-
semble (GSE-v=4). This representation is amazingly
simple: the matrix entries are mutually independent and real,
the diagonal elements are normal random variables, and the
nondiagonal are distributed according to y distributions. Al-
though this representation was obtained for v=1, 2, and 4, it
is well defined for every value »>0, leading to the
v-Gaussian ensemble. At present, some of the most relevant
results known for this ensemble are the following: (i) its
eigenvalue joint distribution has the same functional form as
the classical ensembles, but v can take any real positive
value, (ii) analytical expressions for average moments and
the variances of the matrix traces (defined below) are avail-
able in the thermodynamic limit, (iii) the average eigenvalue
density exhibits a very strong semicircle law, and (iv) the
nearest-neighbor spacing distribution has proved to be suc-
cessfully described by generalized <y distributions through
the whole range of v values [8].

For many years the pattern of thinking was that the RME
classification was discrete. However, there were some hints
suggesting that the parameter v is actually continuous.
Gaussian and circular ensembles exhibit eigenvalue repul-
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sion: two nearby eigenvalues “repeal” each other with a cer-
tain intensity. The nearest-neighbor spacing distribution P(s)
is widely accepted as a valid statistic to study the short-range
correlations of the spectrum of a quantum system. It gives
the probability that the distance between two consecutive
eigenvalues, measured in units of the local average spacing,
lies between s and s+ds. Actually, P(s)ccs” when s<<1: this
means that the probability of finding two neighboring eigen-
values at a distance s is proportional to s”, provided that s is
small enough. Therefore, the dimension v of the field over
which the matrix entries are distributed measures the repul-
sion between consecutive eigenvalues. Since Gaussian or cir-
cular ensembles describe the spectral fluctuation properties
of chaotic quantum systems, it is usually said that these sys-
tems show level repulsion. On the contrary, for generic inte-
grable systems energy levels behave as noncorrelated ran-
dom variables and P(s)=1 when s<1; consequently, the
parameter v can be taken as zero for these systems. It is very
interesting to observe that in the transition from an integrable
to a chaotic regime, P(s)xs” for s small enough, with v
ranging from v=0 to v=1, 2, or 4 depending on the symme-
tries of the system. Thus, we are faced with the fact that the
parameter v varies in a continuous way through the whole
transition.

Another hint for the existence of a continuous parameter v
comes from the analogy between the eigenvalue distribution
of the classical ensembles and the free energy of a static
Coulomb gas in one dimension. The parameter v is directly
related to the temperature of the gas as v=1/T. This analogy
helps one to understand the fluctuation properties of these
ensembles and triggers the idea that other ensembles with
v# 1, 2, or 4 may exist. Moreover, the spacings between gas
particles follow the same distribution P(s) of the energy
level spacings of quantum systems through the order to
chaos transition [9].

There also exists a link between the continuous Gaussian
ensemble and a system of identical quantum particles inter-
acting in one dimension by a two-body potential
V(r)=g/r*—the so-called Calogero-Sutherland model [10].
When the particles move along a ring of length L, the wave
function of the ground state is W ocIl,|exp(i6;) —exp(i6,)|"
for 6;> 6, where v=(1+V1+2g)/2 and 6, is related to the
positions x; of the particles as 6;=2x;/L [11]. Therefore, the
probability of finding the particles around the positions
X1,X5, ..., Xy coincides with the eigenvalue distribution of
the continuous circular ensembles. It has been recently pro-
posed that terrace-width distributions of vicinal surfaces can
be properly described by the nearest-neighbor spacings dis-
tribution P(s) which arises from the ground state of the
Calogero-Sutherland model [12].

We analyze the long-range spectral correlations of this
ensemble by means of the §, statistic. We derive an analyti-
cal expression for the average power spectrum of this statis-
tic based on approximated forms for the two-point cluster
function and the spectral form factor. The agreement be-
tween the theoretical predictions and the results of detailed
numerical calculations is excellent for any value of the re-
pulsion parameter v. Thus we conclude that, as far as the
power spectrum of the &, statistic is concerned, the approxi-
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mations used in the theoretical derivation are reasonable.

