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Local and nonlocal strain rate fields and vorticity alignment in turbulent flows
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Local and nonlocal contributions to the total strain rate tensor S;; at any point X in a flow are formulated from
an expansion of the vorticity field in a local spherical neighborhood of radius R centered on x. The resulting
exact expression allows the nonlocal (background) strain rate tensor Sfj-(x) to be obtained from S,-j(x). In
turbulent flows, where the vorticity naturally concentrates into relatively compact structures, this allows the
local alignment of vorticity with the most extensional principal axis of the background strain rate tensor to be
evaluated. In the vicinity of any vortical structure, the required radius R and corresponding order n to which the
expansion must be carried are determined by the viscous length scale N\ ,. We demonstrate the convergence to
the background strain rate field with increasing R and n for an equilibrium Burgers vortex, and show that this
resolves the anomalous alignment of vorticity with the intermediate eigenvector of the total strain rate tensor.
We then evaluate the background strain field Sg-(x) in direct numerical simulations of homogeneous isotropic
turbulence where, even for the limited R and n corresponding to the truncated series expansion, the results
show an increase in the expected equilibrium alignment of vorticity with the most extensional principal axis of

the background strain rate tensor.
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I. INTRODUCTION

Vortex stretching is the basic mechanism by which kinetic
energy is transferred from larger to smaller scales in three-
dimensional turbulent flows [1-4]. An understanding of how
vortical structures are stretched by the strain rate field S;;(x)
is thus essential to any description of the energetics of such
flows. Over the last two decades, direct numerical simula-
tions (DNS) [5-7] and experimental studies [8—12] of the
fine-scale structure of turbulence have revealed a preferred
alignment of the vorticity with the intermediate eigenvector
of the strain rate tensor. This result has been widely regarded
as surprising. Indeed the individual components of the invis-
cid vorticity transport equation, in a Lagrangian frame that
remains aligned with the eigenvectors of the strain rate ten-
sor, are simply

le DC()2 D(l)3
p =SHy, p = S3w3, (1)

=510,
Dt

where sy, 5,, and s3 are the eigenvalues of S;;. For incom-
pressible flow, s;+s,+s53=0, and then denoting s;=s,=53
requires s; =0 and s3<0. As a consequence, Eq. (1) would
predict alignment of the vorticity with the eigenvector corre-
sponding to the most extensional principal strain rate s;. Yet
DNS and experimental studies have clearly shown that the
vorticity instead is aligned with the eigenvector correspond-
ing to the intermediate principal strain rate s,.

A key to understanding this result is that, owing to the
competition between strain and diffusion, the vorticity in tur-
bulent flows naturally forms into concentrated vortical struc-
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tures. It has been noted, for example, in Refs. [7,13,14], that
the anomalous alignment of the vorticity with the strain rate
tensor S;;(x) might be explained by separating the local self-
induced strain rate field created by the vortical structures
themselves from the background strain field in which these
structures reside. The total strain rate tensor is thus split into

Sii(x) = SS-(X) + Sﬁ»(X), (2)

where S,’; is the local strain rate induced by a vortical struc-
ture in its neighboring vicinity, and Sﬁ- is the nonlocal back-
ground strain rate induced in the vicinity of the structure by
all the remaining vorticity. The vortical structure would then
be expected to align with the principal axis corresponding to
the most extensional eigenvalue of the background strain rate
tensor Sg-(x).

In the following, we extend this idea and suggest a sys-
tematic expansion of the total strain rate field S;;(x) that al-
lows the background strain rate field Sﬁ-(x) to be extracted.
Our approach is based on an expansion of the vorticity over
a local spherical region of radius R centered at any point X.
This leads to an exact operator that provides direct access to
the background strain rate field. The operator is tested for the
case of a Burgers vortex, where it is shown that the local
self-induced strain field produced by the vortex can be suc-
cessfully removed, and the underlying background strain
field can be increasingly recovered as higher order terms are
retained in the expansion. The anomalous alignment of the
vorticity with respect to the eigenvectors of the total strain
field is shown in that case to follow from a local switching of
the principal strain axes when the vortex becomes suffi-
ciently strong relative to the background strain. Finally, the
operator is applied to obtain initial insights into the back-
ground strain Sf;(x) in DNS of homogeneous isotropic turbu-
lence, and used to compare the vorticity alignment with the
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FIG. 1. (Color online) Decomposition of the vorticity field in the
vicinity of any point x into local and nonlocal parts; the Biot-Savart
integral in Eq. (8) over each part gives the local and nonlocal (back-
ground) contributions to the total strain rate tensor S;; at X.

eigenvectors of the total strain field and of this background
strain field.

