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One aim of synthetic biology is to exert systematic control over cellular behavior, either for medical
purposes or to “program” microorganisms. An engineering approach to the design of biological controllers
demands a quantitative understanding of the dynamics of both the system to be controlled and the controllers
themselves. Here we focus on a widely used method of exerting control in bacterial cells: plasmid vectors
bearing gene-promoter pairs. We study two variants of the simplest such element, an unregulated promoter
constitutively expressing its gene, against the varying genomic background of four Escherichia coli cell strains.
Absolute protein numbers and rates of expression vary with both cell strain and plasmid type, as does the
variability of expression across the population. Total variability is most strongly coupled to the cell division
process, and after cell size is scaled away, plasmid copy number regulation emerges as a significant effect. We
present simple models that capture the main features of the system behavior. Our results confirm that complex
interactions between plasmids and their hosts can have significant effects on both expression and variability,

even in deliberately simplified systems.
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I. INTRODUCTION

Synthetic biology has as one of its aims the development
of a discipline of biological engineering, allowing systematic
control to be exerted over living cells [1-4]. This ability
would have profound implications, allowing medical inter-
ventions to be carried out at the cellular level. Cellular engi-
neers dream of applications such as in-cell cancer fighters
that detect oncogenesis and shunt the cell into apoptosis be-
fore the disease can start.

The fundamental requirement for the rational design of
control systems is an understanding of the dynamics of the
system to be controlled (the “plant”), the dynamics of the
control mechanism (the “controller”), and the nature of the
coupling between the two. Control system design aims to
construct controllers that alter the dynamics of the plant in
desired ways. Inside cells, the system to be controlled is a
complex biochemical environment whose dynamics arise
from the kinetics of reactions between species (e.g., DNA,
mRNA, proteins). To exert control in this context requires a
controller able to receive inputs in that biochemical lan-
guage, and produce suitable outputs.

Extensive work on building synthetic controllers inside
cells has already been done: oscillators [5], bistable toggle
switches [6], feedback networks [7,8], logical operators
[4,9,10], and cell-to-cell communication systems for pattern
formation [11] and intercellular coordination [12,13] have all
been implemented, among others [1-3,14-17]. Working in
single-celled organisms has allowed researchers to explore a
simplified environment while developing the background un-
derstanding necessary for future biological engineering
projects. Unicellular organisms are also of interest in their
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own right, as a platform for the creation of robust, self-
replicating, microscopic “machines” programmed to carry
out human-designed tasks [1-4].

Most of the above-mentioned controllers have been
implemented using plasmids (DNA loops that replicate in
parallel with the host geneome) as the mechanism for insert-
ing designed regulatory networks into cells, and the behavior
of gene expression systems carried on such plasmids is the
focus of our study. Understanding plant-controller dynamics
in cells has largely taken the form of formulating mathemati-
cal models based on biochemical reaction schemes. Issues to
be addressed in such models include the following.

(1) The rates and rate constants associated with the reac-
tions representing biological processes such as transcription,
translation, and regulatory binding.

(2) The source and nature of cell-to-cell variability in
gene expression. Biochemical reactions may take place in
low-rate regimes where the fluctuations arising from the dis-
crete nature of molecular interactions are not averaged away;
cells may also vary in their individual biochemical composi-
tion, causing cell-to-cell differences in gene expression.

(3) The effect of the plant (the host’s metabolism and
genomic content) on the behavior of the controller [the
gene(s) being expressed from a plasmid].

(4) The ability of the controller to generate consistent out-
puts.

Our study addresses these issues using a deliberately sim-
plified system, the simplest we could construct: an unregu-
lated promoter (Pyo.;) directly expressing a reporter pro-
tein [enhanced green fluorescent protein (EGFP)][18] from a
multiple-copy plasmid vector. Although the longer-term aim
is to set the stage for feedback and regulatory control, here
we address this simplified system and examine its behavior
in detail. We consider the following.

(1) Two different types of plasmid vector. Our medium-
copy plasmid incorporates feedback control of its own repli-
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cation, limiting its copy number and narrowing the copy
number variability. The high-copy plasmid lacks this nega-
tive feedback, increasing the average copy number but also
yielding results consistent with an increased intercell vari-
ability in plasmid number.

(2) Four strains of Escherichia coli, each representing a
variant on the consensus genome; we insert the two plasmid
types into each strain.

In each of these eight cases, we examine exponentially
growing, asynchronous populations of E. coli cells. We use
fluorimetry, calibrated against solutions of known EGFP con-
centration, to determine the average number of proteins per
cell, and the average rate of protein production. Quantifica-
tion of the absolute protein numbers present in cells has been
surprisingly neglected in the literature, though there are sev-
eral recent examples [19-22] in which the question of pro-
tein number quantification is carefully addressed; we view
our work as complementary to the alternative approaches
pursued in this earlier work. The average protein numbers
and production rates we obtain vary substantially across our
four strains, pointing out that descriptions of “the behavior of
plasmid X are not sufficient; we must consider “the behav-
ior of plasmid X in genotype Y.” Qualitative changes in the
behavior of synthetic systems as a function of cell strain
have been noted previously [9]; here, we consider the phe-
nomenon quantitatively and in further detail, though in a
simpler situation.

We employ flow cytometry and fluorescence microscopy
to measure the distribution of protein expression levels
across populations. The results from the two methods agree
closely, and show that the fluorescence intensity distributions
have very similar shapes, within each cell strain, for the
high- and medium-copy plasmid types. Variation in our sys-
tem may be partitioned into two categories, following the
consensus nomenclature [20,23-40]: intrinsic noise repre-
sents variability arising from fluctuations in the process of
gene expression itself (including, for example, RNA poly-
merase binding, transcription of messenger RNA, and trans-
lation of mRNA into proteins); extrinsic noise represents all
other effects causing cell-to-cell variations in gene expres-
sion levels (including cell size, plasmid copy number, and
the availability of enzymes such as RNA polymerase and
ribosomes). Our quantification of mean protein numbers en-
ables us to formulate simple stochastic models (discussed
below) which predict that the amount of intrinsic noise
present should be minimal, suggesting that extrinsic noise
dominates in our system.

