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The impact of high-order moments on the statistical modeling of transition arrays in complex spectra is
studied. It is shown that a departure from the Gaussian, which is usually employed in such an approach, may
be observed even in the shape of unresolved spectra due to the large value of the kurtosis coefficient. The use
of a Gaussian shape may also overestimate the width of the spectra in some cases. Therefore, it is proposed to
simulate the statistical shape of the transition arrays by the more flexible generalized Gaussian distribution
which introduces an additional parameter—the power of the argument in the exponential—that can be con-
strained by the kurtosis value. The relevance of the statistical line distribution is checked by comparisons with
smoothed spectra obtained from detailed line-by-line calculations. The departure from the Gaussian is also
confirmed through the analysis of 2p-3d transitions of recent absorption measurements. A numerical fit is
proposed for an easy implementation of the statistical profile in atomic-structure codes.
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I. INTRODUCTION

The computation of detailed-line spectra is often a
challenging—if not impossible—task for high-Z plasmas,
due to the large amount of levels and lines involved. The
good side of this complexity is that lines can merge into
simple broad structures. This allows one to use global meth-
ods in which atomic properties of ions are averaged in some
ways. In this work, we focus our attention on the statistical
approach which uses the moments of the line distributions to
build the spectra of complex ions. This can be done, for
example, by using the Gram-Charlier expansion series which
allows one to account for an arbitrary number of moments
�1,2�. In fact, many similar developments exist, based on
orthogonal polynomials, continuous fractions, Fourier series,
etc. A major consequence of information theory is that the
more complex the spectrum is, the larger is the number of
moments required for a good depiction. The convergence of
the development in moments may also be an issue.

The principal interest of the statistical approach in atomic
spectroscopy resides in the ability to provide compact formu-
las for the moments, bypassing thus the construction and the
diagonalization of the Hamiltonian of the system. The mo-
ments of any transition array have been derived analytically
by Bauche-Arnoult et al. �3� as functions of radial integrals,
but only up to the second order. Compact formulas have been
published by the same authors for the third-order moment
�4�, but they are incomplete and can be used only for certain
types of transition array. Parts of the fourth-order moment
have been derived also by Karazija �5�, using graphical
methods. Therefore, the statistical approach can be used only
to represent unresolved transition arrays �UTA�. The term
“unresolved” means that it is not possible to locate any fea-
ture associated to a particular level-to-level transition. This is

due to the high density of levels and lines that arises when
high-Z configurations with one or more open shells of high
degeneracy are considered. This occurs also if the individual
linewidth, due to physical broadening mechanisms, is suffi-
ciently large to smooth the transition array. It is important to
mention that there is no simple way to determine whether a
transition array is resolved or unresolved without performing
the exact line-by-line calculation. Despite the use of coarse
criterions regarding the ion density or the atomic number, the
UTA approach is often used blindly.

The main issue addressed in this paper is the choice of the
relevant distribution for modeling the unresolved transition
arrays. Though it is quite convenient to employ a Gaussian
function knowing the first two moments of the distribution,
this choice remains arbitrary and is not imposed by the UTA
approach. Indeed, from a mathematical point of view, many
distributions can be built from the known low-order mo-
ments, and physical arguments are strongly needed to guide
the most relevant choice. The use of a Gaussian for the sta-
tistical modeling of transition arrays owes most of its popu-
larity to the success of the random matrix theory �6� in vari-
ous fields, especially for simulating the complex spectra in
nuclear physics �7�. Attempts to use the properties of the
Gaussian orthogonal ensemble �GOE� in atomic physics �8�,
and empirical studies �9� of wavelength and oscillator-
strength distributions have shown that things could be more
complicated. For example, it is well known that correlations
exist between the line energies and their amplitudes �10�.
Such effects are obvious by considering that, as a general
trend, the strongest lines are found closer to the center of
gravity than the weakest lines, and that the variance of the
line energies is always smaller when it is calculated with a
weight equal to the line strength than when it is not. The
transition arrays of the type �N��-�N�� are good examples of
this phenomenon, because of the fierce selection rules on the
core �N. They are known to be much sharper than a Gaussian
distribution.*franck.gilleron@cea.fr
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Throughout the paper, emphasis is put on the effects of
the kurtosis coefficient on symmetrical line distributions. Ac-
counting for the skewness factor seems to be a less critical
issue. Indeed, highly asymmetrical line distributions can be
found either close to the LS coupling, due to a large G1 Slater
integral �11�, or in situations where the spin-orbit interactions
are strong enough to initiate the splitting of the transition
array. In the latter case, which is more frequent for medium-
or high-Z elements, the asymmetrical shape of the array can
be restored by considering the superposition of symmetrical
subarrays based on relativistic �12� or semirelativistic �13�
configurations. However, effects of the electrostatic operator
on levels of �semi-�relativistic configurations must be taken
into account carefully, as they can strongly alter the intensity
of each subarray �13,14�.