II. THE BACKGROUND STRAIN FIELD

The velocity u at any point x induced by the vorticity field
w(x) is given by the Biot-Savart integral

!

u(x) = —f w(x’) >< — X, (3)

-X |g
where the integration domain A is taken to be infinite or
periodic. In index notation Eq. (3) becomes

u(x) = %f € (X’ )%d x’, (4)
TJA

where €, is the cyclic permutation tensor. The derivative
with respect to x; gives the velocity gradient tensor

d 1 5 ror;
—u(x) = _f ena(x’)| = 3%[ &x', (5)
x; 4 )\ r r
where r=|[x—x'| and r,,=x,,—x,,. The strain rate tensor S;; at
x is the symmetric part of the velocity gradient, namely,

1 du; du;
Si(x) = 5<5 + gf) (6)

J
From Egs. (5) and (6), S;(x) can be expressed [15] as an
integral over the vorticity ﬁeld as
3 Tk " 3«
S;(x) = . . (€ir+ ”ifjkz)ﬁwl(x )d’x" . (7)
As shown in Fig. 1, the total strain rate in Eq. (7) is separated
into the local contribution induced by the vorticity within a

spherical region of radius R centered on the point x and the
remaining nonlocal (background) contribution induced by all
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the vorticity outside this spherical region. The strain rate
tensor in Eq. (7) thus becomes

3 3
S0==| [l +=| [
]
L87T r<R 81 r>R ,

L
\'4 4 VT

zsf.j.(x) ES?J-(X) (8)

where [---] denotes the integrand in Eq. (7). The nonlocal
background strain tensor at x is then

S5(x) = 85(%) = SH(x). )

The total strain tensor S;;(x) in Eq. (9) is readily evaluated
via Eq. (6) from derlvatlves of the velocity field at point x.
Thus all that is required to obtain the background (nonlocal)
strain rate tensor S (x) via Eq. (9) is an evaluation of the
local strain integral S 7(x) in Eq. (8) produced by the vorticity
field w,(x') within r<R in Fig. 1.

A. Evaluating the background strain rate tensor

The vorticity field within the sphere of radius R can be
represented by its Taylor expansion about the center point x
as

ﬂwl
wl(x,)|rSR = wl(x) + (xrln —Xm) T
Xy | x
1 , , (92(,01
+ —(x,, —x,)(x, —x
(=) —x) S|
(10)
Recalling that x,,—x, =r,, and using a;,b;,,, ¢, ... to abbre-

viate the vorticity and its derivatives at x, we can write Eq.
(10) as

1
wl(X,)|r$REal_rmblm+Ermrnclmn_ (11)

Substituting Eq. (11) in the S§ integral in Eq. (8) and chang-
ing the integration variable to r=x-x’, the strain tensor at x
produced by the vorticity in R is

3 r
R(g) — k
Sij(x) = 8WJ§R (€T + ri€jar) 5

I'm"'n
><|:al_r‘mblm+_Clmn_ i|d’;r (12)

2

This integral can be solved in spherical coordinates centered
on Xx, with r=rsinfcos¢, r,=rsinfsin¢, and
ry=rcos 6 for re[0,R], 6[0,7], and ¢ €[0,27). To in-
tegrate Eq. (12) note that

I s 477 R
I —LPr=— | —dr,
r<R 3 0 r

f rkrr O’

(13a)

(13b)
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TR i n 21 )
f —; r= ER (5mn5jk + 6mj§kn + 5mk6]n)

(13¢)

The resulting local strain rate tensor at X is then

2

R
S (X) clmn(etjlamn + Ejl15 + e_mlé i+ Ejt115 i+ etmlaj

8,) + O(RY), (14)

where the contribution from the ¢; term in Eq. (12) is zero
since €;;;=—¢;;. For the same reason the first two terms in Eq.

il
(14) also cancel, giving
2
SR(X) Clmn(eml5 i+ 6]7!1517!! + 611111611] + E/ml i) + 0(R4)
(15)

Recalling that c;,,,= ¢} = & w,;/ dx,,dx,, and contracting with
the & and € in Eq. (15), gives

R? Jw d dw,
SR = _< lm_l)+_( m ):|+0R4
( )= 20{ lé’xm ox; i lé’xm (&Y.