Moving on to investigate the nature of this extrinsic noise,
we find that the dominant contribution arises from progress
of the cell through its cell division cycle; this matches a
result previously reported in yeast [40]. Growth and division
creates intercell variability, and size effects must be scaled
away before other effects on variability may be observed.
Scaling intensities by image sizes from microscopy greatly
reduces the variability, and reveals a strong pattern: within
each cell strain; the size-scaled variability of the high-copy
plasmid is substantially greater than that of the medium-copy
plasmid. The medium-copy plasmid also shows very consis-
tent size-scaled variability across all strains, while the high-
copy plasmid varies much more substantially from strain to
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strain. These results reinforce the extrinsic noise origin of the
observed variability, and also highlight a secondary source of
variations: the plasmid copy number differences between
cells. Although we do not have a direct measure of single-
cell plasmid copy numbers, the results suggest that the
medium-copy plasmid, with its negative feedback regulation,
has substantially lower intercell variability in copy number,
while the unregulated high-copy plasmid varies more signifi-
cantly from cell to cell.

The study offers a detailed characterization of a system
with surprising complexity despite its deliberately simplified
construction. The results underscore the importance of se-
lecting an appropriate cell strain and plasmid type when con-
structing networks in bacteria, offer quantitative values to be
used in constructing models of the systems behavior, and
confirm that highly consistent behavior can be obtained. We
view this as a step toward the detailed understanding of cel-
lular dynamics required to implement the designs envisioned
in synthetic biology.

II. RESULTS AND DISCUSSION
A. Plasmid construction and cell strains

We have studied gene expression from an unregulated
promoter system, directly expressing the fluorescent protein
EGFP under the control of the promoter Py ., [41]. This
promoter is repressed by the TetR protein, which is not
present in the E. coli strains and plasmids employed, and
thus the promoter provides access to the simplest case in
gene expression: unregulated (constitutive) expression. With
this promoter-gene system we constructed two different plas-
mids, high copy (from the pEGFP vector backbone) and me-
dium copy (from the pBR322 vector backbone); full plasmid
details are provided below in Table III and Fig. 7. The
medium-copy plasmid incorporates feedback control of its
own replication (the PMB origin of replication with the rop
gene present), while this feedback is disrupted in the high-
copy version (the pUC origin of replication, with a mutation
in the rop gene as discussed further in Sec. ITE, below),
yielding average copy numbers per cell reported to be in the
ranges of 40-60 [42-44] and 400-500 [43,45], respectively.

The two plasmid versions were incorporated into four dif-
ferent cell strains of the bacterium Escherichia coli: DHS a,
Top10, B/r, and BL21*. Each of these strains incorporates a
set of alterations to the consensus wild-type E. coli genome,
and full details of the genomic changes are listed in Table III.
The use of multiple cell strains allows us to test the same
plasmid-borne gene expression system against varying ge-
nomic backgrounds.

Without access to quantitative polymerase chain reaction
(gPCR) data, reliable measurements of the plasmid copy
numbers in our specific strain-plasmid combinations have
not been achievable. We have obtained rough estimates of
average numbers by densitometry: quantifying the brightness
of stained plasmid DNA in gels and comparing the intensity
to DNA ladder bands with known masses of DNA present
(see Sec. IV). Using this technique, we have obtained the
following values (with errors of plus or minus one standard
deviation): DH5a (high, 600 140; medium, 80 = 60);
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TABLE I. Average protein expression levels and rates. Protein numbers were determined by calibrated
fluorimetry, and proteins produced per cell division deduced as described in the text. Errors represent one
standard deviation, over a minimum of five samples from independent colonies.

Cell strain Plasmid copy number Percent dead Mean EGFP/cell Cell division time (min) Proteins/min

DH5« High 21.7%25 165 000 = 6000 36.8£2.6 3100250
Medium 185*x1.2 22 500 = 2000 30524 510%=60

Topl0 High 24.0x2.0 12800011 000 29.5*1.0 3000 =280
Medium 18.1x2.1 17 200 =400 298x14 400=20

B/r High 19.5*6.8 140 000 = 4000 279*14 3500 =200
Medium 13.1+0.7 13 000*=1100 33.1%x2.0 270*+30

BL21* High 23.1x3.6 51 800 = 4600 49.9+20.3 720300
Medium 13.3+1.8 6000 =200 31.6%=1.3 13010

Topl0 (high, 400=*60; medium, 50 10); B/r (high,
460 = 60; medium, 60 = 10); and BL21* (high, 300 = 200;
medium, too low to quantify). The values match at least
roughly with the literature values noted above [42-45].

B. Protein numbers

Fluorescent proteins allow the measurement of a signal
whose intensity is proportional to the number of proteins
being expressed in an individual cell. By calibration, we may
convert that proportionality into an approximation of the ac-
tual numbers of proteins in each cell. Such numbers are im-
portant in modeling natural genetic regulatory networks
[20,23-27,30,32-34,38-40,46—-48] and in the design and
construction of novel versions of such networks
[1-7,11-15,17]. A recent study [20] used fluorescence inten-
sities as a measure of protein abundance, related them to
previously published average protein numbers per cell [19],
and showed a scaling relationship between the average
amount of protein produced per cell and the variability in the
yeast Saccharomyces cerevisiae. Another recent method de-
duced protein numbers by observing the partitioning of fluo-
rescent proteins through a cell division event [22,36].