In Sec. II, the transition arrays are defined and the main
approximations of the UTA model are recalled. In Sec. III,
the choice between a Gaussian function, truncated Gram-
Charlier series, or generalized Gaussian function to simulate
the statistical line distributions is then discussed by studying
the high-order moments. The effects of the linewidth and of
the spin-orbit interactions are also tackled. In Sec. IV, a nu-
merical fit of the generalized Gaussian functions is proposed
for an easy implementation in atomic-structure codes. Fi-
nally, the profile is used to study the non-Gaussian effects in
some recent experiments.

II. UNRESOLVED TRANSITION ARRAYS MODEL

Transition arrays are spectroscopical objects characterized
by specific distributions of photon energy E,

I�E� = Cp�
ab

Na

ga
�Eab�pSab��E − Eab� , �1�

which, using the appropriate constant factor Cp, represent
either the opacity coefficient �p=1�, the number of emitted
photons �p=3�, or the emissivity of the source �p=4�. The
sum runs over the upper and lower levels of each line be-
longing to the transition array. The density of level a is noted
Na, and its degeneracy ga. The energy of the line a→b is
Eab=Ea−Eb, the line strength is Sab, and ��E−Eab� is a nor-
malized profile that takes into account the broadening of the
line in the plasma by the various external processes �natural
width, Doppler, Stark, electron collisions, etc.�.

The distribution I�E� can be expressed equivalently as a
convolution product,

I�E� = A�E� � ��E� , �2�

where the function A�E� assumes that each line is repre-
sented by a Dirac � function,

A�E� = Cp�
ab

Na

ga
�Eab�pSab��E − Eab� . �3�

The usual UTA modeling is based on the following three
approximations:

Assumption 1. The discrete distribution A�E� can be re-
placed by a continuous distribution �usually Gaussian or

skewed Gaussian� which preserves its low-order moments.
Assumption 2. Under the assumption of statistical weight

population, the density Na of level a is assumed to be pro-
portional to its statistical weight ga,

Na

ga
�

N0

g0
, �4�

with N0=�aNa and g0=�aga.
Assumption 3. In order to avoid the sum over the term

�Eab�p in Eq. �3�, the line energy Eab is replaced by the center
of gravity E0 of the transition array,

�Eab�p � �E0�p. �5�

The last two assumptions allow one to express A�E� in the
form

A�E� � Cp
N0

g0
�E0�p�

ab

Sab��E − Eab� �6�

and the moments of this distribution as

�n�A� =

�
−�

�

A�E�EndE

�
−�

�

A�E�dE

�
�
ab

Sab�Eab�n

�
ab

Sab

. �7�

With these assumptions, it is possible to derive analytical
formulas for the moments �n�A� using the quantum-
mechanical algebra of Racah and second-quantization tech-
niques of Judd �15�. Such expressions, which depend only on
radial integrals, have been published by Bauche-Arnoult and
co-workers �3,4,12,16� for the moments �n �with n�3� of
several kinds of transition arrays �relativistic or not�. First-
order corrections have been proposed by the same authors
�17� to account for a Maxwell-Boltzmann population factor
�second assumption�. It can be shown that the third assump-
tion amounts to neglecting powers of � /�1 �with �2=�2
− ��1�2� in the exact expression of the moments. The case of
opacity �p=1� is discussed in the Appendix. However, the
choice of a Gaussian or skewed Gaussian distribution �first
assumption� does not play any role for the derivation of the
moments. It is only used to substitute for the discrete line
distribution A�E� in Eq. �2�. This will be discussed in the
next section.

III. STUDY OF THE RECONSTRUCTED LINE
DISTRIBUTIONS

A. Definitions

Throughout the paper, it is assumed that all the moments
of the distribution A�E� exist. For the modeling of transition
arrays, it is useful to introduce the reduced centered mo-
ments of the distribution defined by

�n�A� =
1

	
�

−�

�

A�E��E − �1

�
	n

dE �8�
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=
1

�n�
i=0

n �n

i
	�i�− �1�n−i, �9�

where �1 is the center of gravity of the strength-weighted
line energies, �=
�2−�1

2 is the standard deviation, and 	
=�−�

� A�E�dE is the total area of the distribution. The use of
�n�A� instead of �n�A� allows one to deal with more reason-
able numbers, limiting that way the numerical problems. The
first values �0=1, �1=0, and �2=1 are trivial by definition.
The distribution A�E� is therefore fully characterized by the
values of 	, �1, � and by the values of the high-order mo-
ments �n with n
2.