(16)
Note that €;,,, 0w,/ dx,,=(V X w); and
VXw=VX(VXu)=V(V-u)-Vu, (17)

so for an incompressible flow (V-u=0) the local strain rate
tensor at X becomes

R>__[ou;, o
S B[

ox i ox;

) +O(RY). (18)

1

From Eq. (9), with Sg- from Eq. (18) we obtain the back-
ground strain tensor as

SH(x) = S;;(x) + —V2s j(X) + O(RY). (19)

The remaining terms in Eq. (19) result from the higher-order
terms in Eq. (11). The contributions from each of these can
be evaluated in an analogous manner, giving

4

R
SEx)=|1+ —V2 +—VV2 4
J 280

3R2n—2
+ VAl e [85(x), (20
n-2@e-n"" i(x), (20)
where the terms shown in Eq. (20) correspond to
n=1,2,.... The final result in Eq. (20) is an operator that

extracts the nonlocal background strain rate tensor Sg» at any
point x from the total strain rate tensor S;;. For the Taylor
expansion in Eq. (10), this operator involves Laplacians of
the total strain rate field S;;(x).

B. Practical implementation

When using Eq. (20) to examine the local alignment of
any concentrated vortical structure with the principal axes of
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FIG. 2. (Color online) Equilibrium Burgers vortex with circula-
tion I' and strain-limited viscous diffusion length scale \,, in a uni-
form, irrotational, axisymmetric background strain rate field Sg-(x).

the background strain rate field Sg(x) in which it resides, the
radius R must be taken sufficiently large that the spherical
region |x’—x| <R encloses essentially all the vorticity asso-
ciated with the structure, so that its local induced strain rate
field is fully accounted for. Generally, as R increases it is
necessary in Eq. (20) to retain terms of increasingly higher-
order n to maintain a sufficient representation of w(x’) over
the spherical region. Thus for any vortical structure having a
characteristic gradient length scale \ ,, it can be expected that
R must be of the order of \,, and n will then need to be
sufficiently large to adequately represent the vorticity field
within this sphere. However, since the local gradient length
scale in the vorticity field in a turbulent flow is determined
by an equilibrium between strain and diffusion, the vorticity
field over the length scale A, will be relatively smooth, and
thus relatively low values of n may suffice to give a usable
representation of w(x’). This is examined in the following
section.

III. TEST CASE: BURGERS VORTEX

The equilibrium Burgers vortex [1,3,9,16] is formed from
vorticity in a fluid with viscosity v by a spatially uniform,
irrotational, axisymmetric background strain rate field S that
has a single extensional principal strain rate S, directed
along the z axis, as shown in Fig. 2. This simple flow, often
regarded as an idealized model of the most concentrated vor-
tical structures in turbulent flows, provides a test case for the
result in Eq. (20). The combined strain rate field S;;(x) pro-
duced by the vortex and the background strain flow should,
when applied in Eq. (20), produce the underlying back-
ground strain field (S2.,5%,,5%)= ( , é,l)SzZ at all x when
R — 0 and all orders n are retalned For finite R and n, the
resulting Sf;(x) will reflect the convergence properties of Eq.
(20).

A. Strain rate tensor

The equilibrium Burgers vortex aligned with the exten-
sional principal axis of the background strain rate field has a
vorticity field
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o(x)=o0.(ri= —)\— exp(- ar)z, (21)
where I' is the circulation, X, is the viscous length scale that
characterizes the diameter of the vortex, =r/\, is the ra-
dial similarity coordinate, and the constant « reflects the cho-
sen definition of A,. Following [9], N, is taken as the full
width of the Vortlcal structure at Wthh w, has decreased to
one-fifth of its peak value, for which a= 4 1n 5. When diffu-
sion of the vorticity is in equilibrium [9] with the back-
ground strain, then

.
N, = \'8a<—) . (22)
SZZ

The combined velocity field u(x) produced by the vortex and
the irrotational background strain is given by the cylindrical
components