The paper is organized as follows. Section II introduces
the ensembles and gives some basic results. Section III con-
tains the main results. A theoretical expression for the &,
power spectrum is derived and checked by means of a strin-
gent numerical calculation. The most relevant conclusions
are gathered in Sec. IV.

II. DEFINITION AND BASIC RESULTS OF THE

CONTINUOUS GAUSSIAN ENSEMBLE

The joint eigenvalue distribution (JED) of the Gaussian
ensembles reads as

Py(X) = C, exp(- MO T X - x,/”, (1)

k<l

where C, is an appropriate normalization constant and
{(-+))=24(- - )i stands for the trace operation. The average
eigenvalue density, as proved by Wigner, follows the semi-
circle law

2n [N, _ [N

o Ny TE for [EI=A5
gH(E) Ngs.c.(E)=

[vN

0, for |E|> T,

2)

when N> 1. In the following, we write g, . (E) to denote this
law.

These expressions have been derived for the triad v
=1,2,4, but they can be generalized straightforwardly for
arbitrary real positive values. For many years the v-Gaussian
ensemble was “only” the eigenvalue distribution defined by
(1). Very recently Dumitriu and Edelman [7] have provided a
tridiagonal matrix model for any v-Gaussian distribution for
every v>0. Every tridiagonal matrix satisfies T};=0 if |k
—1|>1. A very important result is that the matrix elements of
the model are classical random variables (normal and y) dis-
tributed over R, even for v=2 or 4. We denote by G(u,0) a
random variable distributed according a normal distribution
with mean u and variance o”. Similarly, we denote by ¥, the
x distribution with r degrees of freedom [13], followed from
the square root of a y* random variable. Then, the matrix
elements of the model are random variables given by

1
Tkk=g(0, \/ ﬁ)’ k=1,2,...,N,
1
T = \ g Xk k=12,...,N-1, (3)

with N\, v e R,. Therefore the matrices can be written as

031103-2



POWER-SPECTRUM CHARACTERIZATION OF THE ...
g(o [1 ) [1
’ 2)\ 4)\ X(N— 1 ) v

TV(N) =

From now on, the name “»v-Gaussian” or “continuous Gauss-
ian ensemble” corresponds to these tridiagonal, real, and
symmetric matrices. There are several known results, but be-
fore we quote the most important, for our purposes it is nec-
essary to define the following elements.

(i) The average moments of the ensemble are defined as

(V)

M =2

€ No, (5)
with ((A))=Z(A);,. They are directly related to the average
eigenvalue density.

(ii) The variances V2I(N),

1 1 1
R O R P
\ X1 g( -\ 2)\> \ ay o2
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|
VIA(N) = (T (N))KTUN))) = (TH(N)KTUN))),
P.q € N, (6)

which are related to the two-point correlation measures of
the ensemble.

We enumerate some of the most important features of the
v-Gaussian ensemble, which will be used later.

(i) The JED of the model is exactly given by Eq. (1).

(ii) The expressions of the average moments and the vari-
ances are known in the limit N—oo. Setting the normaliza-
tion constant to A=vN they are given by

Tpr+12)
——_———, if p is even,
MP(0) =9 Varl'(g/2 +2) (7)
0, if p is odd,
Lp+dg+of 5 35 it p+ >0
2 i =even ,
v = v 2peg) P\ T ®)

0’

where 6=0 if p=¢=0 (mod 2) and 5=1 if p=g=1 (mod 2).
It is quite remarkable that, once the normalization A=vN is
set, the asymptotic behavior of the moments does not depend
on v, and therefore the average eigenvalue density is the
same for all »>0 values. Moreover, V4?/ N?—0 when N
— 0, giving rise to level ergodicity in the manner of Pandey
[14]—i.e., var[gH(E)]/ g7(E)>—0.

(iii) Actually, these ensembles exhibit a stronger semi-

N1
circle law: not only g(E) ~ g,.(E), but with probability 1,
N—o

gr(E)/gs.(E) — 1, for any matrix of the ensemble. Note

otherwise,

that this result is stronger than the usual ergodicity, as quoted
in the previous item.