The third- and fourth-order reduced centered moments �3
and �4 are the well-known skewness and kurtosis coeffi-
cients, respectively. A non-null value of the former allows
one to quantify the asymmetry of the distribution. The latter
is a measure of the flattening of the distribution at the center;
it is usually compared to the value �4=3 for a Gaussian
distribution.

B. Gram-Charlier expansion series

An analytical function which preserves an arbitrary num-
ber of moments can be built using the properties of orthogo-
nal polynomials and their associated basis functions �1�. The
type-A Gram-Charlier �GC� expansion series is a combina-
tion of products of Hermite polynomials by a Gaussian func-
tion,

Hn�E� =
	

�

e−u2/2


2�
�1 + �

k=2

n

ck Hek�u�	 �10�

with

ck = �
j=0

int�k/2�
�− 1� j

j ! �k − 2j� ! 2 j �k−2j�A� , �11�

where u= �E−�1� /�, n is the number of moments, Hek�u� is
the Hermite polynomial of order k, and int�k /2� is the integer
part of k /2. The GC series uses the reduced centered mo-
ments �k�A� of the discrete distribution A�E�. When carried
on to infinity, it can be shown that the GC expansion series
is an exact representation of the distribution: A�E�
=limn→�Hn�E�. The truncated series Hn�E� may be viewed
as a Gaussian function multiplied by a polynomial which
accounts for the effects of departure from normality. There-
fore it may be a slowly converging series when A�E� differs
strongly from the Gaussian distribution. This is illustrated in
Fig. 1, where it can be seen that at least 50 moments are
needed to reproduce the shape of the transition array 3d6-
3d54p in Br11+. Moreover, the truncating has the drawback of
yielding negative values in some circumstances. It is also
known to suffer from numerical instability since Eq. �11�
involves a sum of large terms of alternating sign.

C. Fourth-order moment distributions

The main properties of a bell-shaped distribution can be
captured by its first four moments, which represent qualita-

tively the center of gravity, the width, the asymmetry, and the
sharpness of the distribution. This can be checked in Fig. 1
by noticing that the GC series does not change much be-
tween the orders 4 and 10.

In the following, the emphasis is put on the study of the
impact of the kurtosis coefficient in a symmetrical distribu-
tion ��3=0�. Many distributions preserving the four param-
eters �	, �1, �, and �4� can still be found. A noncomprehen-
sive list includes the following: Gram-Charlier series, normal
inverse Gaussian, Student’s, Pearson’s, and � and general-
ized Gaussian distributions. Our goal is not so much to de-
termine which specification seems to be the most accurate as
to find a distribution which allows one to study easily the
effects of the departure from the Gaussian law �including the
normal law as a particular case�. First, let us consider the
fourth-order GC series,

H4�E� =
	

�

e−u2/2


2�
�1 +

��4 − 3�
24

�3 − 6u2 + u4�	 . �12�

This distribution is presented in Fig. 2 for various values of
�4. The main drawbacks are the negative signs for �4
7,
and the presence of nonphysical bumps on the tail on either
side of the distribution.

It seems to us that the best choice to study the effects of
the kurtosis is the generalized Gaussian distribution �GG�,
defined by

P�E� =
	

�

e−�u  ���

2���1 +
1

�
	 , with � =
��1

�
	

��3

�
	 , �13�

where � is a positive real number and ��x� is the ordinary
gamma function. The even-order moments of a GG function
read
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FIG. 1. �Color online� Convergence of the Gram-Charlier ex-
pansion series for the array 3d6-3d54p in bromine. The heavy line is
a representation of the distribution A�E� using a GC series up to a
specified order. The light curve is an exact calculation performed
with Cowan’s code �9� and smoothed with a resolution � /��=150
to make easier the comparison with GC. The relative root mean
square �RMS�, given in upper right corner on the figures, is a mea-
sure of the squared distance between both distributions.
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�2k�P� = �2k

