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Diffusion-controlled death of A-particle and B-particle islands at propagation
of the sharp annihilation front A+B—0
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We consider the problem of diffusion-controlled evolution of the A-particle-island—B-particle-island system
at propagation of the sharp annihilation front A+B— (0. We show that this general problem, which includes as
particular cases the sea-sea and island-sea problems, demonstrates rich dynamical behavior from self-
accelerating collapse of one of the islands to synchronous exponential relaxation of both islands. We find a
universal asymptotic regime of the sharp-front propagation and reveal the limits of its applicability for the

cases of mean-field and fluctuation fronts.
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For the last decades the reaction-diffusion system
A+B—0, where unlike species A and B diffuse and annihi-
late in a d-dimensional medium, has acquired the status of
one of the most popular objects of research. This attractively
simple system, depending on the initial conditions and on the
interpretation of A and B (chemical reagents, quasiparticles,
topological defects, etc.), provides a model for a broad spec-
trum of problems [1,2]. A crucial feature of many such prob-
lems is the dynamical reaction front—a localized reaction
zone which propagates between domains of unlike species.

The simplest model of a reaction front, introduced almost
two decades ago by Galfi and Racz (GR) [3], is a quasi-one-
dimensional (quasi-1D) model for two initially separated re-
actants which are uniformly distributed on the left side
(x<<0) and on the right side (x>0) of the initial boundary.
Taking the reaction rate in the mean-field form
R(x,t)=ka(x,1)b(x,t), GR discovered that in the long-time
limit kz— oo the reaction profile R(x, ) acquires the universal
scaling form

R=Rf-9<w>, (1)

w

where x;o /> denotes the position of the reaction front cen-
ter, Rfocz“'g is the height, and wo¢* is the width of the reac-
tion zone. Subsequently, it has been shown [4-8] that the
mean-field approximation can be adopted at d>d.=2,
whereas in 1D systems fluctuations play the dominant role.
Nevertheless, the scaling law (1) takes place at all dimen-
sions with a=1/6 at d>d_.=2 and a=1/4 at d=1, so that at
any d the system demonstrates a remarkable property of the
effective dynamical repulsion of A and B: on the diffusion
length scale Lj,>t"? the width of the reaction front asymp-
totically contracts unlimitedly: w/Lp— 0 as t— . Based on
this property a general concept of the front dynamics, the
quasistatic approximation (QSA), has been developed
[4,5,8,9] which consists in the assumption that for
sufficiently long times the kinetics of the front is governed
by two characteristic time scales. One time scale
t;=—(dInJ/dt)~" controls the rate of change in the diffusive
current, J=J,=|J,|, of particles arriving at the reaction zone.
The second time scale 7, w?/D is the equilibration time of
the reaction front. Assuming that 74/¢;<<1 from the QSA in
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the mean-field case with D, z=D it follows that [4,5,9]

Ry~ Jiw, w~ (DJk)'"?, (2)

whereas in the 1D case w acquires the k-independent form
w~(D/J)"? [4,5]. On the basis of the QSA a general de-
scription of spatiotemporal behavior of the system
A+B—0 has been obtained for arbitrary nonzero diffusivi-
ties [10] which was then generalized to anomalous diffusion
[11], diffusion in disordered systems [12], diffusion in sys-
tems with inhomogeneous initial conditions [13] and to sev-
eral more complex reactions. Following the simplest GR
model [3] the main attention has been traditionally focused
on the systems with A and B domains having an unlimited
extension—i.e., with an unlimited number of A and B par-
ticles, where asymptotically the stage of monotonous quasi-
static front propagation is always reached: t,/¢,—0 as
t— o,

Recently, in [14] a new line in the study of the
A+B—0 dynamics has been developed under the assump-
tion that the particle number of one of the species is finite;
i.e., an A-particle island is surrounded by a uniform sea of B
particles. It has been established that at sufficiently large
initial number of A particles, Ny, and a sufficiently high re-
action rate constant k the death of the majority of island
particles N(#) proceeds in the universal scaling regime
N=NyG(t/t.), where 1, N3 is the lifetime of the island in the
limit k,Ny—cc. It has been shown that while dying, the is-
land first expands to a certain maximal amplitude x}”ocNO
and then begins to contract by the law xf=x_};-’1 {At/t,) so that
on reaching x?/’ (the turning point of the front)

tM/tC: l/e, NM/N02019886 . (3)

and, therefore, irrespective of the initial particle number and
dimensionality of the system =~4/5 of the particles die at the
stage of the island expansion and the remaining =~1/5 at the
stage of its subsequent contraction.