Here, we use a straightforward fluorescence intensity cali-
bration to obtain the number of proteins per cell. This
method has been used elsewhere to quantify protein expres-
sion in mammalian cells [21], and we view it as complemen-
tary to the above-mentioned quantification techniques. We
used fluorimetry on EGFP solutions of known concentrations
to generate a standard curve of EGFP number versus fluores-
cence intensity (data not shown). The solution was excited at
488 nm, and the fluorescence emission spectrum collected
over the range 500-650 nm, using the intensity at the emis-
sion maximum of 507 nm for calculations. The total cell
fluorescence of cultures of EGFP-expressing cells was mea-
sured under the same conditions; background autofluores-
cence levels were obtained by measuring the emission from
the same cell strain without the EGFP-expressing plasmid,
and this background was subtracted. No difference in emis-
sion maxima between pure EGFP solution and cellular EGFP
was observed. The fluorescence intensity from EGFP-
expressing cells was converted into a total equivalent num-
ber of EGFP proteins present in the culture, and mean num-

bers of EGFP per cell were calculated using the
concentration of cells in the cellular culture, obtained by op-
tical absorbance measurements at 600 nm. A minimum of
five samples from independent colonies was obtained for
each cell strain and plasmid type, yielding the results shown
in Table I. The high-copy plasmids produced averages on the
order of hundreds of thousands protein molecules per cell
whereas the medium-copy plasmids produced tens of thou-
sands of protein molecules per cell. The protein numbers we
obtain with this technique represent a lower bound on the
average number of proteins actually present in the cells: ef-
fects such as quenching, absorption of emitted fluorescence
by intracellular material, and the inability to see immature or
misfolded proteins imply that additional EGFP proteins
could be present without contributing to the observed fluo-
rescence intensity.

The four variants on the consensus wild-type E. coli ge-
nome represented by our four cell strains yield strikingly
different levels of protein expression from the same plas-
mids, varying three-to fourfold across the strains (see Table I
and Fig. 1). To convert the experimentally measured average
numbers of proteins per cell into a rate of protein expression
requires some information about the variation of protein
numbers with time. We take cell growth and protein expres-
sion to be exponential with time [49], and note that the
steady state for each cell is one in which the number of
proteins doubles (on average) in one cell division time.
Given the slow degradation rate of EGFP [50,51] and the
lack of regulatory feedback, this yields G(r)=Gye™?"",
where G is the initial EGFP level in each cell cycle and 7is
the duration of the cell division cycle. The mean EGFP is
then (G)=G,/In 2, and since G,—2G, (on average) at
steady state, G is also approximately the number of proteins
produced per cell division. Using the measured cell division
duration for each strain then yields the number of proteins
expressed per minute for each strain and plasmid type.

C. Variability

The intercell variability in protein expression levels was
measured with both flow cytometry and fluorescence micros-
copy, yielding the results shown in Fig. 1 and Table II. By
flow cytometry, the fluorescence was measured from 200 000
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FIG. 1. (Color online) Probability density functions for protein
expression levels across the population for each cell strain and plas-
mid type, from microscopy (dotted) and flow cytometry (solid),
each scaled by the measured mean numbers of EGFP. Cytometry
results superimpose multiple independent colonies, as follows:
DH5 e, high (14 colonies) (a) and medium (11 colonies) (b); Top10,
high (15 colonies) (c) and medium (13 colonies) (d); B/r, high (15
colonies) (e) and medium (16 colonies) (f); and BL21*, high (10
colonies) (g) and medium (15 colonies) (h).

cells per sample (100 000 in the slow-growing BL21* high-
copy case), and 10-15 independent colonies were selected,
grown, and analyzed in a single session, for each strain-
plasmid combination. By microscopy, 350-1300 cells were
imaged, from at least two independent colonies for each
plasmid-strain combination. In Fig. 1, the mean EGFP values
described above have been used to place the fluorescence
intensities obtained by cytometry and microscopy on the
same scale: the average intensity across all colonies was used
to create a conversion factor from fluorescence intensity to
number of EGFP, and this constant was applied to each mea-
sured distribution. Since absolute intensity values varied
from day to day owing to optical alignment and fluidics fluc-
tuations in the instrument, a single intensity-to-EGFP factor
could not be applied across all strains; each strain-plasmid
combination was measured in a single day, however, so a
consistent conversion factor applied within each of the plots
in Fig. 1.

The cytometer and microscope distributions match well,
except that the cytometry consistently shows a less sharp
onset at the low end of the scale. This is an artifact of the
image processing used to identify cells in microscopy: very
small cells could not be reliably distinguished from debris,
so objects of that size were excluded from the distribution in
microscopy. The slight differences in coefficient of variation
(CV, standard deviation divided by the mean) values ob-
tained by the two methods (Table II) arise because the effect
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TABLE II. Variability in protein expression over cellular popu-
lations, determined by flow cytometry and microscopy, given as
coefficient of variation expressed as a percentage (% CV). Error
ranges for flow cytometry represent one standard deviation, over a
minimum of ten independent colonies (colony numbers listed in the
caption to Fig. 1). For BL21* microscopy, error is one standard
deviation over three independent colonies; in all other cases the
microscopy data for two colonies were combined into a single data
set. The final column reports variability when each cell’s intensity is
divided by its size (in pixels) from the microscope images.

Cell Plasmid % CV % CV % CV
strain type (flow (microscopy)  (microscopy,
cytometry) size scaled)
DHS5« High 55.0+1.0 58.4 20.2
Medium  52.9*+0.7 56.0 12.6
Topl0  High  55.7+16 76.4 25.0
Medium  57.7*1.9 74.1 12.8
B/r High 51.5*+28 66.8 24.2
Medium  58.6%2.5 61.0 12.4
BL21* High 86.0*+12 78.4*+11 27221
Medium  752*1.5 51.7 12.1

on the CV of the small percentage of outliers in the tail is
larger in the smaller sample sizes available through micros-
copy than in cytometry. Within each cell strain, we observe
that the distributions for high- and medium-copy plasmids
have essentially identical shapes, and nearly overlap when
normalized by their respective means (shown in Fig. 6 after
the introduction of our computational model).

