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A two-dimensional square-lattice model for the formation of secondary structures in proteins, the hydrogen-
bonding model, is extended to include the effects of solvent quality. This is achieved by allowing
configuration-dependent nearest-neighbor interactions. The phase diagram is presented and found to have a
much richer variety of phases than either the pure hydrogen-bonding self-avoiding walk model or the standard
�-point model.
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I. INTRODUCTION

Self-avoiding walk models have been used for many years
as models of real polymers in solution �1–3�. The thermody-
namical behavior of a linear polymer in a good dilute solvent
is dominated by its entropy, which may be well modeled by
an excluded volume interaction, leading to the idealized
model of a self-avoiding walk on a lattice. As the tempera-
ture of the polymer is lowered, typically the quality of the
solvent is degraded, and the difference in affinity between
the monomers �chemical building blocks of the polymer� and
between the monomers and the solvent molecules becomes
important. At low enough temperatures the polymer col-
lapses and will precipitate from solution. This difference in
affinities may be modeled in the self-avoiding walk model by
an effective attractive interaction between neighboring steps
of the walk. The high temperature �good solvent� and low
temperature �bad solvent� regimes are separated by a phase
transition point known as the � point.

The canonical model for this system is the �-point model,
which consists of placing the interactions between nearest-
neighbor lattice sites which have been visited nonconsecu-
tively by the self-avoiding walk �4,5�. Typically this model is
studied in the grand-canonical ensemble where the length of
the walk is governed by a step fugacity K. The grand-
canonical partition function Z is then written

Z = �
walks

KN�NI, �1�

where N is the length of the walk, NI is the number of
nearest-neighbor interactions, and �=exp�−���, �=1 /kT, �
�0 is the �attractive� energy gained per nearest-neighbor
contact. This model describes well the behavior of simple
linear polymers in solution. The phase diagram in the fugac-
ity and temperature plane is shown in Fig. 1. It is expected
that any typical size of the walk, such as the radius of gyra-
tion, should scale as a power law with the length of the walk
as follows:

RG � �N��, �2�

where � is simply the correlation length exponent defined in
magnetic models. Indeed, the self-avoiding walk model may
be mapped onto an O�n� symmetric spin model in the limit

n→0 �6�. It may then be seen that the phase transition line
shown in Fig. 1 is the line on which the average length
diverges, for large temperatures �small �� continuously and
for low temperatures discontinuously. The � point is then
identified with a tricritical point. While this model is of most
practical importance in three dimensions, it has been exten-
sively studied in two dimensions, because it is expected that
the critical behavior is richer in two dimensions, particularly
since the upper critical dimension of a tricritical point is 3.

An interesting question arises: the basic ingredients mod-
eled by the �-point model which enable it to capture the
essence of the real polymer in solution are the modeling of
the entropic repulsion by the excluded volume interaction
�self-avoidance� and the modeling of the short ranged attrac-
tion between the monomers. It should be expected, then, that
any consistent way of modeling these two features would
lead to a thermodynamically equivalent model. With this in
mind, Blöte and Nienhuis �7� introduced a variant on the
model in which the self-avoidance restriction is relaxed in
that the walk can now visit lattice sites more than once,
however, the walk is not allowed to visit the lattice bonds
more than once, and the walk is not allowed to cross itself.
The interactions are now introduced for the doubly visited
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FIG. 1. The phase diagram for the standard �-point model,
showing a low-K zero density �finite walk length� phase and a high-
K �critical� collapsed phase, where the walk density is finite. At
high temperatures �low �� the transition is second order �solid line�,
while at low temperatures �high �� the transition becomes first or-
der �dashed line�. These two behaviors are separated by a tricritical
point, the � point.
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sites. Surprisingly this model has a phase diagram which
differs from the �-point model in many important respects:
there is an extra phase transition in the dense region of the
phase diagram. This phase line is in the Ising universality
class with a value of the correlation length exponent �=1
�7,8�. The new collapse transition is not in the same univer-
sality class as the � point, having an exponent �=12 /23 �9�,
as compared to �=4 /7. At first sight these differences seem
to be in contradiction with the idea of universality, which is
required if we are even to think of modeling a polymer in
solution by a lattice based walk model. In fact, universality is
not violated. If the walk fills the lattice with a finite density,
and its fractal �Haussdorf� dimension is the same as the lat-
tice dimension, then the walk sees the lattice, and may be
subject to lattice frustration effects. At the � point the den-
sity is zero, while it was shown that the density at the col-
lapse transition in the Nienhuis-Blöte model is nonzero �10�.
The presence of an Ising transition in the dense region is an
indication that the lattice interactions tend to pick out a pre-
ferred direction, here corresponding to the lattice diagonals.