��1 + 2k

�
	

��1

�
	 , �14�

whereas the odd-order moments are null, �2k+1�P�=0, be-
cause of the symmetry. The parameter � can be obtained by
constraining the kurtosis coefficient, and thus solving the
equation

ln �4 = ln ��1/�� + ln ��5/�� − 2 ln ��3/�� . �15�

This distribution can be observed in Fig. 3 for several values
of the parameter �. The GG function has interesting proper-
ties. It is a simple increasing �decreasing� function for u

0 �u�0�, without weird features as in GC series. The
Gaussian ��=2� and the Laplace ��=1� distributions are spe-
cial cases of GG functions with a kurtosis coefficient equal to
3 and 6, respectively. Asymptotically, the GG function tends
to a square function with �4=9 /5 for �→�, and to a Dirac �
function for �→0. The GG functions with 0���1 have a
nondefinite derivative at u=0, but this discontinuity disap-
pears with the convolution by another function, as in Eq. �2�.

The full width at half maximum �FWHM� of a GG function
is given by the formula

XFWHM�P� = 2���ln 2�1/�. �16�

It is worth mentioning that the conservation of the variance
does not imply the conservation of the FWHM. The latter
quantity depends obviously of the distribution itself. For ex-
ample, the above formula gives XFWHM=2.35� for a Gauss-
ian ��=2� and XFWHM=0.98� for a Laplace distribution ��
=1�.

D. Influence of the higher moments

The choice of a specific distribution with some constraints
over low-order moments of the discrete distribution A�E�
fixes ipso facto the higher unconstrained moments. This can
be seen in Table I, for the transition array 3d6-3d54p in bro-
mine, which shows the values of the even reduced centered
moments �k up to the order 14 for several distributions. The
exact values of the moments are calculated with Cowan’s
code �9�. They are compared with the values of the GG func-
tion, using Eq. �14�, and with the values of the fourth-order
GC series, obtained by setting ck=0 for k�6. Both functions
P�E� and H4�E� are constrained by the moments of order k
�4 of the exact distribution. Values for the Gaussian func-
tion are also shown. It is observed, for this particular case,
that the GG function is slightly closer to the exact values
than the fourth-order GC series. One concludes also that the
Gaussian distribution is not a good representation for that
array. This can be checked also in Figs. 5�a�–5�c� by noticing
the large discrepancies between the Gaussian and the exact
line-by-line calculation.

It is interesting to study the other type of transition array,
�N��-�N��, which is known to be very narrow due to the
strong selection rules on the core �N. As an example, Table II
shows the case 3d54s-3d54p in bromine. As expected, this is
a difficult case since the kurtosis is equal to 14.194, and the
values of successive even moments of the exact distribution
increase very rapidly. The GC series is useless here due to
the occurrence of negative signs. A GG function which pre-
serves the kurtosis value is obtained for �=0.624. However,
it seems that a parameter � between 0.7 and 0.8 would be a
better choice, since it allows one to reproduce as an average
the higher moments up to the order 14.
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FIG. 2. Fourth-order symmetrical Gram-Charlier distributions
for several values of the kurtosis coefficient �4. The thick line cor-
responds to a Gaussian function.
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FIG. 3. Generalized Gaussian distributions for several values of
the parameter �. The thick line corresponds to a Gaussian function.

TABLE I. Values of the even reduced centered moments �k of
several distributions representing the transition array 3d6-3d54p in
bromine. Exact: calculation with Cowan’s code; P�E�: generalized
Gaussian function with �=1.356; H4�E�: fourth-order Gram-
Charlier series with �3=0 and �4=4.1481.

Order Exact P�E� H4�E� Gaussian

4 4.1481 4.1481 4.1481 3

6 33.589 34.730 32.222 15

8 433.98 466.46 346.10 105

10 7771.7 8953.6 4561.6 945

12 1.73�105 2.29�105 0.70�105 10395

14 4.52�106 7.45�106 1.22�106 135140
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E. Line broadening effects

The preceding section was devoted to the study of the
discrete line distribution A�E� and to the relevance of the
Gaussian or the GG functions as a suitable representation.
But one has to keep in mind that the quantity which is mea-
sured during an experiment is I�E�. Equation �2� shows that
this spectrum is dependent on the interplay of the individual
line profile ��E� and of the discrete line distribution A�E�.
Therefore, another way to test the analytical representation
of the UTA is to analyze how the spectrum I�E� changes
from a detailed shape to an unresolved structure due to the
individual line broadening.