Within each cell strain, the distributions for multiple in-
dependent colonies overlap nearly exactly (Fig. 1), yielding
CVs differing by only a few percent (Table II), with the
exception of the high-copy plasmid in strain BL21* (dis-
cussed further, below). This confirms that consistent behav-
ior can be obtained from our simple system (given a fixed
genomic background), which is of course a key requirement
for the design of synthetic genetic regulatory systems.

D. Cell size

One significant component of the observed variability
arises from the nominal doubling of both cell size and pro-
tein number over each cell division [40]; this effect would be
present even for purely deterministic gene expression and
cell division, since we measure absolute protein numbers and
deterministic growth and doubling in an asynchronously di-
viding population creates a distribution of protein numbers
across the population (see Sec. ITF, below). In fact, there is
known to be significant stochasticity in both gene expression
[20,23-40] and cell division [52,53], and here we have at-
tempted to separate cell size effects from other sources of
variability.

Obtaining accurate size information from scattered light
in flow cytometry can be problematic [54], and although a
recent study [55] has established the possibility of making a
connection between cell volumes and scattering information,
we lack such a calibration for our instrument and cell strains.
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FIG. 2. Dependence of coefficient of variation (CV) of EGFP
expression in the cellular population on microscopy bin size. (a)
Binning the cell sizes and finding the CV within each bin shows
that CV remains relatively constant for all cell sizes, implying con-
stant noise at all points in the cell division cycle. Results are shown
for all cell strains and plasmid types: DHSa-High and -Medium
(filled and unfilled squares); Top10-High and -Medium (filled and
unfilled circles); B/r-High and -Medium (pluses and crosses); and
BL21%-High and -Medium (filled and unfilled triangles). (b) The
average CV over the population is shown as a function of the bin
size selected in (a). This plot shows strain Topl0 containing our
high-copy plasmid; results are similar for all strains.

We therefore report cell sizes only for microscopy, using the
image area in pixels as a size measure (cells were distin-
guished from background by thresholding using automated
software, hand checked, as described in Sec. IV, below).
Plotting fluorescence intensity against cell size shows, as ex-
pected, a strong correlation (raw data not shown), and divid-
ing each cell’s total intensity by its size significantly narrows
the distribution (see Table II for the CVs of the size-scaled
distributions and Fig. 6 for the distributions themselves). The
size-scaled CVs remain roughly constant throughout the cell
cycle, as may be seen by plotting the CVs derived from cells
only within a narrow range of pixel sizes, and sweeping this
range across all cell sizes [see Fig. 2(a)]. Figure 2(b) illus-
trates the effect of changing this bin size: bin size is selected,
swept across the range of cell sizes, and the resulting CV is
computed. For very small bin sizes, the resulting CV con-
verges to the value obtained by scaling the intensity by each
cell’s size, while large enough bin sizes encompass the entire
population and thus converge to the unscaled CV. Between
these extremes, the CV increases rapidly with bin size, sug-
gesting that cell size effects cannot be trivially removed by
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restricting measurements to a range of cell sizes, unless very
precise size exclusion can be achieved. In our case, conver-
gence between the scaled and unscaled estimates of CV oc-
curs only when the cell sizes are restricted to less than 10%
of the total size range.

One strain-plasmid permutation, the BL21* strain con-
taining the high-copy plasmid (BL21*-High), displayed very
different behavior from the others. Independent BL21*-High
colonies grew at a wide variety of rates (thus the large error
in mean cell division time in Table I), and showed very dif-
ferent ranges of gene expression and variability from one to
another; see the widely varying distributions in Fig. 1(g).
These changes from one colony to another appeared to arise
mainly through alterations in the cell division process: mul-
tiple colonies examined by microscopy showed very differ-
ent size distributions (data not shown). It is known that the
presence of plasmids interacts with cellular metabolism
[56,57], and it appears that the genomic modifications inher-
ent in the BL21* strain render it particularly sensitive to the
presence of our high-copy plasmid, though given the com-
plexity of such interactions we cannot point to a reason for
this particular behavior. The result points out the need for
caution in the choice of cell strain in synthetic biology, since
some choices will lead to poor, inconsistent results.

E. Plasmid copy number regulation

After scaling away cell sizes, intercellular variability in
our populations is significantly reduced, but still nonzero
(see Table II). There is a striking difference between the
high-copy and medium-copy plasmids, in the remaining vari-
ability after size scaling: while the high-copy plasmids yield
CVs ranging from 20% to 30% across the strains, the
medium-copy plasmids give CVs consistently in a narrow
range, between 12% and 13%. Since the plasmids contain
identical promoter-gene pairs for gene expression, the key
difference between them is their origin of replication, con-
trolling the regulation of plasmid copy numbers. Plasmid
copy number variation is known to be a source of variability
in gene expression [8,27,30,31].