Other lattice models have been introduced which contain
collapse transitions, notably the bond-interacting self-
avoiding walk �11–13� and the hydrogen-bonding self-
avoiding walk �14,15�. The first is simply the � point model
in which the interactions are now between the nearest-
neighbor visited lattice bonds. The Hydrogen-bonding self-
avoiding walk was introduced to model the formation of sec-
ondary structures in proteins under the influence of the
hydrogen bond. Hydrogen bonds are induced by dipole-
dipole interactions, and impose an orientation on the inter-
acting portions of the polymer. How these interactions are
implemented in the Hydrogen model is shown in Fig. 2.

The bond-interacting self-avoiding walk has been studied
using mean-field type calculations on the Bethe lattice �11�
and the Husimi lattice �13�. These different studies have pro-
posed radically different phase diagrams. A recent transfer
matrix calculation �12� indicates that the correct phase dia-
gram is that proposed by Buzano and Pretti �11�, and shown
schematically in Fig. 3. While there is a collapse transition in
the same universality class as the standard � point, there is
also the presence of an additional transition line in the dense
region of the phase diagram. Unlike the Nienhuis-Blöte

model, this transition line seems to be exotic in nature, with
a nondivergent susceptibility �12�.

The hydrogen-bonding model was also investigated using
transfer matrices �15�. The phase diagram was schematically
similar to the Nienhuis-Blöte model, but the collapse transi-
tion was found to be first order. The high density transition
line seemed not, in this study, to be in the Ising universality
class, but the error bars were so large as to make it hard to
rule out any possibility. We return to this question in this
work, and using recently developed corner-transfer-matrix
renormalization-group �CTMRG� methods �16� we manage
to give an accurate estimate of the critical exponent �, clearly
ruling out any possibility that it could be in the Ising univer-
sality class.

Faced with this variety of different behaviors, it almost
seems that any change to the model leads to different behav-
ior for dense interacting self-avoiding walks. In order to in-
vestigate the relationship between these different behaviors
we introduce an extension of the hydrogen-bonding self-
avoiding walk model to include �-type interactions. These
interactions are shown in Fig. 2. There is also a more direct
motivation for these interactions; while a protein folds under
the influence of the hydrogen bonds, it is still subject to the
quality of the solvent. Indeed it is the quality of the solvent
�or physiological temperature� which decides whether or not
a protein is functional. We will show that this enlarged model
contains several, if not all, of the different thermodynamic
behaviors found above, and provides a unifying framework
in which to understand the effect of geometrical frustration
in lattice walk models.

In the next section the model is presented. In Sec. III
results are first presented for two cases, showing two differ-
ent behaviors. The results found then enable a mapping of
the full phase diagram. The article ends with a discussion of
the results.

II. THE MODEL

The model studied in this article involves the self-
avoiding walk on the square lattice with interactions between
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FIG. 2. The nearest-neighbor interactions are split into two
classes, those of type �a� where four bonds forming two parallel
lines model the hydrogen bonds, while the others ��b�, �c� and �d��
model the solvent interactions. Configuration �a� induces a pre-
ferred orientation, while the other configurations do not.
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FIG. 3. A schematic version of the phase diagram for the bond-
interacting self-avoiding walk model, proposed by Buzano and
Pretti �11� and confirmed by Foster �12�. Phase I is the low-K finite
walk phase, II is the critical collapsed �liquid� phase, and III is the
crystalline oriented phase.
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nonconsecutive visited nearest-neighbor sites on the lattice.
Unlike the standard �-point model, the interactions are split
into two sets, as shown in Fig. 2, between those which
specify a particular direction, the hydrogen bonds, and those
that do not, the solvent interactions. Hydrogen bonds carry
an interaction energy −�H and the others carry an interaction
energy −�. The thermodynamic behavior may be investigated
by introducing the grand-canonical partition function Z from
which many of the relevant thermodynamic quantities may
be calculated. The grand-canonical partition function is given
by