(iv) The short-range correlations of the v-Gaussian en-
semble have been studied very recently [8]. A detailed nu-
merical analysis shows that the P(s) distribution is success-
fully described by generalized gamma (GG) distributions.
They account both for the level repulsion in ~s” when s
— 0 and for the whole shape of the distribution through the
whole range of s values accessible to experiment or numer-
ics. The GG distribution reduces essentially to the Wigner
surmise when v> ~2, while it improves its accuracy for v
< 2. In particular, the GG distribution describes significantly
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better the P(s) distribution of GOE (v=1) than the Wigner
surmise and it works much better than the Brody distribution
for 0=v=1 as well.

III. SPECTRAL ANALYSIS OF THE »-GAUSSIAN
ENSEMBLE

A. &, statistic

In order to characterize correlations of different length,
we use the &, statistic, which is defined by
5n=<5n,s>=<xs+n+1_-xx_n>’ n= 1’ ~~"N_ 1. (9)
Here, the angular brackets denote the running average over
the starting points x,. If we place the ground state in the
starting point x;, 6, represents the deviation of the excita-
tion energy of the (n+ 1)th unfolded level from its average
value n. In spite of some peculiarities, the function J, has a
formal similarity with a time series [15], and actually, using
numerical techniques borrowed from time series analysis, we
can study long-range spectral correlations. The simplest
method is the computation of the power spectrum of the J,
series, given by

PP =(5.%, (10)

where 3](,5 is the Fourier transform of &, :

27Tikn>. (11)

A 1
9 s _2 511& exp(—
. \“’N n '

Using RMEs, atomic nuclei, and quantum billiards, it was
numerically shown [15] that the spectral rigidity of chaotic
systems with v=1, 2, or 4 give rises to the following power
spectra of the J,:

—5 N

P b
ko ovmk

v=1,2,4, (12)

whenever k<< N and N> 1. Thus, the three ensembles, corre-
sponding to different space-time symmetries, and character-
ized by different level repulsions, exhibit the same long-
range structure in their fluctuations: in all cases the
functional dependence of P{ is the same and without any
privileged scale. We can say that these spectra, considered as
time series, exhibit 1/f noise and therefore are completely
antipersistent. On the contrary, uncorrelated spectra exhibit
1/f? noise,

_ N?
P ~—55, k<N, N>1, (13)
477k

and behave like neither an antipersistent nor a persistent time
series. o

It is possible to derive a theoretical expression for Pl‘f in
the RMT framework. For very general ensembles the power
spectrum of &, and the spectral form factor are related as

[16]
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N>1 2
— N~ K(k/N +
5 ( ‘1) +A,

C T 24 (kg 0<k<|N2l, (14)

where |- - -| stands for the floor function and K(7) is the spec-
tral form factor given by
2
. (15)

which can be rewritten in terms of the two-point cluster func-
tion Y,(€) as

L—ox 2L

1| (" .
K(7) = < lim — ‘ f de p(e)e”mer
-L

K(n=1- J‘” ds Y,(s)exp(—2misT). (16)

—00

The additive parameter A takes into account the discrete na-
ture of the &, function. It depends on the difference between
the variances of &, and ii(e)| whose large-g behavior is

[17]

e=q>

% 0 2
52—17((1)2:%[ dr ds Y3(0,r,s)—%<f dr Yz(r)> )

—o0

qg>1, (17)

except in the rare cases where the integrals do not exist. The
right-hand side (rhs) is zero for Poisson and —1/6 for canoni-
cal ensembles. Finally, a straightforward calculation gives

[16]

1
— — for Gaussian ensembles,
A= 12 (18)

0 for Poisson ensembles.
When k<N, Eq. (14) can be simplified as

—5 I N? K(KIN)
R N

recovering an almost exact two-point function in this limit.
Since the spectral form factor of the Gaussian ensembles is
K(k/N)=2k/(vN) if k<N and it is K(k/N)=1 for the Pois-
son ensembles, the foregoing expression reduces to Egs. (12)
and (13).