For this test, the broadening ��E� is simply replaced by a
Gaussian profile. Figures 4 and 5 show the evolution of the
reconstructed spectra I�E�, for two types of transition arrays,
as a function of the width of the Gaussian profile �. The
transition array 3d54s-3d54p of bromine is presented in Fig.

4. Cowan’s code gives the following informations: 7426
lines, �1=22.016 eV, �=1.65 eV, �3=−0.108, and �4
=14.194. The transition array 3d6-3d54p of bromine, shown
in Fig. 5, contains 3245 lines, and is characterized by the
following moments: �1=154.18 eV, �=3.84 eV, �3=0.123,
and �4=4.148.

The statistical calculations, based on a Gaussian or a GG
function, are compared with the exact spectrum obtained
from Cowan’s code. In both examples, the same GG function
with �=1 is used. This represents roughly the mean value of
the optimized parameters � that has been found in the last
section ��=0.8 and �=1.356� for these arrays. This allows
one, also, to see the sensitivity with respect to � of a recon-
structed spectrum based on a GG function.

Figures 4 and 5 show that the GG function with �=1 is in
better agreement with the exact calculations considering the
width and the height of the distributions. It is also more
satisfactory for the tails of these spectra which show an
exponential-like behavior clearly not Gaussian. In Figs. 4�a�
and 5�a�, it is difficult to visually discriminate between the
GG and Gaussian distributions, because the spectra become
too much resolved. But this corresponds to situations where,
by definition, the unresolved transition array model is not
well suited. Anyway, it is possible to quantify roughly the
similarity of the GG function with respect to the exact profile
by computing the root mean square �rms� distance between
both curves. The results, presented in Table III, show that the
GG function with �=1 is always closer to the exact profile
than with �=2, though the differences between both values
of � become more tenuous and the gap from the exact curve
larger as � decreases.

F. Spin-orbit effects

More generally, the frequency-dependent shape of a tran-
sition array depends also on the relative importance of the
electrostatic and spin-orbit effects. The latter become pre-
dominant when the atomic number Z increases. The reason is
that, for the same isoelectronic sequence, the matrix ele-

TABLE II. Same as Table I for 3d54s-3d54p in bromine. Here,
the exact values of the higher moments are compared with the val-
ues deduced from several GG functions. The GC series is useless
here due to the occurrence of negative signs.

P�E�

Order Exact �=0.624 �=0.701 �=0.797

4 14.194 14.194 11.014 8.6183

6 589.14 824.68 429.65 228.62

8 40009 126670 40009 13113

10 3.72�106 4.09�107 7.24�106 1.35�106

12 4.25�108 2.42�1010 2.25�109 2.25�108

14 5.58�1010 2.37�1013 1.09�1012 5.58�1010
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FIG. 4. �Color online� Effects of the convolution linewidth � on
the line distributions of Br11+ 3d54s-3d54p. The detailed-line calcu-
lations �light curve� are performed using Cowan’s code. The Gauss-
ian distributions �heavy line� and the GG distributions with �=1
�dashed line� are constrained by the low-order moments k�2.
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FIG. 5. �Color online� Same as Fig. 4 for Br11+ 3d6-3d54p.
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ments of the Coulomb and spin-orbit operators are propor-
tional to Z and Z4, respectively. As a consequence, the tran-
sition arrays may split into two or three relativistic structures
for a high-Z element. The statistical properties of each sub-
array can be obtained with an intermediate coupling model
based on a fully or semirelativistic-configuration description,
including corrections for the configuration interaction effects
�12–14�.

Because a Gaussian function is wider and decreases more
rapidly in the tail than a GG function with ��2, the over-
lapping range between two nearby structures is a good test
for the relevance of the statistical profiles. This can be ob-
served in Fig. 6 which shows the evolution of the isoelec-
tronic sequence 3d5-3d44p as a function of the atomic num-
ber. In the case Z=68, it can be noticed that the spectral
range between both subarrays is better reproduced with
Laplace �GG function with �=1� than with Gaussian distri-
butions. In all cases, the use of Laplace distributions leads to
a remarkable agreement with the exact calculations, espe-
cially for the height and the width of both relativistic struc-
tures.