Z = �
walks

KN exp���NI� + NH�H�� , �3�

where NI are the number of solvent interactions and NH are
the number of hydrogen bonds. The fugacity, which controls
the average length of the walk, is denoted by K, and N is
the total length of the walk. For convenience we define 	
=� /�H, and without changing the physics of the model, we
may set �H=1; this simply sets the temperature scale. The
partition function then becomes:

Z = �
walks

KN exp���NH + NI	�� . �4�

The primary tool we use in this article to map out the phase
diagram of this model is the transfer matrix. The transfer
matrix method involves studying the model on a lattice strip
of length Lx→
 and width Ly, finite. In its simplest form, the
model is considered on a lattice with periodic boundary con-
ditions in both the x and y lattice directions. In this case the
partition function may be rewritten in terms of a matrix prod-
uct

Z = Tr TLx, �5�

where T is the transfer matrix, which contains all the factors
required to take account of all possible walk configurations
between any two given lattice columns. Details on the trans-
fer matrix method used in this article may be found in Ref.
�12�.

The partition function may then be expressed in terms of
the eigenvalues �i of the transfer matrix T:

Z = �
i

�i
Lx. �6�

The dimensionless free energy per spin is given by

f =
1

LxLy
ln Z . �7�

In general the largest eigenvalue is nondegenerate and the
sum is dominated by this largest eigenvalue �0 giving, in the
limit Lx→
,

f =
1

Ly
ln �0. �8�

The problem is now reduced to studying the behavior of the
thermodynamic quantities as a function of the width, notably
using finite-size scaling techniques. In what follows we will
drop the subscript y and denote the lattice width by L. Once

the free energy has been calculated, other quantities of inter-
est can be calculated by taking suitable derivatives, for ex-
ample, the density of the walk on the lattice is given by

� =
�N�
LxLy

= K
� f

�K
. �9�

It is, however, possible to calculate such quantities directly
from the eigenvalues and eigenvectors of the transfer matrix.
To see this, it is necessary first to calculate the probability of
having a given walk configuration Cx in column x. This prob-
ability is simply the ratio of the partition function restricted
to having configuration Cx in column x and the unrestricted
partition function, which in terms of transfer matrices may
be written

p�Cx� = lim
Lx→


Tr	Tx
Cx��Cx
TLx−x�
Tr TLx

. �10�

Writing 
Cx� in terms of the eigenvectors 
i� of T gives

p�C� = lim
Lx→


�i
�i

Lx�i
C��C
i�

�i
�i

Lx
, �11�

p�C� = �0
C�2, �12�

where the eigenvectors are normalized. The subscript x may
be omitted by invoking translation invariance. The density,
for example, is then found using

� = �
C

N�C�
L

p�C� = �
C

N�C�
L

�0
C�2, �13�

where N�C� is the number of occupied lattice bonds in con-
figuration C. The susceptibility can then be calculated either
by taking a derivative of the density, or by calculating di-
rectly �N2� for the column, and hence the fluctuation. The
two methods give slightly different results for a finite width
strip, but agree in the thermodynamic limit. In the present
article we choose to calculate the fluctuation directly.

It is straightforward to show that the correlation length 
depends on the largest two eigenvalues through

 =
1

ln� �0


�1
 �
. �14�

If the two eigenvalues become equal in modulus, the corre-
lation length diverges, which is characteristic of the long-
range order found at a critical point. For an integer spin
model �Ising, XY, Heisenberg, etc.�, the transfer matrix is
positive �all elements strictly larger than zero� and Frobe-
nius’ theorem states that the largest eigenvalue is nondegen-
erate for finite matrices. This implies that the correlation
length may only diverge in the thermodynamic limit Lx ,Ly
→
. In our case, however, the transfer matrix is sparse, and
may be block diagonalized into an odd and an even subma-
trix. The odd submatrix is the transfer matrix for the walks
which cross the lattice in the x direction an odd number of
times, while the even submatrix is the transfer matrix of
walks which cross the lattice an even number of times. We
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include in the even submatrix the empty lattice configuration.
There is no mathematical reason why the largest eigenvalues
of the different submatrices should not coincide, and indeed
the lines where this is the case may correspond to transition
lines in the phase diagram, since they correspond to lines
where the correlation length diverges. It is important to note,
however, that the high-density isotropic phase is a critical
phase, in which →
 everywhere in the infinite lattice sys-
tem, and so the condition that the two eigenvalues become
degenerate is not a foolproof argument, and must be used
with care. A standard method for finding phase transition
lines in a transfer matrix calculation is to use finite size scal-
ing in the form of Nightingale’s renormalization group
method �17�, which is based on the scale invariance expected
close to critical points for large enough lattice sizes. It shows
that when solutions exist for the finite-size renormalization
equation

L

L
=

L�

L�
, �15�

then these lines are candidate critical transition lines, al-
though, again, such solutions may exist in the high density
critical phase without corresponding to transition lines.

