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The relationship between capillary pressure and saturation in a porous medium often exhibits a power-law
dependence. The physical basis for this relation has been substantiated by assuming that capillary pressure is
directly related to the pore radius. When the pore space of a medium exhibits fractal structure this approach
results in a power-law relation with an exponent of 3−Dv, where Dv is the pore volume fractal dimension.
However, larger values of the exponent than are realistically allowed by this result have long been known to
occur. Using a thermodynamic formulation for equilibrium capillary pressure we show that the standard result
is a special case of the more general exponent �3−Dv� / �3−Ds� where Ds is the surface fractal dimension of the
pores. The analysis reduces to the standard result when Ds=2, indicating a Euclidean relationship between a
pore’s surface area and the volume it encloses, and allows for a larger value for the exponent than the standard
result when Ds�2.
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I. INTRODUCTION

Accurately predicting capillary pressures in a porous me-
dium is central to understanding the movement and distribu-
tion of fluids within such systems. The relationship between
these pressures and fluid saturation often follows some form
of power law where � /�s��Ps / P�� �e.g., �1,2��. Here � is
the moisture content, P is the capillary pressure, s denotes
saturation, and � is an empirically determined exponent. This
relation was first established empirically, but subsequent
analysis provided it with a physical basis by assuming that
both capillary pressure and pore volume are directly propor-
tional to the pore radius. If a system’s pore space has fractal
structure, this approach then yields a power-law relation be-
tween capillary pressure and saturation where the exponent �
is equal to 3−Dv, with Dv being the pore volume fractal
dimension �e.g., �3–8��. However, larger values of the expo-
nent than are realistically allowed by this result have long
been known to occur �e.g., �1��.

Recent work on microfluidic cells suggests that it is not so
much pore diameter that determines capillary pressure, but
fluid interfacial area �9�. Subsequent analysis has shown that
the variation in fluid interfacial areas with respect to fluid
volume is a significant factor determining capillary pressure
under equilibrium conditions �10�. The physical structure of
a pore network is particularly relevant in this context because
it will directly affect the interfacial areas.

It is well established that the pore space of a wide variety
of media exhibits fractal structure �e.g., �11��. It is also
known that the surfaces of the grains and particles that com-

prise porous systems can themselves be fractal �12,13�. A
few studies have recently measured both Dv and the surface
fractal dimension Ds for the same porous medium in an at-
tempt to see if and how they differ. Thin slices from eight
different kinds of unconsolidated media, both artificial and
natural, were analyzed by Gimenez et al. �14�. Using digital
images with a resolution of 60 �m they found Dv and Ds to
differ by 0.25–0.56 with the pore volume fractal dimension
exceeding the surface one. Using pulsed gradient NMR,
Stallmach et al. �15� found the pore surface and pore volume
fractal dimensions of a glacial sand to differ by 0.7�0.05. A
recent study by Dathe and Thullner �16� analyzed thin slices
of two types of undisturbed soil structure using a scanning
electron microscope with a resolution of 0.5 �m and pro-
duced similar results. Other authors have also obtained data
showing that distinct fractal dimensions apply to different
parts of a porous system �i.e., solid matrix, pore space or
grain surface� �e.g., �17–19��.

In the present work we extend our thermodynamic formu-
lation of equilibrium capillary pressure �10� to a system
where the pore volume and pore surface fractal dimensions
are taken into account. The analysis leads to a power-law
relationship between equilibrium capillary pressure and
moisture content where the power-law exponent is given by
�3−Dv� / �3−Ds�. This result allows for the full range of ob-
served exponents and reduces to the standard result when
Ds=2 and gives a larger value for the exponent than the
standard result when Ds�2. The analysis also indicates that
a power-law relation between moisture content and capillary
pressure will only hold for an equilibrium situation.
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II. POWER-LAW RELATION BETWEEN CAPILLARY
PRESSURE AND SATURATION IN A POROUS MEDIUM

Using a control mass formulation, the authors previously
developed �10� a relation for the internal energy of an ele-
ment of wetting fluid that enters a region of porous media
under pressure pw and distributes itself through a quasistatic
process by displacing a nonwetting fluid that is at pressure
pn:

U� = TS� − pwVw� − pnVn� + � �w,iAw,i� + ��F · vApv� . �1�

Equation �1� adopts the convention that fluid pressure, and
related parameters, are quantities averaged over a represen-
tative elementary volume �REV� within the soil matrix. Here
U is the internal energy, T is the temperature, S is the entropy
of the wetting fluid, pw is the pressure in the wetting phase,
pn is the pressure in the nonwetting phase, Vw is the volume
of the wetting fluid, Vn is the volume of the nonwetting fluid,
and Aw,i is the interfacial area of the wetting fluid in contact
with the ith nonwetting phase, �w,i is the respective surface
tension, and the primes denote the derivative with respect to
time. The last term on the right applies to situations where
the fluid-solid contact lines with a representative elementary
volume �REV� are in motion. Several studies suggest that
such movement would result in nonequilibrium capillary
pressures �e.g., �10,20,21��. Here � is the total fluid-solid
contact line length, F is the force on that line per unit of its
length and velocity, v is the velocity of that contact line, v is
its magnitude, and Ap is the projected interfacial area of the
fluid, and the brackets denote an average over a REV, Fig. 1.