S.
ur(r’ 0,Z) =- ?Zr’ (233)
uy(r,0,z) = Py an)], (23b)
u(r,6,2)=S_z. (23c)

The combined strain rate tensor for such a Burgers vortex
is thus

- Szz/2 1;6 0
Sij(X) = 1;0 - SZZ/Z 0 5 (24)
0 0 S

2z

where S?, is the shear strain rate induced by the vortex, given
by

r
S(x) = [<a+ lz)exp(— an’) - } (25)
77)\,, 7 7

From Eq. (24), S;;(x) has one extensional principal strain rate
equal to S, along the Z axis, with the remaining two princi-
pal strain axes lying in the r-6 plane and corresponding to
the principal strain rates

s=—=S.. = |s). (26)

As long as the largest s in Eq. (26) is smaller than S
most extensional principal strain rate s; of §;; will be SZZ,

the corresponding principal strain axis w111 point in the Z
direction. The vorticity is then aligned with the most exten-
sional eigenvector of §;;. This remains the case until the vor-
tex becomes sufficiently strong relative to the background
strain rate that s>S.., namely,

220

pead

ISVl = (27)

2 ZZ’

which from Eq. (25) occurs wherever
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FIG. 3. (Color online) Similarity profiles of w_(7) and S, () for
any equilibrium Burgers vortex; wherever —S,, exceeds the hori-
zontal line determined by the relative vortex strength parameter ()
in Eq. (29) the most extensional principal axis of the total strain rate
S;;(x) switches from the Z axis to lie in the -6 plane.

1 377(m2

-1
(IS

1
a+ — |exp(— a
( 772> p(- ar) - -
At any 7 for which Eq. (28) is satisfied, the most extensional
principal axis of the combined strain rate tensor S;;(x) will
switch from the Z direction to instead lie in the r-6 plane.
Since the vorticity vector everywhere points in the Z direc-
tion, wherever Eq. (28) is satisfied the principal axis of S;;
that is aligned with the vorticity will switch from the most
extensional eigenvector to the intermediate eigenvector. This
alignment switching is purely a result of the induced strain
field S7, (x) locally dominating the background strain field

SH(x).
The dimensionless vortex strength parameter
T/\;
0= |:_V:| — T Bmax (29)
SZZ a SZZ

on the right-hand side of Eq. (28) characterizes the relative
strength of the background strain and the induced strain from
the vortical structure, where w,,,, is obtained from Eq. (21)
at »=0. For

Q< Q" ~245, (30)

the background strain rate S,, is everywhere larger than the
largest s in Eq. (26), and thus no alignment switching occurs
at any 7. For Q>0% alignment switching will occur over
the limited range of % values that satisfy Eq. (28). With
increasing values of (), more of the vorticity field will be
aligned with the intermediate principal axis of the combined
strain rate tensor, even though all of the vorticity field re-
mains aligned with the most extensional principal axis of the
background strain rate tensor.

Figure 3 shows the vorticity w, and the induced shear
strain component —S?, as a function of 7. The horizontal
dashed lines correspond to three different values of ), and
indicate the range of 7 values where the alignment switching
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FIG. 4. (Color online) Accuracy of the Taylor expansion for the
local vorticity in Eq. (10) for a Burgers vortex, showing results for
sixth-order approximation. In each panel, the solid curve shows
actual vorticity profile, and the dashed curve gives approximated
vorticity from derivatives at the location marked by the square.

in Eq. (28) occurs for each (). Wherever —S, is above the
dashed line for a given (), the vorticity will be aligned with
the local intermediate principal axis of the combined strain
rate field.

In principle, regardless of the vortex strength parameter
), at any 7 the result in Eq. (20) can reveal the alignment of
the vorticity with the most extensional principal axis of the
background strain field Sg. However, this requires R to be
sufficiently large that a sphere with diameter 2R, centered at
the largest #» for which —S?, in Fig. 3 is still above the hori-
zontal dashed line, will enclose essentially all of the vorticity
associated with the vortical structure. As () increases, the
required R will increase accordingly as dictated by Eq. (28),
and as R is increased the required n in Eq. (20) also in-
creases.

Irrespective of the value of (), when Eq. (20) is applied to
the combined strain rate field S;;(x) in Eqs. (24) and (25), if

R=(R/\,)— and all orders n are retained then the result-
ing Sg-(x) should recover the background strain field, namely

for all x, and the vorticity should show alignment with the
most extensional principal axis of Sﬁ. For finite R/\, and
various orders n, the convergence of Sg from Eq. (20) to this
background strain field is examined below.