IV. APPLICATIONS TO PHOTOABSORPTION
IN HOT PLASMAS

A. Implementation of the GG functions in an atomic
structure code

Usually, line broadening effects are associated to either a
Gaussian profile �Doppler, instrumental width� or a Lorentz-
ian profile �natural width, electron collisions�. The line shape
associated to the ionic Stark broadening is often more com-
plex to determine, since it depends on the electrostatic field
generated by the neighbor ion perturbers which splits the
magnetic components of the levels and thus of the lines.
However, if the number levels is high �so that the other
broadening processes fill in the gap between the lines� and
the matter density sufficiently weak, then the influence of the
ion broadening can be accounted for roughly as an additional
Gaussian width. The convolution of the Gaussian and
Lorentzian profiles gives a Voigt profile

V�vg,a;E� =
1


2�vg

K� E

2vg

,
a


2vg
	 , �17�

where vg is the sum of the variances of the Gaussian pro-
cesses, a is the sum of the half-widths of the Lorentzian
mechanisms, and K�x ,y� is the Voigt function defined by

K�x,y� =
y

�
�

−�

+� e−t2

y2 + �x − t�2dt . �18�

In practice, we compute K�x ,y� using the efficient numerical
algorithm proposed by Avrett and Loeser �18�.

Under the assumption that A�E� is Gaussian, the resulting
distribution is a Voigt profile given by

I�E� = 	V�vg + �2,a;E − �1� , �19�

where 	, �1, and �2 are, respectively, the area, the center of
gravity, and the variance of the UTA.

In order to study the effects of the departure from normal-
ity, it is proposed to replace the distribution A�E� by a GG
function, where � is considered as a free parameter. The re-
sulting distribution I�E� is now a cumbersome convolution of
a Voigt profile by a GG function. In order to ease the imple-
mentation of the GG function in codes using Voigt profiles, it
is proposed to use a mixture of Gaussian functions, which
parameters �weights and variances� are obtained by a least-
square fitting procedure. It was found that a fit with only five
Gaussian functions is sufficient to represent a GG function
with a high accuracy,

e−�u  ���

2���1 +
1

�
	 � �

k=1

5
ak


2�bk

e−u2/2bk. �20�

The ten parameters of the fit for several values of � can be
found in Table IV. This fitting method greatly simplifies the
introduction of GG functions in the code, since the final dis-
tribution I�E� is now a simple sum of five Voigt profiles:

TABLE III. Values of the root mean square RMS distance �in
unit of 10−3 of the total area� between the exact profile and a GG
distribution ��=1 or 2�, as a function of the assumed Gaussian
linewidth. The cases considered are those of Figs. 4 and 5.

Transition arrays
in Figs. 4 and 5

Gaussian linewidth
� �in eV�

rms

�=1 �=2

3d54s-3d54p 0.2 26.57 28.83

0.06 33.86 35.28

0.02 45.36 46.40

3d6-3d54p 1 9.39 10.20

0.4 11.65 12.11

0.1 17.48 17.78
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FIG. 6. �Color online� Influence of spin-orbit interactions on the
3245 lines of the isoelectronic sequence 3d5-3d44p, varying the
atomic number Z. The exact line-by-line calculation �light curve� is
compared to statistical profiles assuming either a Gaussian �dashed
line� or a Laplacian �full line� distribution. The spectra are
smoothed with a resolution � /��=2000.

GILLERON et al. PHYSICAL REVIEW E 77, 026708 �2008�

026708-6



I�E� = 	�
k=1

5

akV�vg + �2bk,a;E − �1� , �21�

avoiding in that way any numerical convolution. The choice
of a particular GG function is done by the appropriate set of
parameters ak� and bk�. It can be noticed that the fitting
parameters have been given in such a way that they can be
interpolated between two consecutive rows in Table IV.

B. Comparisons with experiments

Several experiments devoted to the L-shell spectroscopy
of mid-Z elements have been published recently �19–22�.
These data allow one to study the spin-orbit splitting and the
effects of configuration interaction on the n=2 to 3 �espe-
cially 2p-3d� transitions. An analysis of these experiments is
proposed in order to test the new statistical modeling of the
transition arrays.

1. Iron experiment

The absorption of the 2p-3d transitions of iron has been
measured by Chenais-Popovics et al. �19� in the range
16.4–17.2 Å. The iron sample was radiatively heated by the
thermal radiation of a gold spherical hohlraum irradiated by
the high-power laser ASTERIX IV. The iron plasma is as-
sumed to be in local thermodynamic equilibrium �LTE� at a
temperature T=20 eV and a density �=0.004 g /cm3. A
simulation of this experiment using a detailed configuration
accounting �DCA� approach, based on the SCO code �23�, is
presented in Fig. 7. It can be noticed that the departure from
the Gaussian assumption allows one to better reproduce the
depth of the successive oscillations in the spectrum which
are due to the one-electron transitions 2p1/2-3d3/2, 2p3/2-
3d3/2, and 2p3/2-3d5/2 in several ion charge states.