(19)

B. Derivation of IT,‘f for the v-Gaussian ensemble
1. Y5, and K ,(7) functions

The main goal of this paper is to characterize the long-
range spectral correlations of the v-Gaussian ensemble by
means of P{. Any derivation of this statistic needs as an
intermediate step the expression of the spectral form factor
K ,(7), which is the Fourier transform of the two-point cluster
function. To obtain Y,, from the variances V2? we consider
the density-density correlator

S8(E1,Ey) = g(E)g(Ey) — g(E)g(Ey) (20)

and calculate its Fourier transform
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FIS#1(7) =f J eXP(iE'f)Sg(El,Ez)dEldEz, (21)
B2

where E=(E,,E,) and 7=(t,,1,). Expanding the exponential
it is easy to obtain the following expression in terms of the
variances VP4(N):

(it))P (it,)?
g

ASID= 2

1.q=0
(p+g=even)

VPA(N). (22)

For N=oo the variances V7 of the v-Gaussian ensemble can
be written as

min(p.) [P q
V() = S, > K p-k |l g-k| p+g=even,
(k=1 2 2
(23)

where [k] stands for the restriction of k to values with the
same parity of p and g. While this result is valid for N=0c,
we need to consider N large but finite in order to unfold the
spectrum later. To circumvent this problem we introduce a
cutoff A(v,N)=O(N) such that V29(N)=V"9(0) whenever
p.q=A. Then

A . . min(p,q) D q
~ 2 t)P (ity)?
A== X %% Y kKp=k| a-k
14 p,q=0 2 p 2 q. [k]=1 T T
(p+g=even)
(24)
Some straightforward algebra allows us to write
) A
FSEND =~ 2 (= DRI Iil12), (25)
k=0

where J), are Bessel functions of the first kind. Inverting the
Fourier transform will provide us the function S$(E;,E,).
Indeed, if we use the following result from Ref. [18],

FUILNE) = ZLJ exp(— iEt)J(t)dt
TR

— DulE
Lukz(gz, for |E| <1,
Aai-B) (26)
0, for |E|>1,

where u, are Tchebyshev polynomials of the first kind, the
density-density correlator reads

A
Sﬁ(El,Ez) - %}2 k u(E)u(E,) 27)

oo (1-EDYA(1-E)V>

provided that we restrict ourselves to the interval |E,|,|E,)|
<.

At this point the spectrum must be unfolded to get the
correlations among the energy levels of a quasiuniform spec-

trum. For levels inside of the interval |E,|,|E,| <1 we have

>

s
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”k(El)”k(Ez)
(1-ED(1-E3)

(28)

A
S8(E,,E 1
(ELE) 1 5,

Sh(e, ) = =
: g(E\g(Ey) 2vN*i5

for the density-density correlator in the unfolded energy
scale.

In order to discard the self-correlation term &(€;—¢,),
which is always included in S%(€;,€,), and obtain the two-
point cluster function Y,,(€;,€)=38(e,—€)—S(€ ., €), it is
convenient to perform a similar expansion of the & function.
In terms of Tchebyshev polynomials of the second kind,
vi(E), we can write

A

oe — €)= 12 V(Eui(E). (29)
Nico

Before proceeding to the explicit calculation of the sums (27)
and (29), it is important to recall that very often correlations
decay to zero on an energy scale of the order of S. Since §
=0(1/N), the relevant scale for the difference of the two
energies in question is really small, E,—E,=0(1/N), giving
rise to an unfolded spacing s=O(NAE)=0(1).

With these considerations in mind and using the fact that
A(v,N)=O(N)>1, it is indeed easy to transform the expan-
sions of S°(e,€,) and &(e;—¢,) into integrals. Particularly,
the two-point cluster function reads

Yy,(€1,6) = 8€ - &) - Sh(€), )

N>1 A 1
~ —f cos(AAEx)dx

1 A 2 rl

——(—) f x cos(AAEx)dx. (30)
v\2N/ J,

An inspection of both integrals shows that an exact cancel-

lation of the self-correlation term occurs only for A(v,N)

=2vN. Then Y,, can be written as

N1l
Y, (e, €) ~ vf (x = 1)cos(2vNAEx)dx
0

sin(VNAE))2
=20\ ———— |, 31
V( 2uNAE (31)
and taking into account that s=e€,—€= g(E';EZ)AE
N>1
~ 2NAE/ m, the cluster function reads
N>1 : 2
2 ( sin[ 7vs/2]
Y5,(s) ~ —<—> - (32)
v s