In this Rapid Communication we consider a much more
general problem of the A+B— 0 annihilation dynamics with
the initially separated reactants under the assumption that the
particle number of both species is finite. More precisely, we
consider the problem of the diffusion-controlled death of
A-particle and B-particle islands at propagation of the sharp
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annihilation front A+B— (0. We show that this island-island
(IT) problem, of which particular cases are the GR sea-sea
(SS) problem and the island-sea (IS) problem [14], exhibits
rich dynamical behavior and we reveal its most essential fea-
tures.

Let in the interval x € [0, L] particles A with concentration
ao and particles B with concentration b, be initially uni-
formly distributed in the islands x € [0,€) and x € (€, L], re-
spectively. Particles A and B diffuse with diffusion constants
D, and Dg, and when meeting they annihilate A+ B — 0 with
a reaction constant k. We will assume, as usual, that concen-
trations a(x,7) and b(x,r) change only in one direction (flat
front), and we will consider that the boundaries x=0,L are
impenetrable. Thus, our effectively one-dimensional problem
is reduced to the solution of the problem

daldt=D,NV*a—R, dblot=DyzV’bh-R, (4)

in the interval x €[0,L] at the initial conditions a(x,0)
=ayf(€—x) and b(x,0)=by0(x—{) and the boundary condi-
tions V(a,b)|,o,=0 where 6(x) is the Heaviside step func-
tion. To simplify the problem essentially we will assume
D,=Dg=D. Then, by measuring the length, time, and con-
centration in units of L, L?/D, and by, respectively—i.e.,
assuming L=D=by=1—and defining the ratio of initial con-
centrations aq/by=r and the ratio €/L=g, we come from
Egs. (4) to the simple diffusion equation for the difference
concentration s=a->b,

ds/dt=V2s, (5)
in the interval x € [0, 1] at the initial conditions

SO('X € [0,‘])) =r, So(x € (Q7 1]) =- 1’ (6)
with the boundary conditions
V 5=0.1 =0. (7)

According to the QSA for large k— o at times txk™' —0
there forms a sharp reaction front w/x;—0 so that the solu-
tion s(x,) defines the law of its propagation, s(xf,t)=0, and
the evolution of particle distributions, a=s(x<xf) and
b=|s|(x>x,). In the limits sea-sea [3] (£—o,L—%) or
island-sea [14] problem (¢ finite, L— o) the corresponding
solutions sgg(x,7) and sig(x,7) describe the initial stages of
the system’s evolution at times \t<q, 1-qg, and ¢g<< \t<l
respectively. The general solution to Egs. (5)—(7) for arbi-
trary r, g, and ¢ has the form

o0

A+ > A, (r,q)cos(namx)e™ ™, (8)

n=1

s(x,1)

where  coefficients A,(r,q)=2(r+1)sin(nmq)/nm and
A(r,q)=N4—Ng=rq—(1-q) is the difference of the reduced
number of A and B particles which remains constant. At
t>1/* the main mode in Eq. (8) becomes dominant, so
neglecting the contribution of small-scale modes we find

s=A+A,(r,q)cos(mx)e ™ + -+ . 9)

Taking s(x,#)=0 we obtain from Eq. (9) the law of the front
motion,
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cos(mcf)=Ce”2’+ e (10)
where coefficient C can be represented in the form
C—_A/Al Q(r*_r)/Al (q*_Q)/Q*Al, (11)

where g,=1/(r+1) and r,=(1—-q)/q are the critical values
of ¢ and r at which C reverses its sign. From Eq. (10) it
follows that at |C|<1/e and r#r,,q# q,, when the ratio of
the initial particle numbers,

=22 4, (12)

the front x{r) moves either towards the boundary x=0
(p<1) or towards the boundary x=1 (p>1) so that in the
limit k— oo the island of a smaller particle number (A or B,
respectively) dies within a finite time

t.=(1/7%)|In|C]|. (13)

From Egs. (10) and (13) in the time interval 1/ 7> <t<t. we
obtain

xp= (1/m)arccos(+ e”l("’f)) (14)

(here and in what follows the upper sign corresponds to
p<1 and the lower sign corresponds to p>1), from which
for the front velocity v;=x, we find

vp=—mcot(mxy) = + 77/(\/627’2(’6”) -1). (15)

Making use then of Eq. (13), for the distribution of particles
[a=s(x<x/),b=[s|(x>x/) [14]] at p# 1 we obtain

s=A(1 F cos(wx)e”z(’c_’)) + o (16)

Thus from the condition Ny=[{ sdx=Np+A we find the
laws of decay of the A and B particle numbers,

Ny= (|A|/7T)(V€2“2("~‘_') -1 5 mxy), (17)

and then we derive finally the diffusive boundary current in
the vicinity of the front,

J= - &s/5x|xzxf =mA| V2™t _ (18)

which according to (2) defines the evolution of the amplitude
R(t) and of the width of the front w(z).