2. Germanium experiment

An L-shell absorption measurement of germanium was
performed in the last decade by Bruneau et al. �21� at the
Phébus laser facility of the Centre d’Etudes de Limeil-
Valenton. A germanium plasma in LTE, produced by the

x rays of a laser-irradiated gold hohlraum, was probed by a
short praseodymium �Pr� backlighter source using a point-
projection spectrometer. The transmission spectrum that was
measured in the 8–11 Å range with a resolution equal to
2.5 eV is shown in Fig. 8. The main absorption features that
can be observed are the deep and wide 2p–3d transitions
around 9.7 Å, the 2s-3p at 9 Å, and the 2p-4d in the range
8–8.5 Å. It can be noticed that the spin-orbit interactions are
almost large enough to separate the contributions of the
2p1/2-3d3/2 and 2p3/2-3d5/2 transitions �the third contribution
2p3/2-3d3/2 is negligible�. The plasma conditions were deter-
mined by hydroradiative simulations to be T=58 eV and �
=0.013 g /cm3. The calculations were performed with a DCA
code including orbital relaxation and effects of configuration
interaction between semirelativistic configurations �13�,
which were shown to be crucial in that experiment �20�. The
dashed curve in Fig. 8 corresponds to the usual Gaussian
modeling of the transition arrays, whereas the full line is
obtained with a GG function assuming �=1. The departure
from a Gaussian profile has two main consequences. First,
the calculation using the GG function reveals some struc-

TABLE IV. Parameters in Eq. �20� used to represent a generalized Gaussian function �1���2� on a Gaussian basis.

� a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

1.0 0.442821 0.323849 0.183516 0.042572 0.005586 0.570341 2.094030 0.129275 0.021190 0.001710

1.1 0.452303 0.331216 0.173536 0.037290 0.004622 0.620088 2.007610 0.153826 0.027338 0.002444

1.2 0.459388 0.343772 0.160700 0.031784 0.003714 0.657210 1.898470 0.176443 0.033568 0.003269

1.3 0.463024 0.362177 0.145205 0.026302 0.002898 0.683933 1.778810 0.196913 0.039704 0.004165

1.4 0.461663 0.387640 0.127244 0.021026 0.002188 0.702256 1.656170 0.215111 0.045586 0.005107

1.5 0.452979 0.422090 0.107100 0.016103 0.001586 0.713967 1.535100 0.230950 0.051071 0.006069

1.6 0.433339 0.468627 0.085212 0.011651 0.001091 0.720667 1.418120 0.244329 0.056026 0.007024

1.7 0.396770 0.532468 0.062264 0.007763 0.000693 0.723820 1.306410 0.255050 0.060317 0.007943

1.8 0.332642 0.623153 0.039297 0.004503 0.000386 0.724887 1.200170 0.262712 0.063794 0.008792

1.9 0.219339 0.760741 0.017845 0.001910 0.000158 0.725617 1.098710 0.266538 0.066257 0.009530

2.0 0.000000 1.000000 0.000000 0.000000 0.000000 0.726079 1.000000 0.268193 0.069581 0.011245
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FIG. 7. �Color online� Absorption spectrum of iron measured by
Chenais-Popovics et al. �19�. The DCA calculations are performed
at T=20 eV and �=0.004 g /cm3 assuming either a Gaussian
�dashed line� or a Laplace �full line� distribution for the statistical
UTA broadening, and using the new profile given by Eq. �21�.

IMPACT OF HIGH-ORDER MOMENTS ON THE… PHYSICAL REVIEW E 77, 026708 �2008�

026708-7



tures that were not visible with a Gaussian, and which are
slightly discernible in the experiment. This is clear by ob-
serving the 2p-3d transitions. Second, this increases signifi-
cantly the amplitude of the oscillations of the 2p-4d transi-
tions toward a better agreement with the experimental data.
The fact that the 2p-3d transitions simulated with the
Laplace distribution are slightly more resolved than observed
experimentally may indicate the following: these structures
are better characterized with an intermediate value 1��
�2; the experimental resolution of 2.5 eV has been slightly
underestimated; or this is an effect of the temperature and
density gradients �20�.