B. Convergence of the background strain

The accuracy with which Eq. (20) can recover the back-
ground strain field Sg(x) that acts on a concentrated vortical
structure depends on how well the expansion in Eq. (10)
represents the vorticity field within the local spherical neigh-
borhood R. Figure 4 shows the results of a local sixth-order
Taylor series approximation for the vorticity in Eq. (21) at
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various radial locations across the Burgers vortex. In each
panel, the square marks the location x at which the sphere is
centered, and the dashed curve shows the resulting Taylor
series approximation for the vorticity. On the axis of the
vortex, the approximated vorticity field correctly accounts
for most of the circulation in the vortex, and thus the induced
strain field from the vortex will be reasonably approximated.
Off the axis, the approximation becomes increasingly poorer,
but the 1/ decrease in the Biot-Savart kernel in Eq. (3)
nevertheless renders it adequate to account for most of the
vortex-induced strain rate field. At the largest radial location,
corresponding to the bottom right panel of Fig. 4, the ap-
proximation becomes relatively poor, however at large # val-
ues the vortex-induced strain is sufficiently small that it is
unlikely to lead to alignment switching for typical () values.

Figure 5 shows the shear component S%(7) of the back-
ground strain rate tensor obtained via Eq. (20) for various n

and R as a function of 7. In each panel, the solid top curve
shows the total strain rate —S,4(7) and the other curves show
the background strain rate —S%(7) from Eq. (20) for the

(nE) combinations listed. The horizontal dashed line corre-
sponding to =(3/ 2)(2>|< reflects the relative vortex strength,
and shows the range of » where the anomalous alignment
switching occurs due to the vortex-induced strain field.
Wherever the —S%, curves are above this line, the vorticity
there will be aligned with the intermediate principal axis of
the combined strain rate tensor S;;. Figure 5(a) examines the

effect of increasing the radius R of the spherical region for

fixed order n=6. It is apparent that with increasing R the
resulting —Sf(, converges toward the correct background
strain field in Eq. (31). For the value of () shown, it can be
seen that for R=0.5\, the resulting —Sfa is everywhere be-
low the horizontal dashed line, indicating that the vorticity
everywhere is aligned with the most extensional principal
axis of the resulting background strain rate tensor Sﬁ(x) from
Eq. (20). '

In Fig. 5(b) similar results are shown for the effect of
increasing the order n of the expansion for the vorticity field

for fixed R=0.65. It is apparent that the effect of n is some-

what smaller than for R in Fig. 5(a). Moreover, the results
suggest that the series in Eq. (20) alternates with increasing

order n. For this () and ﬁ, even n=3 is seen to be sufficient
to remove most of the vortex-induced shear strain, and thus
reduce —Sfe(x) below the horizontal dashed line. For these
parameters, the S%, field from Eq. (20) would thus reveal
alignment of the vorticity with the most extensional principal
axis of the background strain tensor throughout the entire
field.

Figure 5(c) shows the combined effects of increasing both

R and n, in accordance with the expectation that larger R
should require a higher order n to adequately represent the
vorticity field within the spherical region. The shear strain
rate field shows convergence to the correct background strain
field in Eq. (31). The convergence of the shear strain rate
Sfe(x) to zero in the vicinity of the vortex core is of particu-
lar importance. The systematic reduction in the peak remain-
ing shear stress indicates that, even for increasingly stronger
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FIG. 5. (Color online) Convergence of background strain rate
field Sg»(x) for a Burgers vortex, obtained from total strain rate field
S;;(x) using Eq. (20) for various (n,R) combinations, where R
=R/\,. Shown are effects of increasing R for fixed n=6 (top),
increasing n for fixed R=0.65 (middle), and increasing n and R

simultaneously (bottom). The dashed horizontal lines follow from
Eqgs. (27) and (29).

vortices or increasingly weaker background strain fields as
measured by (), the resulting Sfo(x) from Eq. (20) will reveal
the alignment of all the vorticity in such a structure with the
most extensional principal strain axis of the background
strain field.

