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Approximating the ground state of fermion systems by multiple determinant states:
Matching pursuit approach
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We present a simple and stable numerical method to approximate the ground state of a quantum many-body
system by multiple determinant states. This method searches these determinant states one by one according to
the matching pursuit algorithm. The first determinant state is identical to that of the Hartree-Fock theory.
Calculations for a two-dimensional Hubbard model serve as a demonstration.
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Searching a single determinant state to approximate a
quantum ground state, namely, the Hartree-Fock (HF) algo-
rithm, plays an important role in the understanding of
nuclear, atomic, and molecular structures. It is a long stand-
ing effort to extend the HF theory into a truly first principle
method by searching multiple determinant states to span a
quantum state, for recent examples, see Refs. [1-5], and ref-
erences therein. The attracting feature is that this approach is
very stable and free from the sign problem. It in principle
can apply to a wide variety of systems. However, first prin-
ciple calculation in terms of multiple determinant states is
still a challenge. In fact, including multiple determinant
states in the variational treatment, which is the common ap-
proach, often results in very complicated formulations. The
computation cost is usually impractically demanding. Some
realistic implementations impose restrictions on the determi-
nant states. For example, the multiconfiguration Hartree-
Fock theory [1], a time-dependent extension to the HF
theory, requires single particle states to be orthogonal with
each others. Here, we use an approach to approximate the
quantum ground state via multiple determinant states.

Here, based on the matching pursuit (MP) algorithm
[6-9], we show a numerical method to search determinant
states to span the ground state of a fermion system. The
determinant states are found one by one from all possible
determinant states. Searching the first determinant state is
identical to the Hartree-Fock theory. A significant feature of
the current method is that several tens of basis determinant
states are enough for reasonable result, and one can reach
high accuracy by searching one or two thousands basis
states. These numbers of basis states are several orders
smaller than that of the stochastic diagonalization algorithm
[5], which searches orthogonal determinant basis states sto-
chastically to span a quantum wave function. In comparison
with other algorithms of search determinant states to span a
fermion ground state, such as the path-integral renormaliza-
tion group (PIRG) algorithm [3,4], the current MP based
method is quite simple and efficient.

The MP algorithm is originally designed for signal pro-
cessing [6]. It is now popular on the engineering community
for coding, analysis, and compression of video and audio
data [7-9]. This algorithm searches some basis states from an
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overcomplete basis set to represent a sequence of data. The
basis states are found one by one. The convergence of the
MP algorithm is proved mathematically. For sufficient redun-
dancy of the overcomplete basis set, the convergence can be
exponential [9]. The MP algorithm is insensible to the di-
mension of the data, and thus promises applications in quan-
tum many-body systems. In Ref. [10], the authors employ
this algorithm to propagate quantum wave functions via split
operator method in the Gaussian wave packet basis. An en-
couraging result is that several tens of Gaussian wave pack-
ets are able to accurately represent quantum wave function of
a 20-dimensional model.

The goal of MP algorithm is to obtain a sparse represen-
tation of a signal. To represent a quantum many-body wave
function ¢, the MP algorithm searches an overcomplete basis
set and finds some basis states ¢y, ¢, ..., d,, such that the
combination of the basis states ¢, =a; ¢+ - + @, ¢, can best
approach the state . Mathematically, that is to require i,
has minimum distance with ¢, i.e., |y—,| reaches mini-
mum. The basis states are found one by one. At the kth step,
the basis state ¢, is obtained such that the combination of the
basis states ¥p=a; ¢+ + o, has minimum distance with
the state i, i.e., |f— | has minimum for all possible choice
of ¢;. Each more step brings the ; closer to the target state
i, i.e., the distance |¢— | decreases with k.