Some information is available about the molecular basis
for the regulation of plasmid copy numbers in the plasmids
we have studied. The backbone of our medium-copy plasmid
is pBR322, which contains a ColEl-type replication origin
[42,58,59]. Single-stranded RNA 1I initiates plasmid replica-
tion by serving as a primer for DNA polymerase. This initia-
tion is regulated by RNA I: when RNA I hybridizes to RNA
IL, it destroys the priming conformation of the RNA II mol-
ecule and halts replication. The binding of RNA I to RNA II
is favored by the Rop/Rom protein [42]. Our medium-copy
plasmid, incorporating the Rop protein, exhibits negative
feedback in the control of its plasmid copy number: when
many copies of the plasmid are present, they transcribe more
RNA I, and this acts to repress additional plasmid replica-
tion, while few copies of the plasmid present allows replica-
tion to proceed with less repression. While negative feedback
does not universally lead to decreased noise [8], its effect in
the case of our medium-copy plasmid appears to be tight
regulation of the number of copies of the plasmid present in
each cell [42,43,58]. Our high-copy plasmid is from a family
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of vectors (pUC) developed from the pBR322 family [45].
They have the same type of origin of replication, but a point
mutation in RNA II weakens the RNA I-RNA II interaction
[60], and the plasmids lack the Rop/Rom protein that would
partially suppress the effect of this mutation [60]. The result
is a near-elimination of negative feedback on the plasmid
copy number, and a significant increase in the number of
copies of the plasmid per cell [43,45,60]. We observe in-
creased variability and wider distributions in the high-copy
cases (Table II and Fig. 6), suggesting that the plasmid copy
number variability may be larger for the high-copy plasmids.
We do not currently have data on the plasmid copy numbers
in individual cells.

F. Formulation of simple models

The experimental data clearly identifies two key factors in
the behavior of the system: the pattern of cell division; and
the degree of regulation of the copy numbers of the two
plasmid types. Here, we formulate highly simplified bio-
chemical kinetic models to explore the minimal framework
required to represent the system.

Addressing cell growth and division, we note that bacteria
are known to increase their volume exponentially with time
[42]; this may be represented as a schematic “reaction”

V—2V where species V represents the cellular volume. If
cells grow and divide perfectly from an initial size V, to a
final size 2V,,, we obtain the deterministic relation V(z)
=V, exp(kt/ 7), where 7is the cell division time. Treating the
volume as a random variable, we find its cumulative distri-
bution function to be F(V)=t(V)/7=(1/k)In(V/V,) for
VE([V,,2V,], where (V) represents the time at which a vol-
ume V is reached. Taking the derivative with respect to V
yields the density function f(V)=(kV)™!, VE[V,,2V,]. This
gives the distribution of cell volumes expected in an asyn-
chronously growing (and thus uniformly distributed over all
times in the cell cycle) population of bacterial cells. Figure 4
plots the deterministic model distribution, normalized by
mean volume, against the experimental cell size distributions
from microscopy, where each distribution has also been nor-
malized by its mean to allow direct comparisons. Note that
the experimental distributions do favor smaller cells, as the
deterministic distribution does, but the real distributions drop
off much more rapidly than the 1/V dependence predicted by
the deterministic first approximation, and lack a sharp cutoff
at some maximum size.

The experimental cell size distributions have an exponen-
tial tail, and we incorporate that into a simple model as fol-
lows. Assume that the cells have a threshold volume Vi cqh,
and that they have a constant probability of dividing at each
volume past V.., effectively following a Poisson process
in volume rather than time; this yields an exponential distri-
bution of cell division volumes for V>V ... We have in-
corporated this into a biochemical model by using the c]zrigi—

nal exponential-growth “reaction” for the volume, V—2V,
modifying the cell division process so that rather than always
dividing at a division volume Vg,=2V,, a new cell division
volume is selected randomly after each division event. By
setting Vg, =(2Vy—\)+X, where X is a random variable cho-

PHYSICAL REVIEW E 77, 021919 (2008)

1200
1000
800

600

400

Cell volume, V(t)

200 —

o+———r—7r——"7——7T——7T——7

0 5 10 15 20 25 30
Time/(Cell division time)

FIG. 3. Cellular volume versus time for the stochastic cell divi-
sion model. Time has been scaled by the mean cell division time.
After each cell division event, a new cell division volume is chosen
from an exponential distribution, as described in the text. The nomi-
nal initial volume is V(=250 and the mean of the exponential dis-
tribution is A=200. The distribution of cell sizes from the model is
compared to experimental results in Fig. 4.

sen from an exponential distribution with mean \, we obtain
a mean cell division size of 2V, but allow for the possibility
of cells dividing at smaller or larger volumes. This simple
system has been implemented using the BIONETS software for
simulating stochastic chemical reaction systems [61], which
provides a convenient user interface for implementing the
Gillespie stochastic simulation algorithm [62]. By treating
volume as a species in a stochastic reaction, additional ran-
domness is introduced into the cell size distribution by mak-
ing the growth into a series of Poisson processes with mean
step time 1/(kV); smaller numbers of volume steps lead to
larger variations in the time to cell division for a given V.
Upon reaching the cell division volume threshold for each
cycle, the species V is divided approximately in half accord-
ing to a binomial distribution, using a feature of BIONETS
specifically intended to simulate segregation of biomolecules
between two newly divided cells. Using V;=250 and A
=200 (and thus Vy,q,=2V,—A=300) yields the V(r) time
series shown in Fig. 3 and the stochastic distribution shown
in Fig. 4. These values (and all others in this section) were
obtained by a combination of parameter sweeping and in-
spection, with no formal fitting procedure.

Next, we incorporate gene expression of the EGFP protein
into the model. Combining transcription and translation into
a single step, we write

k

V—2V, (1)
kq
D—2D, (2)
k[,
D—D+G, (3)

where V represents the cellular volume, as above, D (for
DNA) represents the plasmid (high or medium copy), and G
represents the EGFP protein. Cell division occurs when V
reaches a threshold, with the threshold varying from one cell
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FIG. 4. (Color online) Cell size distribution scaled by mean size,
for experiment and models. Experimental cell size distributions
(pixel areas from fluorescence microscopy) are plotted against the
size normalized by the mean size of each population (symbols given
in the legend). A simple deterministic model of cell division gives
the distribution shown as a heavy dotted line, with its too-sharp
transitions and lack of the experimentally observed tail. Modifying
this simple model with cell division sizes chosen from an exponen-
tial distribution after each division event yields the stochastic model
shown as a heavy solid line.

cycle to the next, as described above and illustrated in Fig. 3.
Species D and G are also divided binomially at each cell
division event [61].