IV. VORTICITY ALIGNMENT IN TURBULENT FLOWS

Having seen in the previous section how Eq. (20) is able
to reveal the expected alignment of vortical structures with
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FIG. 6. (Color online) Instantaneous snapshot of total strain rate
component field S;»(x) in a two-dimensional slice through a highly
resolved three-dimensional (2048%) DNS of homogeneous, isotropic
turbulence [17,18]. Axes are given both in grid coordinates (i
=1,...,2048) and normalized by the Kolmogorov length 7. The
box indicates the region in which background strain rate field Sg.(x)
is computed in Fig. 7.

the most extensional eigenvector of the background strain
rate in which they reside, in this section we apply it to obtain
insights into the vorticity alignment in turbulent flows. In
particular, we examine the alignment at every point x of the
vorticity w relative to the eigenvectors of the total strain rate
tensor field S;;(x) and those of the background strain field
data Sg.(x). This analysis uses data from a highly resolved,
three-dimensional, direct numerical simulation (DNS) of sta-
tistically stationary, forced, homogeneous, isotropic turbu-
lence [17,18]. The simulations correspond to a periodic cube
with sides of length 27 resolved by 2048° grid points. The
Taylor microscale Reynolds number R, is 107.

The DNS data were generated by a pseudospectral
method with a spectral resolution that exceeds the standard
value by a factor of 8. As a result, the highest wave number
corresponds to k,,,.7x=10, and the Kolmogorov length scale
nx=v"4/{€)""* is resolved with three grid spacings. This su-
perfine resolution makes it possible to apply the result in Eq.
(20) for relatively high orders n, which require accurate
evaluation of high-order derivatives of the DNS data. In
Schumacher et al. [17] it was demonstrated that derivatives
up to order six are statistically converged. More details on
the numerical simulations are given in Refs. [17,18].

Figure 6 gives a representative sample of the DNS data,
where the instantaneous shear component S;, of the total
strain rate tensor field S;;(x) is shown in a typical two-
dimensional intersection through the 2048* cube. The data
can be seen to span nearly 7007 in each direction. The 512>
box at the lower left of Fig. 6 is used here to obtain initial
results for alignment of the vorticity with the eigenvectors of
the background strain rate tensor.

The background strain rate tensor field Sg(x) is first ex-
tracted via Eq. (20) from S;;(x) for n=3 and various (R/ 7).
Higher-order evaluation of the background strain rate is not
feasible, as the results in Ref. [17] show that only spatial
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FIG. 7. (Color online) Total strain rate component field S;,(x)
(a), with corresponding results from Eq. (20) for nonlocal (back-
ground) field S?z(x) (left) and local field Slfz(x) (right) for (R/ ng)
=2.5[(b) and (¢)], (R/ 5g)=3.5 [(d) and (e)], and (R/ ng)=4.5 [(f)
and (g)], all with n=3.

derivatives of the velocity field up to order six can be accu-
rately obtained from these high-resolution DNS data. For n
=4, the expansion in Eq. (20) involves seventh-order deriva-
tives of the velocity field, and the background strain evalua-
tion becomes limited due to the grid resolution. The results
are shown and compared in Fig. 7, where the shear compo-
nent S, of the full strain rate tensor is shown at the top, and
the corresponding nonlocal (background) component S}, and
local component S’fz are shown, respectively, in the left and
right columns for (R/ 7g)=2.5 (top row), 3.5 (middle row),
and 4.5 (bottom row). Consistent with the results from the
Burgers vortex in Fig. 5, as (R/ 7k) increases, the magnitude
of the extracted local strain rate in the right column in-
creases. However, for the largest (R/ ) =4.5 case, n=3 ap-
pears to be too small to adequately represent the local vor-
ticity field. This leads to truncation errors which are
manifested as strong ripples in the background and local
strain fields [see panels (f) and (g)].

The results in Fig. 7 thus indicate that radii up to
(R/mg)=3.5 in combination with n=3 can be used to assess
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FIG. 8. (Color online) Probability densities of alignment cosines
for the vorticity with the eigenvectors of the strain rate tensor,
showing results for S;; (a) and for Sg using (R/ng)=2.5 with n=3

(b) and (R/ 5g)=3.5 with n=3 (c).

alignment of the vorticity vector with the eigenvectors of the
background strain rate field. Figure 8 shows the probability
densities of the alignment cosines for the vorticity vector
with the total strain rate tensor and with the background
strain rate tensors from Eq. (20). We compare S;; [Fig. 8(a)]
with Sg- for (R/mg)=2.5, n=3 [Fig. 8(b)], and Sﬁ for
(R/mg)=3.5, n=3 [Fig. 8(c)]. The results for alignment with
the total strain rate tensor are essentially identical to the
anomalous alignment seen in numerous other DNS studies
[5-7] and experimental studies [8—12], which show the vor-
ticity to be predominantly aligned with the eigenvector cor-
responding to the intermediate principal strain rate. However,
the results for the Burgers vortex in the previous section
show that such anomalous alignment with the eigenvectors
of the total strain rate tensor is expected when the local vor-
tex strength parameter () is sufficiently large to cause align-
ment switching.