The eigenvalue problem is equivalent to finding minimum
values of the Rayleigh quotient

E = (YH|WK ), (1)

where H is the Hamiltonian and ¢ is the trial wave function.
Calculation of the ground state by the MP algorithm is to
search some basis states to span the ground state. The basis
states are found one by one from an overcomplete basis set.
Each searching process obtains one basis state such that the
combination of this basis state and those already found mini-
mizes the Rayleigh quotient for all possible choices of the
current basis state. This process of finding a new basis state
continues until convergence of E. Without loss of generality,
in the following discussions, we focus on fermion systems,
and use all possible Slater determinant states as an overcom-
plete basis set.

Note that, for fermion systems, the first step is to
find a Slater determinant state that minimizes the Rayleigh
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quotient. This is just the well known Hartree-Fock approxi-
mation. We employ an iterative method to search a new de-
terminant state, including the first one. We denote the single
particle basis states as |i) (i=1,...,n) and g (a;) the opera-
tor for creation (annihilation) of the state |i), i.e., |i)=a’|0)
with |0) the vacuum state. A determinant state can be ex-
pressed as

|y =11 F}lo), )
j=1

where m is particle number and (F;) is creation
(annihilation) operator for single particle state
F;:c‘. 4+ +c,ay. Searching for the determinant state |¢)
is equivalent to finding the coefficients {c;;} (or the operators

)

We use an iterative relaxation procedure to search the
operators {F;r} From an initial trial state in the form of Eq.
(2) which can be chosen randomly, we optimize F7,
F5,...,F} consecutively. Each step of the optimization low-
ers the Rayleigh quotient. This iteration continues until the
convergence of the Rayleigh quotient. Note that the determi-
nant state (2) is a multilinear function of the coefficients {cij}.

For a fixed j, |¢) is just a linear function of cy;, ... ,c,;:
|¢>=2 cij|¢ij>’ (3)
where |q§,j =d|¢)/ dc;;. Thus an approximate ground state

¥, =3.a;¢"+a¢ can be written as
W= E a;¢" + E aciidy;. (4)

This means that we can improve W, and hence update the
operator F’F by finding the lowest eigenstate of the Hamil-
tonian in the subspace spanned by {|¢;), i=1,...,n} and
those previously Py,

Such a relaxation procedure to update the operators F is
the key ingredient of this contribution. Supposing that we
have already obtained k—1 determinant states |¢"), the
searching process for kth determinant state |p*))=|¢) in the
form (2) involves the following iteration.

(1) Randomly generate a determinant state |¢).
(2) For j=1,2,...,m, do the following iteration loop to
update |¢):

(2a) calculate the matrix elements of the Hamiltonian
in the subspace E;k) spanned by {|¢"), ... [¢* D),
|¢1 / >}

(2b) ﬁnd the ground state ‘I” of the Hamiltonian in the
above subspace =k \If =3 ¢(’ +2; Bljg{),,, and

(2¢) update F by setting c;; ,8" (i=1,---,n); then make
F+ |0) orthogonal to other s1ng1e partlcle states {F7|0), I
* ]} and restore F; |0) to unit length by a normalization
procedure.

(3) Check the convergence of the Rayleigh quotient. Re-
peat step (2) until reaching convergence.
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In the case of k=1, the above searching process of finding
the first determinant state is the same as the Hartree-Fock
algorithm. A randomly generated initial trial state needs sev-
eral tens of iteration rounds to converge. Each of the subse-
quent determinant states needs similar rounds of iteration.
Here, the main numeric cost is step (2a) for the calculation of
the matrix elements of the Hamiltonian between basis states.
The step (2b) of finding the lowest eigenstate in the subspace
can be implemented efficiently via an iteration algorithm
[11,12] that needs only a small portion of the computation
cost.

Starting from k=2, the number of iteration to obtain ¢,
depends on the initial choice. If a trial state has large overlap
with the state (H—E;_,)|¥,_,), one may reach convergence
by k_]ust a few rounds of iteration. Here, E;_; and W¥,_,

lad)(’) are the approximate ground state energy and
wave function obtained in the previous step. One can under-
stand this property by considering minimization of the Ray-
leigh quotient in two-dimensional subspace spanned by W, _,;
and the trial state ¢ [5]. From this observation, we perform a
preparing treatment of the trial state before step (2) of the
above iteration procedure.