From Egs. (13)—(18) we immediately come to the follow-
ing important conclusions: for arbitrary r and ¢ which satisfy
the condition |C(r,q)|<1/e, at p<1 or p>1, (i) the motion
of the front is the wuniversal function of the “distance” to
the collapse time ¢.—¢ with the remarkable property
x;(t -1)=1- xf>(t —1); moreover, the front velocity v is the
unique function of x, with the remarkable symmetry
xp> 1—xp, v —vg (ii) the reduced particle number N,/ |A|
and the reduced boundary current J/|A| are
universal functions of tz.—t with the remarkable properties
Ny (t.—1)=N; (t.—1)—|A| and J=(t.—1)=J"(t.~1). Introduc-
ing the relative time 7=¢,—1, from Egs. (13)—(18) in the vi-
cinity 7< 1/ of the critical point . we come to the uni-
versal power laws of self-accelerating collapse (Jvd o7 "/):

Xl —x] =\2T e (19)
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N NG = (\8R3) @A T+ - (20)

J= 2 ANT+ - . (21)

At large t,> 1/ far from the critical point 7> 1/7 ac-
cording to Eqgs. (13)—(18) there is realized the intermediate

exponential relaxation regime ([v/] e ™)
=125 T e (22)
N<’>=(A/7T)e“27(1 T me T2 + ), (23)
A
J= 7T|A|€712T(1 2T 4 ), (24)

which in the limit #,— o(|C|,|@—1|—0) becomes dominant.
Thus, at large 7.5 1/ the point x;~1/2 (stationary front)
is an “attractor” of trajectories. Exactly at the critical point
p.=1 from Egs. (9) and (10) we find x}=1/2 and obtain

_(2)sin(m)
N*/N0_<ﬂ2)q(l )" +oee, (25)
J.= Z[Sin(wq)/q]e‘"zt + o (26)

In order to answer the question of when and how the attrac-
tor x7=1/2 is reached it is necessary to retain the next term
(n=2) in the sum (8). With allowance for the first two terms
one can easily obtain

xp=1/2- D(q)e_%l’ 4+, (27)

where D(q)=(A,/ wA,)=sin(2mq)/ 27 sin(mwq). According to
Eq. (27) at g=1/2 the coefficient D reverses its sign; there-
fore, as is to be expected, at ¢<<1/2 and ¢>1/2 the front
reaches the attractor x;= 1/2 from the left and right, respec-
tively. By combining Egs. (22) and (27), at small but finite
|C| we have x;"=1/2-Ce™ '/ 7m=De- 3™ 4+ -, We thus con-
clude that under the condition DC>0 there arises the turning
point of the front (vjy =0) with the coordinates

ty = (1/47)In(\y|DIC|) + - -, (28)

X} =1/2 = myDICIDP + -+, (29)

where Ny =3m,my=4/3m)**, whereas at DC<0 there
arises the inflection point of the front trajectory
([vj|=min|v ) with the coordinates 7, and x} which are deter-
mined by Egs. (28) and (29) with the coefficients A;=3\,,
and my=2m,,/(3)** The analysis presented demonstrates
the key points of the evolution of the island-island system at
arbitrary r and g which satisfy the condition |C(r,q)|<1/e
[according to Egs. (11) and (12) this condition restricts the
interval p;<p<p, to the values of p,, which are not too
different from unity: at g<<1 we find p;~0.6 and p,~4].
Below we will focus on a detailed illustration of this evolu-
tion from the initial island-sea configuration (g<<1).

A remarkable property of the island-sea configuration
g<<1 is that at r>1 the A(p)=p—1 value and all the coeffi-
cients A,(p)=2p up to n1/g>1 become unique functions
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FIG. 1. (Color online) Evolution of the front trajectories x/(r)
with growing p, calculated from Egs. (30) (blue lines) and (31) (red
circles) at p=0.5, 0.7, 0.9, 0.98, 1, 1.02, 1.1, and 2 (from left to
right). The region of the scaling IS regime is shaded.

of p. Therefore, the system’s evolution at > ¢ is determined
by the sole parameter p. At g><t<<1 we have the scaling IS
regime [14]

xp= 20 (Y, (p) = p¥, (30)

with )C}/I=p\c"2/7T€ and ty,=p*/me. For t>1/21 with allow-
ance for two principal modes (n=1,2) we obtain from Eq.