The use of transfer matrices in the determination of the
phase diagram is convenient, since the partition functions are
calculated exactly for infinite strips for any value of the pa-
rameters given. Since the partition function is known exactly,
there are no convergence problems, and the full phase dia-
gram may be mapped with relatively little effort. The main
problem is the size of the matrices, which grow exponen-
tially with the lattice width. This strongly limits the maximal
width which may be used, here to L=9. Added to the fact
that the model contains strong odd and even parity effects,
the number of sizes available to more advanced finite-size
scaling methods is too small to be of much use. In order to
be able to use finite-size scaling to calculate critical expo-
nents for various transition lines, we decided to use a re-
cently introduced implementation of the corner-transfer-
matrix renormalization group �CTMRG� method appropriate
for lattice walk models �16�. This method, related to the bet-
ter known density-matrix renormalization group �DMRG�
method, enables the calculation of thermodynamic quantities
for large lattice sizes, in particular the density of monomers,
for lattices with the restriction that Lx=Ly. The large lattice
sizes are achieved by iteration from smaller lattice sizes. At
each iteration the phase space is optimally pruned such that
the calculation remains within the constraints of the available
computer resources and the error on the quantities of interest
is minimized. For further details on the implementation of
this model, please see Ref. �10�, and references therein.

III. RESULTS

In this section we present the results obtained from the
transfer matrix calculations, supplemented when necessary
with results from the CTMRG method. We start by studying
the small 	 regime, where the model is expected to behave
similar to the pure hydrogen model �	=0�, studied by Foster

and Seno �15� using transfer matrices, and in the Bethe ap-
proximation by Buzano and Pretti �11�. At the other end of
the scale, when 	=1 we recover the pure �-point model.
Considering values of 	 close to 	=1 we find new behavior,
not present in either the hydrogen model or the �-point
model. The results found permit the phase diagram to be
plotted, and finally we will present results for this phase
diagram.

A. Results for �=0.2

Foster and Seno �15� studied the model for 	=0 using
transfer matrices. It was shown that the behavior of this
model was different from the standard �-point model. The
collapse transition was now first order, corresponding to a
jump in the density as the low-K transition line is followed.
The model also presents a high-K transition line separating
the usual isotropic dense �liquid� phase from an anisotropic
�crystalline� phase. They gave evidence that this transition
was critical, in contradiction to extended mean-field type cal-
culations performed by Buzano and Pretti �11� on the same
model, which predicts a first order transition.

In this section we show that for 	=0.2 we recover a simi-
lar behavior, showing that the crystalline phase and its asso-
ciated phase transitions persist over a range of values of 	.
Transfer matrix calculations are combined with those of the
CTMRG method to obtain more accurate results for the criti-
cal behavior of the liquid-crystalline transition, which we
confirm to be of second order.

The phase diagram for 	=0.2 is shown in Fig. 4, calcu-
lated using transfer matrices. In Fig. 4 the low-K transition
line between the finite-length �=0 phase and the dense
phases is found by setting the largest eigenvalue of the trans-
fer matrix to 1. When even lattice sizes are considered, the
largest eigenvalue corresponds to the largest eigenvalue from
the odd sector of the transfer matrix ��o� for small � and the
largest eigenvalue of the even sector ��e� when � is large.
The point where the two cross, �e=�o, is identified as the
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FIG. 4. Phase diagram for 	=0.2 calculated using eigenvalue
crossings �lines�, and the phenomenological RG method �points� for
the high-� transition.
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crystallization transition. This line extends both into the high
and low density phases. In the low density phase the line
corresponds to the crossing of subdominant eigenvalues
�since the largest eigenvalue, corresponding to the empty lat-
tice, is �0=1�. This may be identified with a disorder line,
indicating a change of local order. In the dense phase, how-
ever, the crossing corresponds to a crossing of the two largest
eigenvalues, which from Eq. �14� may be seen to correspond
to a divergent correlation length. This line may then be iden-
tified with a special critical line where the long-range order
changes. The identification of this line with the phase bound-
ary between the liquid and crystalline phases is not straight-
forward since the liquid phase is a critical phase, so it is
possible that the line is buried within this phase. To verify
that this is indeed the transition line, we compare the results
with results calculated from Nightingale renormalization
group arguments �the points shown also in Fig. 4�. In Fig. 8
we give finite-size estimates for the transition line for 	
=0.2, K=2, showing the coherence of the different methods,
and verifying that the eigenvalues cross at the transition.