The preparing treatment of the initial trial state ¢ is to
modify the state ¢ so that it has maximum overlap with
the state (H—E;_,)|¥;_;). This procedure is easy to carry
out by exploiting the fact that state ¢, or the overlap
(p|H-E,_,|¥,_,), is a multilinear function of the coefficients

c;j (or the operators F+ ). We maximize the overlap iteratively
by updating the operators F , (j=1,...,m), consecutively.
Usually, three to five rounds of the 1teration are enough. Af-
ter such a preparing treatment, one usually needs about two
to three iteration rounds of the searching process to minimize
the Rayleigh quotient. Thus, such preparing treatment makes
the overall procedure about five to ten times faster.

As an optional choice to achieve high accuracy, one can
perform backward optimization after reaching convergence
in the above procedure. This procedure updates the already
found basis states one by one (one can also choose to update
some selected basis states [7]). The operation to update a
basis state is the same as searching for a new basis state. It is
numerically expansive to perform the backward optimiza-
tion. In fact, searching the basis states one by one is a kind of
restriction on the determinant states, and the backward opti-
mization means removing such constraints.

At first sight, the current method shares some features
with the path-integral renormalization group (PIRG) algo-
rithm [3,4]. However, based on different strategies, the PIRG
and the current method are two different methods of search-
ing basis determinant states. The PIRG filters out the ground
state by repeatedly expanding e~™|¢) into summation of de-
terminant states and keeping some of the determinant states
as new basis states to update the trial ground state |¢). At
each step, the PIRG must update whole basis states, while
the current method only adds (or updates) one basis state via
relaxation method and exploiting the multilinearity of the
determinant states. Updating basis states in PIRG, i.e.,
choosing some determinant states from those that span the
state e"™|yy), involves diagonalization of many sizable ma-
trices. The diagonalization in subspace is a major numeric
cost of PIRG, while it takes only a small portion of numeric
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TABLE 1. Ground-state energies of some the 4 X4 systems.
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TABLE II. Correlation functions of some the 4 X4 systems.

System U/t CPMC SD MP N Exact Method System U/t p(2,1) Su(m,m)  Sylw,m
10/16 4 -19.5808 -19.58 -19.5775 1874 —19.5808 CPMC 10/16 4 00556  0.731 0.504
14/16 4 -157296 -15.49 -15.7107 1865 —15.7446 MP(800) 10/16 4 00559  0.7315 0.5089
16/16 4 -13.59 -13.5963 1622 -13.6219 Exact 10/16 4 00556  0.73 0.506
10/16 8 —17.4800 -17.40 -17.4625 2000 -17.5104 oL L6/16 Y 00363 3 03946
14/16 8 —11.648 -11.6763 2000 —-11.8688 MP(437) 16/16 4 00478 3490 03888
16/16 8 841565 11850 846889 16/16 4 -0.0475  3.64 0.385
14/16 12 -9.696 -9.79500 2000 -10.0515
16/16 12 -5.95238 1950 -5.99222  CPMC 10/16 8  -0.0462  0.761 0.4403
MP(800) 10/16 8  —0.0493  0.7645 0.4412
Exact 10/16 8  -0.0485 075 0.443

operations in the current method. The current method only
calculates matrix elements of the Hamiltonian between de-
terminant states; this is much easier and more efficient than
expanding e~™|4) (or H|i)) into summation of determinant
states.