Under equilibrium conditions the authors showed �10�
that capillary pressure can be written as

Pc = − � �w,i��Aw,i/�Vw�U,S,T. �2�

At any given saturation in a porous medium under equilib-
rium conditions, small pores fill first with larger ones doing
so when their capillarity can overcome the tension in the
fluid surrounding them. A consequence of this in a system
with a fractal pore volume distribution is that changes in

fluid volume correspond to the filling or emptying of pores at
only one scale at a time. In order to evaluate the derivatives
in Eq. �1� a relation is therefore needed to give a fluid’s
interfacial area in terms of its volume within those pores. For
a system where the pore surfaces exhibit fractal structure we
follow Gimenez et al. �14� and use Mandelbrot’s relation
between a self similar fractal area and the volume that it
encloses ��22�, p. 112�:

A 	 VDs/3. �3�

Here A is the surface area of a given pore, V is the volume it
encloses, and 2
Ds
3. Equation �3� is the “area-volume”
extension of the slit-island relation ��21�, p. 112 and �22��
which has previously been shown to hold in a porous me-
dium with fractal pore boundaries �14�. We make the relation
in Eq. �3� direct by introducing a constant c such that A
=cVDs/3. Assuming that fluid volume is equal to pore volume
to a negligible error and that the interfacial areas Aw,i follow
the proportionality in Eq. �3�, Aw,i= fw,iV

Ds/3 where fw,i is a
shape factor that remains constant across all scales. Using
this relation we can write ��Aw,i /�Vw�= fw,i�Ds /3�V�1/3��Ds−3�,
where V is the volume of the largest pore filled. For a situa-
tion where a wetting fluid displaces air in a porous medium,
Eqs. �1�–�3� can be combined to give

Pc = − �f fluid,air�fluid,air + f fluid,solid�fluid,solid��Ds/3�V�1/3��Ds−3�.

�4�

When Ds=2, Eq. �4� reduces to give the 1 /r dependence
that is typically assumed for capillary pressure �6–8,24�.

III. MOISTURE CONTENT AND CAPILLARY
PRESSURE

The moisture content within a two-phase system at equi-
librium can be written as Vw=	VdN, where Vw is the fluid
volume within a REV, V is the volume of a single filled pore
of a given size, N is the number of those pores within the
REV, and the integral is over the applicable size range. If the
pore volume is distributed in a fractal manner, we can follow
Perrier et al. �8� who used the cumulative distribution func-
tion Nr�l�L�=FL−Dv to determine total pore volume, where
L is taken to be the radius that corresponds to V ,F is a
constant, and Dv is the pore volume fractal dimension. Not-
ing that L	V1/3 it can then be shown that

Vs − Vw = �FDv�/�3 − Dv��Vmax
�3−Dv�/3 − V�3−Dv�/3� , �5�

where Vs is the saturated water volume within a REV, V is
the volume of the smallest pore filled, and Vmax is the volume
of the largest. Dividing by the volume of the REV and set-
ting V0= �FDv�Vmax

�3−Dv�/3 / �3−Dv� we get

�s − � = V0/VREV�1 − �V/Vmax��3−Dv�/3� , �6�

which is essentially the relation derived by Perrier et al. �8�.
Substituting from Eq. �4� we then get the relationship be-
tween media saturation and capillary pressure:

�s − � = V0/VREV�1 − �Ps/P��� , �7�

where �= �3−Dv� / �3−Ds�, and P and Ps are the saturated
and unsaturated capillary pressures. This is applicable to a

Fluid meniscusv

Projected area under the

meniscus. The total projected

area within a REV is Ap

Pore surface

FIG. 1. Fluid meniscus in motion. The last term on the right-
hand side of Eq. �1� applies to situations where the fluid-solid con-
tact lines with a representative elementary volume �REV� are in
motion. Several studies suggest that such movement results in non-
equilibrium capillary pressures �e.g., �10,20,21��.
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two phase system with wetting and nonwetting fluids. As
with previous power-law formulations relating capillary to
moisture content, Eq. �7� is likely to breakdown near satura-
tion.

The results of Rieu and Sposito �7� and Tyler and
Wheatcraft �6� can be obtained as special cases of Eq. �7�.
When the size of the smallest pore filled within the REV,
Vmin, is equal to 0, V0 /VREV=�s and Eq. �7� also gives the
well-known relationship presented by Brooks and Corey �1�,
where � /�s= �Ps / P��. This equation is sometimes written
as ��s�� / ��s−�r�= �Ps / P��, where the left-hand side is
termed the “reduced water content” with �r being the “re-
sidual water content” �i.e., the value below which vapor
transport is required to reduce the water content further�. The
residual water content effectively represents the percolation
threshold for the medium. The choice of plotting Ps / P
against reduced water content stems less from the physics of
the phenomena than because of a historical convention that
was first used by Burdine ��25� and �26�, p. 479� to force

relationships for hydraulic conductivity to zero at the perco-
lation threshold.

IV. CONCLUSIONS

Many studies have measured the pore volume fractal di-
mension directly and the values obtained to date indicate that
3−Dv
1 �27�. However, values of � that are larger than
this, and indeed greater than 2, have long been known to
occur, indicating �=3−Dv is insufficient �1,27,28�. By con-
sidering a porous system with distinct pore surface and pore
volume fractal dimensions we have derived a more general
form of �= �3−D� / �3−Ds�. When Ds=2, the analysis re-
duces to the standard relationship, as expected, and when
Ds�2 it allows for a larger value of the exponent than 3
−Dv. The results show that capillary pressure data alone are
insufficient to establish the fractal nature of a pore space and
that data on the pore surface fractal dimension are needed as
well.
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