We approximate the increase in species D as exponential
growth, assuming that replication of plasmids proceeds asyn-
chronously with a rate proportional to the number of plas-
mids present. However, completely unconstrained exponen-
tial growth of plasmid numbers is unrealistic for two reasons:
there is no acknowledgment of the physical limitations on
plasmid growth imposed by the finite resources available to
the cell’s replication machinery; and there is no natural
steady state for the plasmid copy number under these condi-
tions: the numbers can double from 100 to 200 or from 1000
to 2000 in each cell division, with no tendency to leave any
particular range once fluctuations have driven the system
into it. Bacteria do in fact show consistent average numbers
of plasmids per cell [42-45], suggesting that an uncon-
strained exponential cannot provide a full description of
plasmid replication.

As noted above, our two plasmid types vary in their regu-
latory feedback, with the medium-copy plasmid exerting
control over its own copy number while the high-copy plas-
mid has those regulatory mechanisms disrupted. We thus for-
mulate two different simple models in which we treat plas-
mid regulation differently. For the high-copy plasmid, we
simulate the limited resources present in the cell by having &,
in reaction (2) monotonically decrease with D using a sig-
moidal function, k;=kof(D) where

AD)=1— (1 +¢ PO, (4)

Taking D=800 and T=100 yields a function that is nearly
unity for the first 500 plasmid copies, then falls off between
500 and 1000 copies, approaching zero by 1500. Implement-
ing this form of constrained exponential growth, where the
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constraint represents resource limitations, allows the plasmid
copy number to undergo wide excursions, but prevents unre-
alistic explosions to infinity, as shown in Figs. 5(a) and 5(b).
The resulting distributions of the total intensity and the in-
tensity scaled by cell size are shown in comparison to the
experimental results in Fig. 6; once again, we normalize by
the mean of each distribution to allow direct comparisons.
Simply shifting the same exponential growth down to a
lower average plasmid copy number does not capture the
difference in experimental behavior between our two plas-
mid types; recall that both types show similar distributions in
total fluorescence intensity (and thus, by inference, in total
EGFP content), but the medium-copy plasmid shows signifi-
cantly smaller CVs when the cell size is scaled away (Table
II). Direct simulation of the feedback mechanism in our
medium-copy plasmid would involve more biochemical de-
tail than we aim to include in these schematic models, in-
cluding a number of unknown rate constants [42,43,58]. To
represent the self-regulation of plasmid copy number in the
medium-copy case in an admittedly crude fashion, we use
reactions (1)—(3) but impose the constraint that the plasmid
copy number is reset to a constant value D, after each cell
division. This permits excursions during periods of cell
growth, but prevents the exponential growth dynamics from
causing the plasmid numbers to “wander” too far from the
nominal number of copies, as shown in Figs. 5(c) and 5(d).
These simple assumptions about plasmid copy number
(resource-constrained exponential growth for the high-copy
plasmid and strongly regulated exponential growth for the
medium-copy plasmid) yield good agreement with the ex-
perimentally observed EGFP distributions. The models are
deliberately highly schematic, but it is interesting to note that
just a few assumptions can yield a good approximation to the
observed experimental behavior: the total intensity distribu-
tions are very similar for the high-copy and medium-copy
strains [see Figs. 6(a) and 6(c)], but when the intensity is
scaled by cell size [Figs. 6(b) and 6(d)], the medium-copy
plasmid distribution is narrowed more significantly than the
high-copy distribution: the CVs are 24% for the high-copy
version of the model, and 17% for the medium-copy version.
The model shows nearly deterministic production of
EGFP, when the rates are scaled to yield average numbers of
EGFP (species G in the model) matching the experimentally
measured values reported above; that is, the curves within
each cell division are a good match for those that would be
obtained by neglecting stochastic fluctuations in the produc-
tion process. By combining transcription and translation into
a single process, we have neglected a potential additional
source of fluctuations from bursts of translation from small,
highly fluctuating populations of transcripts [27,29,30]. We
have considered a slightly more complex model in which
mRNA is produced and proteins are translated from the
mRNA. The essential observation from the transcription plus
translation model was that the mRNA numbers were not
small enough to disrupt the near-deterministic production of
the EGFP. Experimental estimates suggest that each mRNA
transcript is translated roughly 50 times before it degrades,
and even using a conservative 100 translations per transcript
still gives us populations of hundreds to thousands of
mRNAs per cell, to yield the tens to hundreds of thousands
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FIG. 5. Time series for plasmid copy number and EGFP number from the model, showing approximately the first 30 cell divisions from
longer runs. (a) and (b), curves for species D and G, respectively, from the high-copy plasmid version of the model. (c) and (d), curves for
species D and G, respectively, from the medium-copy plasmid version of the model. All times in the model have been scaled so that one time
unit equals the mean cell division. Parameters (given in Sec. IV) have been chosen to approximately match the plasmid and EGFP numbers
from the DH5« strain. Note the smooth shape of the G(¢) lines within each cell division, indicating near-deterministic behavior; the time
sampling used in the plots is fine enough that internal fluctuations would be visible.

of proteins per cell we observe experimentally. mRNAs
present in these quantities did not significantly add to the
overall variability of species G (results not shown), prompt-
ing us to prefer the more highly simplified single-step pro-
duction process.

As has been previously noted [4], variations in plasmid
behavior across different cell strains are not generally incor-
porated into models because of a lack of sufficient informa-
tion to characterize the differences between strains. We face
the same situation, here: the complexity of the full bacterial
genome is such that it is not currently tractable for us to
formulate a model of how the specific alterations in each
strain’s genome lead to the observed differences in gene ex-
pression levels and variability.

III. CONCLUSIONS

The work presented here provides experimental evidence
of the importance of cell size, plasmid copy number regula-
tion, and genomic variations on the level and variability of
protein expression in bacterial cells. We have used highly
simplified models to capture the main features of our experi-
mental observations. Somewhat more elaborate models could
be formulated to incorporate more detailed pictures of cell
division [27,40,52,53] and plasmid copy number control
[31], while still remaining relatively simple and high level.