We test the above method via the two dimensional fermi-
onic Hubbard mode on a N=L X L square lattice with peri-
odic condition. The Hamiltonian reads

H=-12, (CioCio+ CiCio) + Uy, ngn;| . (5)
(ij) i

Here c;.'(, (cjo) is the creation (annihilation) operator of an
electron with spin o at the jth site and nj(,:cfrgcj(,. U is the
on-site Coulomb energy. The summation {: j) runs over
nearest-neighbor sites.

Table T shows ground-state energies (in the unit of 7) of
some 4 X4 systems. The column “system” indicates the
number of electrons versus the lattice number. N is number
of basis determinant states to span the ground state of the
current method (MP). We list the results of the constrained
path quantum Monte Carlo (CPMC) [13], stochastic diago-
nalization (SD) [5], and exact diagonalization [14—17] for
comparison. The accuracy of our method is almost un-
changed for various interaction strength U and filling num-
ber. This demonstrates the stability of the method. All initial
trial states for searching basis determinant states are ran-
domly generated without any symmetry consideration. We
use the convergence rate €=2|E,—E,_,|/|E,+E,_,| to deter-
mine the number of basis states, where E, and E,_; are
ground-state energies obtained with n and n—1 basis states,
respectively. The searching for basis states stops if € is
smaller than a criteria €, or maximum acceptable number of
basis states is reached. Usually, €,=107> is enough to obtain
quite reasonable result. At this setting, one usually needs
several hundreds of basis states which increases slowly with
U.If = 107°, one needs several thousands of basis states for
convergence. Roughly speaking, the result from about 100
basis states is quite good. The interesting point is that the
beginning several tens of determinant states, usually less
than 60 basis states, make dominant contributions. The first
one, i.e., the HF approximation, contributes the most. The
number of dominant basis states increases slowly with the
interaction strength U. After the dominant basis states, the
contribution from each of the following ones drops rapidly.

Table II shows ground state’s correlation functions of
some 4 X 4 systems. The comparing results of CPMC, quan-
tum Langevin (QL), and exact diagonalization are from Refs.
[13],[17], and [14,17], respectively. Here S,, and S, are mag-
netic and density structure factors [13], respectively; and
p(r) is the one body density matrix. The number in the col-
umn “method” is the number of basis states of our method
(MP). The current method obtains the ground-state energy
and wave function at the same time. Then calculation of the
correlation functions and other related quantities is a trivial
task that simply reads the wave function. In comparison with
the exact result, we see that the wave functions are almost in
the same accuracy as the correspondent energies. Again, the
beginning several tens of basis states make major contribu-
tions. To demonstrate this property, as indicated in the paren-
theses, we use only several hundred basis states to calculate
the correlation functions in Table II. Since our program does
not perform any symmetry treatment, we can only compare
nondegenerated ground states with the exact result. In fact,
the present method can take symmetries into account. After
the searching process of finding basis determinant states, the
resultant wave function is usually a combination of ground
states with different symmetries. One may employ, e.g., the
project technique [18] to filter out the target symmetry. This
may further improve the accuracy.

Table III shows ground-state energies for large system
size that exact diagonalization is impossible. Here N is the
number of basis states of the current method (MP). Our re-

TABLE III. Ground-state energies (in the unit of 7) of some
large systems with U=4t.

system QMC VMC SD MP N

26/6 X6 —42.32 -40.77  -41.0757 400
34/6 X6 -33.30 -32.76 -32.7323 940
36/6 X6 -30.96 -30.384 -30.5166 905
50/8 X8 —-72.80 -67.00 -68.5029 630
54/8 X8 -67.55 -63.8981 560
62/8 X8 -57.70 —55.5255 490
64/8 X8 -55.23 —53.583 472
100/10 X 10 —-86.70 -82.9549 152
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FIG. 1. Relative error E, versus number of basis states n for
various filling numbers and system sizes.