By comparison, the results in Figs. 8(b) and 8(c) obtained
for the alignment cosines of the vorticity vector with the
background strain rate tensor S?j from Eq. (20) show a sig-
nificant decrease in alignment with the intermediate eigen-
vector, and an increase in alignment with the most exten-
sional eigenvector. While data in panel (b) show only a slight
change compared to those in (a), the results in panel (c)
demonstrate that our decomposition can indeed diminish the
anomalous alignment significantly. This is consistent with
the results for the Burgers vortex in the previous section, and
with the hypothesis that the alignment switching mechanism
due to the local contribution Sfj- to the total strain rate tensor
is the primary reason for the anomalous alignment seen in
earlier studies. It is also consistent with the expected equi-
librium alignment from Eq. (1). While a more detailed study
is needed to examine possible nonequilibrium contributions
to the alignment distributions associated with eigenvector ro-
tations of the background strain field, as well as to defini-
tively determine the R and n convergence of the background
strain rate tensor in Fig. 7, the present findings support both
the validity of the result in Eq. (20) for extracting the back-
ground strain rate tensor field Sg(x) from the total strain rate
tensor field S;;(x), and the hypothesis that at least much of
the anomalous alignment of vorticity in turbulent flows is
due to the differences between the total and background
strain rate tensors and the resulting alignment switching
noted herein.
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V. CONCLUDING REMARKS

We have developed a systematic and exact result in Eq.
(20) that allows the local and nonlocal (background) contri-
butions to the total strain rate tensor §;; at any point X in a
flow to be disentangled. The approach is based on a series
expansion of the vorticity field in a local spherical neighbor-
hood of radius R centered at the point x. This allows the
background strain rate tensor field Sg-(x) to be determined via
a series of increasingly higher-order Laplacians applied to
the total strain rate tensor field S;;(x). For the Burgers vortex,
with increasing radius R relative to the local gradient length
scale A, and with increasing order n, we demonstrated con-
vergence of the resulting background strain tensor field to its
theoretical form. We also showed that even with limited R
and n values, the local contribution to the total strain rate
tensor field can be sufficiently removed to eliminate the
anomalous alignment switching throughout the flow field.
This conclusion is expected to also apply to the more realis-
tic case of a nonuniformly stretched vortex where S,.=f(z)
[16,19-21].

Consistent with the results for the Burgers vortex, when
Eq. (20) was used to determine the background strain rate
tensor field Sﬁ(x) in highly resolved DNS data for a turbulent
flow, the anomalous alignment seen in previous DNS and
experimental studies was substantially reduced. We conclude
that Eq. (20) allows the local background strain rate tensor to
be determined in any flow. Furthermore, we postulate that
the vorticity vector field in turbulent flows will show a sub-
stantially preferred alignment with the most extensional prin-
cipal axis of the background strain rate field, and that at least
much of the anomalous alignment found in previous studies
is simply a reflection of the alignment switching mechanism
analyzed in Sec. III and conjectured by numerous previous
investigators.

Lastly, the result in Eq. (20) is based on a Taylor series
expansion of the vorticity within a spherical neighborhood of
radius R around any point X. Such an expansion inherently
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involves derivatives of the total strain rate tensor field, which
can lead to potential numerical limitations. If larger R and
correspondingly higher orders n are needed to obtain accu-
rate evaluations of background strain rate fields, then other-
wise identical approaches based on alternative expansions
may be numerically advantageous. For instance, an expan-
sion in terms of orthonormal basis functions allows the co-
efficients to be expressed as integrals over the vorticity field
within <R, rather than as derivatives evaluated at the cen-
ter point x. (For example, wavelets have been used to test
alignment between the strain rate eigenvectors and the vor-
ticity gradient in two-dimensional turbulence [22].) This
would allow a result analogous to Eq. (20) that can be car-
ried to higher orders with less sensitivity to discretization
error. The key conclusion, however, of the present study is
that it is possible to evaluate the background strain tensor
following the general procedure developed herein, and that
when such methods are applied to assess the background
strain rate fields in turbulent flows they reveal a substantial
increase in the expected alignment of the vorticity vector
with the most extensional principal axis of the background
strain rate field.
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