3. Sodium-bromine experiment

The Z pinch at Sandia National Laboratory is a very
strong and bright x-ray source that enables one to efficiently
heat and probe samples close to LTE. It was used by Bailey
et al. �22� to measure absorption of CH-tamped NaBr
samples. The main purpose of the experiment was to study
the 2p-3d transitions in bromine ionized into the M shell.
The range of sodium lines is well separated from the range of
bromine lines. Electron temperature and density, obtained
from the analysis of the sodium lines, are, respectively,
50��4� eV and 3��1�1021 cm−3. The spectral resolution is
about 1.5 eV. The spin-orbit interactions are now strong
enough to clearly separate the 2p1/2-3d3/2 and 2p3/2-3d5/2
substructures. Figure 9 displays the experimental spectrum
and the calculated DCA spectra at T=47 eV obtained with a
Gaussian �dashed curve� or a GG ��=1� function �full line�
for the shape of the transition arrays. Some details of the 2p-
3d structures, hidden in the Gaussian description, appear
clearly in the modeling and give a remarkable agreement
with the experiment. This provides not only a better identi-
fication of the experimental features, but also a possible re-
finement of the temperature and density diagnostic.

V. CONCLUSION

The Gaussian function is widely used for the statistical
modeling of complex spectra. However, to our knowledge,
the effects of the departure from normality on photoabsorp-

tion calculations using the UTA approach have never been
investigated. In this paper, it is shown that the Gaussian is
not the most suitable distribution, and may lead to large dis-
crepancies in the tails and the widths of the simulated spec-
tra. This is due to the high-order moments, especially the
fourth one �or kurtosis�, which play a major role in the shape
of the transition arrays.

We suggested, for symmetrical spectra, to function GG
function, with the parameter � constrained by the kurtosis
value. Indeed, it was shown that the GG function gives an
overall better agreement with the exact line-by-line calcula-
tions that cannot be achieved with a Gaussian. Since the
calculation of the fourth-order moment of each transition ar-
ray is very cumbersome �5�, the value of the kurtosis must be
fixed as an average. It is worth mentioning that this was
already the case when using a Gaussian, since this is equiva-
lent to set the kurtosis always equal to 3. In this paper, the
effects of choosing another constant value for the kurtosis
was investigated. It was found that it is appropriate when a
limited spectral range with similar one-electron transitions is
considered. This has been confirmed by the very good agree-
ment obtained for the 2p-3d transitions of some recent ex-
periments with calculations including non-Gaussian distribu-
tions. Moreover, the ability to increase �even excessively� the
value of the kurtosis proved to be a valuable tool for the
identification of the structures in the experiment and a path-
way to a better estimation of the density and temperature
diagnostic. As a general trend, it seems to us that the Laplace
distribution ��=1� plays a privileged role in the modeling of
unresolved transition arrays. The reason for this behavior is
still under investigation.

A numerical fit of the GG functions on a Gaussian basis
was proposed to simplify the implementation of the profile in
the atomic structure codes using the Voigt function. It is in-
teresting to mention that our fit can be used also in the su-
perconfiguration approach �24�, since super transition arrays
�STA� are weighted averages of transition arrays over orbital
populations. Indeed, the choice of a statistical representation
beyond the Gaussian remains an issue even for the STA.
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FIG. 8. �Color online� Same as Fig. 7 for the germanium experi-
ment of Bruneau et al. �21� at T=58 eV and �=0.013 g /cm3.
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FIG. 9. �Color online� Same as Fig. 7 for the NaBr �in the Br
range� experiment of Bailey et al. �22� at T=47 eV and �
=0.04 g /cm3.
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APPENDIX: CORRECTIONS TO THE MOMENTS DUE TO
THE „Eab…

p FACTOR

The exact n-order moment of the distribution A�E� which
accounts for the �Eab�p factor reads

�̃n�A� =

�
ab

Sab�Eab�n+p

�
ab

Sab�Eab�p
=

�n+p�A�
�p�A�

, �A1�

where �n�A� is calculated using Eq. �7�.

The approximation �̃n�A���n�A� �third UTA assump-
tion� can be checked by considering the opacity coefficient
�p=1�. One has for the center of gravity

�̃1 =
�2

�1
= �1�1 + � �

�1
	2� , �A2�

with �2=�2− ��1�2. For the variance, one has

�̃2 = �̃2 − ��̃1�2 =
�3

�1
− ��2

�1
	2

, �A3�

which can be written

�̃2 = �2�1 + � �

�1
	�3 − � �

�1
	2� �A4�

by introducing the skewness factor �3 of the strength-
weighted line energies. Therefore, the approximation is fair
for ���1, which is usually the case, and for near-
symmetrical transition arrays.
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