Transfer matrices are limited by the maximal lattice width
that may be obtained, which in turn limits the number of
lattice sizes which may be used for studying finite-size be-
havior. For this reason we turn to the CTMRG method,
which produces results for large lattice sizes, permitting bet-
ter estimates of the critical exponent, critical density, and
temperature. Unlike the transfer matrix method, where we
dealt with infinite strips of finite width, in what follows we
will be looking at a lattice finite in both directions, with Lx
=Ly =L.

In order to use finite-size scaling, we consider the scaling
form for the density. Here it was convenient to fix K and vary
�, for which we expect the following scaling form:

�L��� = �
��� + L1/�−2�̃�
� − �c
L1/�� . �16�

The scaling form given in Eq. �16� gives the leading behav-
ior close to the critical point. The corrections to scaling may
be expected to be negligible “close enough” to the critical
point. It is clear that if the following variables are plotted:

x = 
� − �c
L1/�, �17�

y = ��L��� − �
�L2−1/�, �18�

then, close enough to the critical point, the points plotted
should fall onto the universal curve y= �̃�x�. This phenom-
enon is known as data collapse. The values of �c, �, and �


are not known, but can be determined by choosing values
which give the best data collapse. It is of course useful to
know some estimate of �c and �
 by some other method,
estimates which we are able to improve by optimizing the
collapse of data close to the transition. In Fig. 5 we plot the
density as a function of � for K=2 and a lattice L=1000. It
is readily seen that �
�0.99 and �c�0.62–0.63. Starting
with these initial values we determined values of the param-
eters which gave the best data collapse, and we find �


=0.989�0.001, �c=0.6222�0.0005, and �=0.87�0.02.
The resulting curve y= �̃�x� is shown in Fig. 6. The error bars
correspond to the range of values over which the parameters
may be varied before we clearly no longer have collapse of

the data. We limited the lattice sizes to L�160 in the study,
since, due to the factor L1/� in the variable x, the points
which appear in the figure are closer to the critical tempera-
ture as the lattice size increases. The error in the determina-
tion of the point is also amplified by the factor L2−1/� in y.
These considerations limit the maximum size considered.

Clearly, in the crystalline phase, the walk will wish to
align with one of the lattice directions, with a tendency to
eject corners from the bulk. While we expect the density of
corners to differ in the two phases, we note that the data
collapse indicates that the density of the walk has not
reached one, and so the density of corners must be nonzero.
This means that while the fluctuations in the numbers of
corners should diverge at the transition, the corner density is
not a good order parameter. On the other hand the crystalline
phase is anisotropic, while the two other phases are isotropic.
A natural order parameter is then ��= 
�v−�h
, the difference
between the densities of vertical and horizontal bonds. In the
isotropic phases this will vanish, but not in the anisotropic
phase. We are not able to calculate this quantity with our
CTMRG calculation, since the symmetries of the lattice are
explicitly used in the method �16� but we have direct access
to this parameter using transfer matrices through
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FIG. 5. Density calculated for 	=0.2, K=2 using CTMRG with
L=1000
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FIG. 6. �Color online� Data collapse for the density close to the
transition using data from the CTMRG method with 	=0.2, K=2.
The finite-size scaling form of the density is taken with �
=0.989,
�c=0.6222, and �=0.87
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�� =
1

L
�
C


Nv�C� − Nh�C�
p�C� . �19�

This is shown in Fig. 7 for 	=0.2, K=2. The peaks of the
fluctuations in �� and the density of corners �c may be used
as estimators for the liquid-crystal phase transition line.
These are shown, along with other estimates, in Fig. 8.

B. Results for �=0.8

In this section we choose to study the phase diagram for
	=0.8, where the model is found to have a very different
behavior. The phase diagram calculated using the phenom-
enological renormalization group is shown in Fig. 9. While
we still find the three phases: the low-K zero density phase,
and the liquid and crystalline phases at higher K, the diagram
is quite different in appearance.