Exact analytical expressions of the cumulant Y,(s) are
known for the three classical Gaussian ensembles, GOE(v
=1), GUE(v=2), and GSE(v=4) [19]. One immediately re-
alizes that Eq. (32) differs from the expression of Y,(s) for
GOE and GSE. Thus, it is only an approximated form and
we should discuss its validity for different values of v. Be-
fore proceeding further, it will be profitable to pause and
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recall that our objective is not the cluster function, but the
power spectrum of §,. Although the former is a direct mea-
sure of the two-point spectral fluctuations, it is very difficult
to compute from an experimental or numerical spectrum. For
this reason one generally considers other statistics like Ei(s),
As,(s), or P{, which are easier to compute. All these mea-
sures are different types of integral transforms of Y,,, and
therefore the comparison between the exact form and our
approximation must emphasize the features that may influ-
ence the behavior of these integrals.

An inspection of Eq. (32) reveals that v modulates the
fluctuations of the cluster function: the characteristic “pe-
riod” of these fluctuations is given by As,=47/v. Thus, in
order to render the comparison of the influence of Y, for
different values of » meaningful, one should consider inter-
vals of the same length in units of As,. If we introduce the
new variable r=ws/2, the previous statement is equivalent to
using intervals with fixed length Ar. Performing the change
of variable the three statistics mentioned above can be easily
written as

S2(s)= zlr— f’ dx(r —x)(ZYz,,(Zx/V))} , (33)
v v

0

— 2| r 1 d
Ay (s)==| —=—= | dx(r—x)3Q2r* = 9rx-3x?
3,(8) V|:15 15,4 . x(r—x)°(2r X — 3x7)
2
X (; Y,,(2x/ v))} , (34)
K(n=1- J dx(%Yz,,(Ex/V)>eXp[— 2mir(27/v)].
R
(35)

Therefore, the relevant function in the new scale is

A 2
sz(r) = —Y2V(2r/v). (36)
14
In particular, our approximated function (32) takes the
simple form
=l
Y5,(r) ~ Y5,55(r),

regardless of the value of v. Combining all these ideas and
results we conclude that the comparison between the exact
and approximated forms of the cluster function is given by

(37

9

i};):/aa(r);?b/(r) = Y2V=2(r) > (38)

where from now on we denote the exact cluster function by

)A’;’;a“(r), while f/z,,(r) stands for the approximated form (37).
Figure 1 displays the comparison between numerical esti-

mations of )A/S’;a“(r) and Y,,_,(r) for several values of v (v
=0.1,0.5,1.6,6). For v<<2 the theoretical approximation re-
produces reasonably well the main trend of the exact form,
although there are some discrepancies. The former exhibits a
damped fluctuation component of characteristic length Ar
=~ 1, which is not present in the former. Moreover, the be-
havior of the two forms is different at the origin; while the
approximation Y,,_,(r) always tends to unity, the numerical
results approach 2/v instead. The magnitude of the differ-
ence is quite large for »<<1, but it always decays so quickly
that it becomes negligible for quite small values of r. The
effect on fluctuation measures like Ei(s) or Az, (s) is rela-
tively small: the asymptotic behavior of the theoretical ex-
pressions derived from Eq. (37) agrees with the numerical
values, except for a constant. As previously commented we
focus on the power spectrum of the ¢, statistic, which is
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related to the spectral form factor. Since K,(7) is very sensi-
tive to the fluctuation structure of Y5, its behavior will also
be disturbed. However, taking into account that characteristic
lengths of conjugate variables are in inverse order, it is easy
to realize that the trend of K,(7) will be well reproduced by
our approximation (at least) for 7= v/2. Translating this re-
sult to the power spectrum of J,, we do not expect the the-
oretical predictions to exhibit large deviations from the nu-
merical values up to k=Nv/2.