®)
Xp= (l/w)arccos[G(p,t)e3”2’/4], (31)

where G(p,1)=\1+8C(p)e ™ +8e671_ 1 and
C(p)=(1-p)/2p. For the time of collapse r.(p) we derive
from Eq. (8) the general equation for arbitrary p# 1,

S (1) e = (p)], (32)
n=1
from which in accordance with Eq. (31) for the leading (at
small |C|) correction to Eq. (13) we find

tp)=(In[C|| £ |C[>+ -+ )/, (33)

Using small-7 representations of the series (32), one can eas-
ily show that, with growing p, f. initially grows by the law
t(p)=p*(1 +he TP g +)/ r; then, it passes through the criti-
cal point 7,(p,) — o according to Eq. (33) and finally at large
p decays by the law ¢.(p) o 1/1n p. From Egs. (31) and (17)
for the starting points #,, ; of front self-acceleration at small
|C| we find

tlte=1/4+ By /|I[C|[ + -+, (34)

with the number of A particles, Ni*/N4,|C|""*, where B
=f,/2=In 3/4. Remarkably, the same as for the scaling IS
regime (3) and (30) in the vicinity |p—p,| <1 the ratio t,,/¢,
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reaches the universal limit ty,/t.=1/4. In Fig. 1 are shown
the calculated from Egs. (30) and (31) trajectories of the
front xf(t), which illustrate the evolution of the front motion
with the growing p. It is seen that to p=0.7 the death of the
island A proceeds in the scaling IS regime (30) (1,,/t,
=1/e); then, the x/r) trajectory begins to deform, and at

laxation (22)—(24) and (34) (r),/t,~1/4) is reached. After
the critical point p,=1 has been crossed, the death of the
island A is superseded by the death of the island B, so the
front trajectory becomes monotonous and the stopping point
of the front xf Sty (v =0) “transforms” to the point of maxi-
mal deceleration of the front xf,t (v} j=min v, |C]>*#) which
at large p shifts by the law 1- xf0< 1/+In p with ¢, 1/1n p.
One of the key features of the island-island problem is a
rapid growth of the front width w while the islands are dying.
Therefore, to complete the analysis we have to reveal the
applicability limits for the sharp front approximation
n=w/min(x,, | -x;) < 1. By substituting Eq. (21) into (2) we
obtain for the self-accelerating collapse 7~ (TQ/T)“ where
for the mean-field front pyE=2/3 and ’IMF—l/x|A|k For a
perfect diffusion-controlled 3D reaction k Dr, where r, is
the annihilation radius. Thus, as our k is measured in units of
D/L%b, [14] for the dimensionless k we have k=r,L*b,. Sub-
stituting here r,~ 1078 cm, L~ 10 cm, and bo~1022 -3
we find k~10'® and derive Ty~ 10‘8/\|A| so that for not
too small |A| (|p—p,|>1078) the sharp front is not destroyed
almost down to the point of collapse. Clearly at small
|A|— 0 the “destruction” of the front has to occur already at
the stage of exponential relaxation (22)—(26). Substituting
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Eq. (26) into (2) for the exponential relaxation we find
7]~e’”72("’Q) where vyp=1/3 and 2" =(In k)/ 2. Substitut-
ing here k~10'® we obtain tl\Q/I ~3.7 and then from
Eq. (25) we find NY¥(%=0.1)/ Ny~ 10~"3. An analogous cal-
culation for the fluctuation 1D front gives up=3/4,
’]F ~1/(|Alng)?? and  ve=1/2, tQ—(ln ny)/m  where
ny= Lb,. Substituting here n,~ lO6 we find 7F ~1074/|A]?3,
tQ ~ 1.4, and nf(9=0.1)/ny~ 107*. We conclude that both for
the mean-field and the fluctuation fronts the vast majority of
the particles die in the sharp-front regime; therefore, the pre-
sented theory has a wide applicability scope.

In summary, the evolution of the island-A—island-B sys-
tem at the sharp annihilation front A+B— 0 propagation has
been considered and a rich dynamical picture of its behavior
has been revealed. The theory presented may have a broad
spectrum of applications—e.g., in the description of
electron-hole luminescence in quantum wells [15], the for-
mation of nontrivial Liesegang patterns [16], and so on. Of
special interest is the analogy of the island-island problem
with the problem of annihilation on the catalytic surface of a
restricted medium where for unequal species diffusivities in
a recent series of papers [17] the phenomenon of annihilation
catastrophe has been discovered. Study of the much more
complicated case of unequal diffusivities and comparison
with the annihilation dynamics on the catalytic surface is a
generic and challenging problem for the future.
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