Since changes in the genomic background necessarily have
implications across the entire cell, attempting to form an ex-
plicit model of the effects of altering the genome on expres-
sion of our gene interest is likely to require a more complex
model, incorporating highly detailed information about the
internal environment of the cell.

The ability to implement novel regulatory networks offers
the possibility of designing human medical interventions at
the cellular level, and also of programming microorganisms
to carry out desired tasks [1-7,11-15,17]. For the latter,
plasmid-borne genes of the type considered here represent
one of the simplest methods currently under consideration.
Two of our results are of particular interest to engineers ap-
proaching synthetic biological designs: that the choice of cell
strain (and thus, the genomic background against which the
synthetic system operates) is important, leading to substan-
tial changes in both expression levels and levels of intercell
variability; and that near-deterministic behavior can be
achieved (for some combinations of strain and plasmid type),
even at relatively low mean numbers of proteins per cell (for
example, the BL21* medium-copy plasmid, where the size-
scaled variability is just 12% percent while it expresses
6000 proteins per cell). Fundamental to any engineer-
ing discipline is system characterization, the study of
the underlying dynamics of the system to be modified
and controlled. This study and other recent work
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FIG. 6. (Color online) Cellular population distributions of EGFP fluorescence intensity and of EGFP fluorescence intensity scaled by cell
size. Experimental results report total fluorescence intensity from microscopy or total intensity divided by cell size in pixels, normalized by
the mean in each case. Model results show the distributions for species G or for the quantity G/V, also normalized by the mean in each case.
(a), (b) Total intensity and size-scaled intensity distributions for the high-copy plasmid experiments and model. (c), (d) Total intensity and
size-scaled intensity distributions for the medium-copy plasmid experiments and model. Note that the total intensity distributions are similar
for the high- and medium-copy cases, while the size-scaled distributions show a greater narrowing for the medium-copy case, for both the

experiment and the simple models described in the text.

[4-7,11,12,17,20,23,25,32,36,40,46,63,64] represent steps
toward the level of system characterization required to
implement systematic design in the emerging field of syn-
thetic biology.

IV. MATERIALS AND METHODS

Genes, plasmids, and cell strains. All Escherichia coli
strains and plasmids used in this study are listed in Table III.
High- and medium-copy plasmids were constructed by rear-
ranging promoters and genes using standard molecular biol-
ogy techniques (Sambrook and Russell [65]), placing the
Py 0.1 promoter (from plasmid pZA31-luc, Lutz and Bujard
[41]) upstream of the egfp gene on two plasmid backbones:
the high-copy (pUC ORI) pEGFP plasmid (Clontech, Moun-
tain View, CA) with the lac promoter removed; and the
medium-copy (ColE1 ORI) pBR322 plasmid (Clontech) with
the tetR gene truncated. Maps of the two plasmids are shown
in Fig. 7. Plasmid DNA was purified using QIAPrep Spin
Miniprep kits (Qiagen Canada, Mississauga, ON), sequenced
(The Centre for Applied Genomics, Toronto, ON), and trans-
formed by electroporation (ECM 399, BTX, San Diego, CA)
into four cell strains: DH5«, Top10, B/r, and BL21* (Invit-
rogen Canada, Burlington, ON). All other enzymes and buff-
ers were purchased from New England Biolabs Canada
(Pickering, ON).

Cell growth and sample preparation. Cultures were
grown overnight (16 h) in Lauria-Bertani (LB) medium (Bio-
Shop Canada, Burlington, ON) plus 100 ug/ml ampicillin

(BioShop) at 37 °C from single colonies and diluted 1:100 in
LB+100 wg/ml ampicillin. Growth curves of optical den-
sity at 600 nm (ODg,) values for each cell-strain—plasmid
combination were obtained (Ultrospec 100 pro spectropho-
tometer, Biochrom, Cambridge, England) and doubling times
determined (see Table II). For analysis, cultures were grown
to log (exponential growth) phase using incubation times
from the growth curves, confirmed by measuring the final
ODyg value. Cells were spun down and washed twice with
phosphate-buffered saline (PBS, pH 7.4) to minimize back-
ground fluorescence from the medium. Cultures from the
PBS wash were diluted in PBS by varying degrees: one- to
threefold for fluorimetry, tenfold for microscopy, and
roughly 100-fold for flow cytometry, adjusted to achieve de-
sired cell count rates in the cytometer.

EGFP quantification. The average number of EGFP ex-
pressed per cell was determined by fluorimetry (Quanta-
Master; Photon Technology, Birmingham, NJ), exciting the
samples at 488 nm and measuring the emission at 507 nm.
Standard curves were created immediately prior to cell cul-
ture analysis by measuring the fluorescence intensity of pu-
rified EGFP (BioVision, Mountain View, CA) in PBS buffer
(pH 7.4) over a range of known concentrations. Concentra-
tion of the EGFP solutions was measured by uv absorbance
at 260 and 280 nm (uv-visible Cary-14 spectrophotometer;
Olis, Bogart, GA). Fluorescence intensities of PBS-sus-
pended cell samples were measured, and cellular autofluo-
rescence was subtracted; autofluorescence for each cell strain
was found by measuring the fluorescence output of cells con-
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TABLE III. Bacterial strains and plasmids used in this study. Genomic modifications relative to E. coli
wild type for each of our cell strains are listed, along with information on each of the plasmids used. Plasmids
pEGFP, pBR322, and pZA31-luc provided components used to construct the high-copy and medium-copy
plasmids pTEGFP and pTLEGFP; only these last two plasmids were experimentally studied.