When v>2 the comparison between the approximated
and exact forms of Y, looks worse. The numerical (exact)
values fluctuate around the theoretical curve with a charac-
teristic length of order v/2 and amplitudes that decay very
slowly from an initial value 2/v as r increases. Surprisingly,
it may appear that the influence of this discrepancy on the
usual statistics is very limited. Similarly to the previous case,
the slope of the theoretical estimations of 32(s) or As,(s) is
correct and the deviation from the numerical values is quite
small. Nevertheless, since these measures take very small
values, the relative error is large. On the other hand, the
limitations of 1?2,,(r) do not produce in this case noticeable
effects on P?. The reason is that fluctuations of characteristic
length Ar=wv/2 can only manifest in Pl‘f for values of k
=N, which are far beyond the interval [1,N/2] where the
discrete Fourier transform of §, is defined.

The spectral form factor K(7) is the following integral
transform of the two-point cluster function,

K(n=1- J” ds Y,(s)exp(—2mis7), (39)

-0

and using Eq. (32), one obtains

2
M, for |1'|S§,
v
K,(7)= , (40)
1, fi > -
or 7> 7

Similarly to the case of Y,,, this result is exact only for v
=2. For discrete values of 7, the replacement 7— k/N leads
to

2 I
—, for —=—,
vN N 2

K, (kIN) = W (41)
1, for —>—
N 2

2. Closed expression for P_,‘fk

A final comment about the calculation of P?, is in order. It
concerns the last term of Eq. (14). As was previously shown,
it depends on the two-point as well as on the three-point
cumulant, but the lack of an analytical expression for Y3,
makes the calculation of this term impossible. This will have
consequences in the high-frequency region, where the value
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of A becomes more relevant. We shall quantify the relevance
of this approximation when comparing with numerics.

Having commented on the limitations we may encounter
when using Eq. (37), we proceed now to deduce a closed
expression for Pfk. Obviously, the nonanalyticity of K,(7) at
k=wvN/2 propagates to the power spectrum of §,. To account
for its effect we consider separately the cases where v per-
tains to the intervals (0,1),[1,2),...,[l,I+1), etc. We fur-
nish some examples that will help one to understand the
general case.

(i) ve (0,1). In this case all the terms of Eq. (14), except
those with g=0, satisfy |g+k/N|>v/2. Inasmuch as the se-
ries

47 52, (k+gN)* k\’
aos (k+gN) 4Sin2<77_)
P_,‘fk admits a closed expression
= N>1L2Ky(k/N)— 1 . 1 0<k=|N2]
I S S , 2<7Tk>’ o
4 sin”| —
N
(43)

(ii) ve[1,2). Here, we note that only the terms with ¢
=0 and g=-1 are smaller than or equal to v/2. Taking into
account that the spectral form factor is an even function—
i.e., K(7)=K(—7)—the power spectrum becomes

o N>1L2[Kv(k/N)—l K,(1 —k/N)—l}
4 K (N - k)
1
+ —k,
4 sinz(ﬂ—)
N
0<k=|N/2). (44)

(iii) ve[2,3). The distinctive terms correspond in this
case to g=0, 1 in the positive side and g=—1,-2 in the nega-
tive one.

These particular cases show us the general pattern when
vell,l+1). It is given by

“*E”ZJ K,(qg—KkIN) -1

A NN ”ﬁj K, (k/IN+q) -1
a5 (k+gN? T S (gN-k?
1
+ 0<k=|N2) (45)

) 2( wk) ’
4 sin”| —
N
Of special interest among the different intervals is the case
v e (0,1] because it may characterize the transition of certain
systems from a regular to a chaotic dynamics. Indeed, Eq.

(43) exhibits two different behaviors depending on the value
of v:
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o
PVk
N N? 1
- + y
27vk ATk? A _2<77k> KIN < v/2=1/2,
smT\ ——

N>1

1

, 2( wk) ’ 1/2 = v/2 <kIN.
4 sin W

\
(46)

Thus, there is a clear transition around k/N=v/2. For k/N
= v/2 the power spectrum shows the characteristic behavior
of chaotic systems; for k/ N> v/2, its behavior is that of an
integrable system [15]. Moreover, if v<<1,

< N>1 N
P ~——
vk

ok kIN=v2<1, (47)
v
e
Py, ~ 22 V2 <k/IN<1. (48)

For arbitrary values of v, the number of terms increases lin-
early with v; therefore, the larger the value of v, the less
compact is Eq. (45). Nevertheless, inasmuch as the fre-
quency k<Nv, Pfk admits a rather simple expression
& N>l
v 27 vk’

which unveils that, except for v=0, the low-frequency re-
gion always exhibits 1/f correlations.