sult is quite close to that of the SD [5], and the variational
quantum Monte-Carlo (VMC) [4]. It is worth noting that the
number of basis states of our method is several orders
smaller than that of the SD algorithm. As a consequence, our
method needs much less memory, and there is no need for
external storage. There are several percent of discrepancy
with the quantum Monte Carlo (QMC) result [19]; this dis-
agreement increases with the system size. This needs further
investigations. The discrepancy between QMC result and the
strict variational result is also found by other authors, see,
e.g., Refs. [3,4,18]. For practical applications, the extrapola-
tion method introduced in PIRG’s implementation is an use-
ful tool to handle the discrepancy with QMC results [3,18].
Similar to the 4 X 4 cases, the beginning several tens of basis
states make dominant contribution. For a fixed interaction
strength U, the contribution from the dominant basis states
increases with the system size. This means that one needs
less basis states for larger system size. On the other hand, the
computation cost to search a basis state scales about qua-
dratically with the system size. The role of preparing step for
searching a basis state is more significant for larger system
size. Without this preparing step, after several tens of domi-
nant basis states, the overlap between a randomly generated
trial state ¢ and the state (H—E;_,)|¥,_,) almost vanishes.
One must substantially increase accuracy requirement for
following steps, which in turn increases numeric cost. The
computation cost scales about quadratically with the number
of basis states.

Figure 1 shows the relative error E,=|(E,—E,)/E,| versus
the number of basis states n, where E, is the ground-state
energy obtained with n basis states, and E|, is the converged
ground-state energy (or exact ground-state energy if avail-
able). This illustrates the overall properties of the method.
The first basis state makes the most important contribution. It
accounts for about 80 to 95 % of the ground-state energy
depending on system size and correlation strength. Roughly
speaking, the mean field effect increases with the system
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size, and decreases with the correlation between electrons of
the system. For system size Ny=4 X 4 with U=12¢, the con-
tribution of the first basis state is about 80%. As the system
size reaching Ny=10X 10 with U=4t, the contribution of the
first basis state is more than 90%. As a consequence, for a
same accuracy requirement, the number of necessary basis
states decreases with system size. The convergence rate is
fast for the beginning several tens of dominant basis states.
These basis states contribute more than 95% to the ground
state for moderate correlation. Then contribution from each
of the following basis states drops rapidly. However, the ma-
jor computation cost for Fig. 1 is to search the remaining
basis states. In practical calculations, one usually needs sev-
eral tens of basis states for a reasonable accuracy.

We perform backward optimization for some cases to im-
prove the accuracy. There is very limited improvement from
the backward optimization if the MP method is converged.
The improvement is usually less than 0.5%. If backward op-
timization is performed before the convergence of MP pro-
cess, the improvement can be more than 1.5% for some
cases.

Our calculation is performed on a single PC [AMD Opter-
on(TM) Processor 248]. Parallel implementation is easy for
the current method. Since the major numeric cost is the com-
putation of the matrix elements of the Hamiltonian during
the search of the basis states, parallel implementation can be
easily realized by requiring each node to handle some matrix
elements of the Hamiltonian.

There are many possible ways to improve the current
method. For example, it is worth exploring other types of
basis states. In the present form, our method is an extension
to the mean-field HF approximation. Mathematically, the re-
dundancy of the overcomplete basis states is crucial for the
convergence speed of the MP algorithm [9]. By increasing
the redundancy of the overcomplete basis states, i.e., enlarg-
ing the searching space, it is possible to speed up the con-
vergence of MP method for searching the basis states. On the
other hand, for particles moving in 3D space, storage of a
single particle state needs sizable memory, one may choose
the basis states for single particles as product of one-
dimensional wave functions. In principle, this method is able
to compute the exited states. With some modifications, it
may be feasible to calculate the low-lying exited states.

In summary, the current method is stable and free from
the sign problem. It can apply to any system that can apply
Hartree-Fock algorithm, and can be regarded as an extension
to the Hartree-Fock algorithm. Several tens of determinant
states are usually enough for meaningful result. This method
may offer an alternative to explore quantum effects of many-
body systems.
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