Characteristics Source
Cell strains
DHS5« F~ endAl gIlnV44 thi-1 recAl relAl gyrA96 Invitrogen
deoR nupG ¢#80dlacZAMI15
A(lacZYA-argF)U169, hsdR17(rg my), N~
Top10 F~ endA1 mcrA A(mrr-hsdRMS-mcrBC) Invitrogen
¢80lacZAM 15 AlacX74 deoR nupG recAl
araD139 A(ara-leu)7697 galU galK rpsL(StrR) \-
B/r F26 his thy Professor J. Grimwade,
Florida State University
BL21* F~ ompT gal dem lon hsdSy(ry mjp) Invitrogen
N(DE3 [lacI 1lacUV5-T7 gene 1 indl sam7 nin5])
Plasmids
pEGFP pUC ORI (high copy), ApR, EGFP expressed Clontech
from Py,

pBR322 pMB1 ORI with rop (medium copy), AP]}, and TE NEB

pZA31-luc Cﬁq, luciferase gene expressed from Py 013 Lutz and Bujard [41]
source of promoter used in our study
pTEGFP pUC ORI (high copy), APR, EGFP expressed This study
from Py 01

pTLEGFP pMB1 ORI with rop (medium copy), A%, This study

EGFP expressed from Py 0.1

taining no plasmids. The standard curve allowed conversion
of the cellular fluorescence intensity to an equivalent total
number of EGFP molecules per milliliter. Dividing by the
concentration of cells/ml then yielded the number of EGFPs
per cell. Cellular concentration was determined by calibrat-
ing ODygy, values to cell counts (using standard colony-
counting methods to determine the number of colony-
forming-units per ml of culture, as a function of ODgg),
corrected by the percentage of live cells in the sample. Live
and dead percentages were determined by flow cytometry of
propidium iodide (Sigma Aldrich Canada, Oakville, ON)
stained populations to detect cells with perforated mem-
branes.

Flow cytometry. All flow cytometry was performed using
an Epics Altra cell sorter (Beckman Coulter Canada, Missis-
sauga, ON). Cells were excited at 488 nm at a power of 300
mW with an Innova 70 laser (Coherent, Santa Clara, CA).
Data were analyzed using DATATANK (Visual Data Tools,
Chapel Hill, NC). A region centered on the median of the
forward and side scatter outputs was defined, set to include
95% of the cells; the remaining 5% of cells along each scat-
ter axis were excluded to minimize noncell events. Fluores-
cence intensity was measured with a 500-550 nm bandpass
filter. Fluorescence intensities were thresholded in two ways.
At the low end, control samples of cells from each strain
containing no plasmids were analyzed, and a lower intensity
threshold was established; a single threshold was used for all

strains, eliminating 95-99.9% of control cells (percentages
varied by cell strain). At the upper end, outliers were ex-
cluded by comparison with microscopy: for each strain and
plasmid, the brightest cell observed in the microscopy data
was used to define an upper limit on the brightest cytometry
events, and events beyond this threshold were excluded.
Events excluded by this threshold were at least six standard
deviations above the mean of the truncated distribution, ex-
cept in the BL21* high-copy runs (four standard deviations
above).

Microscopy. Epifluorescence was measured using a TE
2000U microscope (Nikon Canada, Mississauga, ON) with a
dry objective (40X 0.95, Nikon Canada). The microscope
was equipped with a Piston GFP filter cube (HQ470/40x,
Q495LP, HQ515/30m; Chroma Technology, Rockingham,
VT). Images were collected with a charge-coupled device
camera (Cascade 650, Photometrics, Tucson, AZ) with fixed
on-chip multiplier gain [66], with a 100 ms integration time
to reduce photobleaching. Image analysis was performed
with METAMORPH v6.2r6 (Molecular Devices, Sunnyvale,
CA). Cell sizes were determined using a fixed intensity
threshold to define cell boundaries, and cells were distin-
guished from debris using METAMORPH image analysis tools
to define regions of total size, shape factor, and total and
average fluorescence intensity that constituted probable cells
rather than noncells. In each case, the software-identified
cells were double checked manually; phase contrast images
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of the cells were used to gain a sense of the range of cell
sizes present in the population, and this was used to allow
the human operator to make final decisions about including
or excluding borderline objects.

Plasmid copy number determination. The average number
of plasmids per cell was determined by extracting plasmid
DNA, quantifying the mass of DNA present, dividing this by
concentration of cells in the culture (determined by ODgyy,
calibrated to the number of colony-forming units present, as
described above), and converting the mass of plasmid DNA
per cell into an equivalent number of plasmids using the
known molecular weight of each plasmid type. Plasmid
DNA was extracted from 5 ml of 3 h cultures using QIAPrep
Spin Miniprep kits (Qiagen Canada, Mississauga, ON). Run-
ning the extracted plasmid DNA in an agarose gel stained
with ethidium bromide, the amount of DNA was quantified
through comparison with the stated mass present in a stan-
dard DNA ladder (New England Biolabs Canada, Pickering,
ON). Intensity comparisons were performed using
METAMORPH image processing software (Molecular Devices,
Sunnyvale, CA). Results were averaged over two to three
colonies per strain. In the case of the BL21* medium-copy
populations, too little DNA was extracted to be quantifiable
by this technique.

Modeling. Models were implemented using modified ver-
sions of source code generated by BIONETS [61]; code freely
available upon request. Simulation runs were generated and
analyzed using DATATANK (Visual Data Tools, Chapel Hill,
NC). All times and rates were scaled to make one time unit
equal to the mean cell division time, and a minimum of
100 000 cell divisions were simulated to generate the distri-
butions shown in the figures. For the high-copy plasmid ver-
sion of the model, parameter values used were k=In 2, kp

=(5/4)In 2, k,=220, V;=250, A=200, D=800, and T=100.
The medium-copy plasmid version of the model used the
following parameters: k=k,=In 2, k,=200, and D(=42.
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