0<k<Nv, (49)

C. Numerical calculation

Now, we aim at testing whether all these expressions do
describe the actual fluctuation properties of the v-Gaussian
ensemble obtained by numerical experiments. We take ad-
vantage of the tridiagonal form of these matrices, which al-
lows us to deal with very large dimensions to obtain signifi-
cant results and study finite-size effects.

Needless to say, the spectra have to be unfolded in order
to remove the modulation due to the secular trend of the
eigenvalue density. The smooth part of the eigenvalue den-
sity g(E) is well described by the semicircle law of Wigner,
regardless of the value of v; thus, the unfolding could be
performed analytically in every case. Nevertheless, this re-
sult is exact only in the limit N—o and slight deviations
occur for finite NV. Since the &, statistic is very sensitive to
small imperfections of the unfolding procedure, we perform
a double unfolding to avoid spurious effects: first, we unfold
the spectra by using Wigner’s semicircle law, and afterwards
we reunfold them by means of a fit to Chebyshev polynomi-
als.

It is natural to consider the two domains ¥<<1 and v=1
apart because systems with v=1, 2, or 4 exhibit 1/f noise,
while regular spectra (v=0) are characterized by 1/f? noise.

0<v=1. Equation (46) shows the existence of a critical
frequency k.=vN/2, where the behavior of P,f changes
abruptly. When k<k,, P,‘fOCI/ k and the spectra exhibit the
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characteristic pattern of chaotic quantum systems. On the
contrary, for k> k., P,‘fOCI/ k2, and therefore the spectra be-
have as 1/f2 noise, which is a fingerprint of integrable sys-
tems. Thus, 1/f and 1/f> noises have a neat presence
through the whole range of these values of v, the former at
the coarsest scales, the latter at the finest ones. This hetero-
geneous behavior is rather different from that found in some
intermediate semiclassical systems where the power spec-
trum exhibits a power law P,foc 1/f* with 1 <a<2 [20].

We have calculated the averages P,‘f by using samples of
20 members pertaining to ensembles with dimensions N
=10%,10%,10°. In order to make possible a direct comparison
of level sequences with different lengths, we plot P,‘f in terms
of the dimensionless frequency w=2mk/N instead of k. The
results of these calculations are depicted in Fig. 2 for v
=0.001,0.01,0.1,1. The agreement between theory and nu-
merics can be considered very good. Nevertheless, there ex-
ist some differences. The actual transition from a 1/f to a
1/f? regime, around the critical frequency w.=r, is slightly
smoother than that predicted by Eq. (46); for both ®> w, and
w<<w,, our approximated formula works very well. This dis-
crepancy is due to the approximated character of Y5, [see Eq.
(32)]. The second problem concerns the points at very low
frequencies w==2/N, which fall far below the theoretical
curve; according to our experience, this is a spurious effect
due to imperfections in the unfolding procedure. As a final
comment, we would like to add that the absence of the ad-
ditive term A does not entail relevant consequences in this
case; moreover, the approximated formula (48) is able to
reproduce the numerical results accurately, and thus it is a
simple way to characterize the transition between uncorre-
lated sequences with v=0 to correlated ones with v=1.

v> 1. According to Eq. (45), we expect the behavior of P{
to be simpler in this case. Actually, it predicts a 1/f noise in
the low-frequency region regardless of the value of v. We
performed several simulations with samples of 20 matrices
of dimension N=5 X 10%, although we only show four cases
corresponding to v=2, 5, 10, and 100. Figure 3 displays the
comparison with the theoretical predictions of (45). Contrary
to the previous case (where v=1) the relevance of the addi-
tive term A is not negligible and its influence increases with
v; for this reason, the theoretical curve fails to describe the
numerical data at high frequencies. The insets show the dif-
ference between numerical and theoretical results in a simple
logarithmic scale for the high-frequency region. We can see
two important facts: (a) the absolute value of A decreases
with v, as is expected since for v— %, §,— 0, but its relative
importance increases; and (b) the approximated expression
(49) gives a better description than the more complete (45),
which allows us to conclude that the 1/f behavior constitutes
a very good approximation for larger values of v. In the low
and intermediate regions the agreement with Egs. (45) and
(49) is amazingly good and therefore compatible with an
exact 1/f noise.

As shown in Ref. [21] the same result is true for another
family of ensembles built by applying the Lanczos algorithm
and changing ad hoc the fluctuations of the matrix elements.
Therefore, the analogy between chaotic energy spectra and a
time series is substantiated: 1/f noise arises as the main fea-
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FIG. 2. Numerically calculated values of P_f plotted in double-logarithmic scale for ensembles of dimension N=10° (circles), N=10*
(triangles), and N=10° (squares). Panels (a)—(d) display the results for »=0.001, v=0.01, v=0.1, and v=1. Ensemble averages are calculated
by using samples of 20 matrices. The theoretical predictions of Egs. (46), (47), and (48) are drawn as solid, dotted, and dashed lines,

respectively.

ture of a transition that reduces to zero the amplitude of the
spectral fluctuations, preserving its scale-free correlation
structure. Moreover, the link between the repulsion param-
eter v and the inverse temperature of a one-dimensional Cou-
lomb gas, established by Eq. (1), provides a physical analogy
to explain how long-range spectral fluctuations are frozen
into a nonfluctuating level sequence.

IV. SUMMARY AND CONCLUSIONS

Summarizing, we have investigated the long-range spec-
tral fluctuations of the v-Gaussian ensemble. This random
matrix ensemble is a continuous extension of the classical
Gaussian ensembles (v=1,2,4), where the repulsion param-
eter v can take any positive real value. One of its major
characteristics is its simple tridiagonal form, which has the

great advantage of an unrivaled speedup and efficiency in
numerical simulations with large matrix dimensions.

We dealt with the 9§, statistic, which measures long-range
spectral correlations (short-range correlations have been re-
cently studied in [8]). Because of its formal similarity with a
time series, we have used techniques borrowed from this
field to obtain information on the fluctuations at all scales. It
is well known that the power spectrum of &, exhibits 1/f?
noise for integrable systems (v¥=0) and 1/f noise for chaotic
ones (v=1,2,4). For some intermediate systems, a 1/f“
noise has been found, with 1 <a <2, but this behavior still
lacks a theoretical explanation. It has also been shown that
1/f noise is present in spectra with high spectral rigidity in
general.

We have derived an analytical expression for the
ensemble-averaged power spectrum of the J, statistic, P,f,
and compared its predictions with stringent numerical calcu-
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lations. If 0<w=1, the theoretical as well as the numerical
values of P,‘f unveil a critical frequency k.o v, where the
long-range structure of the spectral fluctuations changes
abruptly. Below £k, the spectral fluctuations exhibit the char-
acteristic pattern of classical Gaussian ensembles, while at
higher frequencies they follow the predictions of the Poisson
statistics. The evolution from GOE to Poisson statistics is
heterogeneous because both 1/f and 1/f> noises coexist
through the whole transition from v=0 to v=1, and it differs
from the homogeneous behavior found in other systems
where a power law P,foc 1/f* with 1 <a<<2 takes place at all
scales. With the numerical calculations, we have confirmed
this heterogeneous behavior, despite the transition from a 1/f
to a 1/f% regime being actually smoother; the critical fre-
quency k.. is a good indicator of the scale in which this tran-
sition takes place. o

When v>1 the pattern is rather different. P{ exhibits a
1/f power law through almost the whole frequency domain.
As v becomes larger there is a monotonic increase of the

spectral rigidity that reduces dramatically the amplitude of
the spectral fluctuations. In the limit v— o they fall to zero.
This result substantiates the analogy between &, and a time
series as it shows that the 1/f noise is the main feature along
the transition from a chaotic to a picket-fence spectrum. In
this case the agreement between analytical and numerical
results is excellent, except in the high-frequency region, be-
cause the relevance of the constant term A that we dropped is
not negligible here.

Note added. Recently, a numerical analysis of the continu-
ous Gaussian ensemble, similar to ours, was published [22].
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