As the low-K transition line is followed, we have first a
�-type transition, followed later by a crystallization transi-
tion. The transition from finite walk to the dense phases is a
second order transition in the self-avoiding walk class for
���� becoming first order for ����. In Fig. 10, the cor-
ner density fluctuations are plotted along the low-K transition
line. The corner susceptibility is calculated by introducing an
additional parameter corresponding to a bending energy, and
then applying the fluctuation dissipation theorem. Defining
�corn=�corn /kT, we define
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FIG. 7. Plot of ��= 
�h−�v
 for 	=0.2 and K=2.
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FIG. 8. Estimates for �c using various methods for 	=0.2 and
K=2. Arrow shows the value found using the data collapse method
�c=0.6222. � represent the peaks of the fluctuations of ��, while
the triangles correspond to the position of the peaks of the fluctua-
tions in the corner density, calculated with CTMRG. * gives the
position of the solutions to the Nightingale RG method, and the
squares the position estimated using the condition that �e=�o.
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FIG. 9. Phase diagram for 	=0.8 calculated using Nightingale’s
phenomenological RG method. The special transitions along the
low-K line are shown. The first is the � point for 	=0.8 while the
second is the collapsed-crystalline transition. The solution of the
condition �e=�o is shown for various sizes using points, and can be
seen to give a distinct line, which does not converge to the
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FIG. 10. �Color online� Fluctuations of the number of corners in
the walk for 	=0.8 calculated along the lower critical line showing
clearly the existence of two transitions. Both transitions appear to
be critical.

D. P. FOSTER AND C. PINETTES PHYSICAL REVIEW E 77, 021115 �2008�

021115-6



�c =
��c

��corn
. �20�

The formation of two peaks may clearly be seen, correspond-
ing to the two special points along the low-K line. Interest-
ingly, unlike the 	=0.2 case, the two transitions appear to be
critical.

We now investigate the nature of the transition line be-
tween the two dense phases. What is interesting is that the
condition �e=�o for even transfer matrices, which coincided
with this line for 	=0.2, is well within the isotropic col-
lapsed phase here. This is not contradictory, since the col-
lapsed phase is critical, and so the condition �e=�o must
correspond to a change of order within the critical phase, but
not to the phase boundary. This is the first indication that the
transition line here is different from the transition in the pre-
vious section. Here again we turn to CTMRG and look for
the conditions for data collapse. The density � appears to
have saturated to 1 �see Fig. 11�, making it impractical to
use, however, it is expected that the density of corners �c
should scale in the same way, and this is what we use here.
The best fit was obtained for �c,
=0.2744�0.0005, �c
=2.349�0.003, and �=0.96�0.02, and is shown in Fig. 12.
In Fig. 13 we show different estimates for the critical point
for K=2 and 	=0.8.

C. The �−� phase diagram

The full phase diagram is expressed in three variables K,
	, and �, and is difficult to picture. In this section we present
the phase diagram in the 	-� plane calculated on the surface
K=K�, where K� is the value of K required for the average
length of the walk to just diverge. This is what is generally
calculated in Monte Carlo simulations, and corresponds to
the “long polymer in dilute solution” limit.

When 	=1 the model corresponds to the pure �-point
model, with only one transition point on the K=K���� line;
the � tricritical point. This point is easily found by looking
at the crossings of the finite-size estimates of � calculated
along the line of solutions to Eq. �14�. For small � these
estimates tend to �SAW=3 /4 while for large � they tend to

�=1 /2, characteristic of the first order collapsed-walk line in
two dimensions. In between these two behaviors we find a
point, which tends to ��=4 /7. By the way the estimates tend
to their limiting values, this intermediate point shows up as a
crossing in the different finite-size estimates. Looking at
these estimates as a function of 	 leads to the extended line
of tricritical points in the �-point universality class. This is
the usual method for determining the location of the tricriti-
cal point, but it requires the use of three lattice widths to
determine one estimate. Here we propose a different method.
The low-K transition line is determined by looking for solu-
tions of the phenomenological renormalization group �RG�
Eq. �15� with the correlation length defined by Eq. �14� tak-
ing �0=1 and �1 is the largest eigenvalue taken from the odd
or even sectors of the transfer matrix. A tricritical point has
an additional correlation length which diverges, correspond-
ing to the two relevant directions in the renormalization
group sense. We look for the solutions of Eq. �15� with a
correlation length calculated using the largest eigenvalue
from the odd and even sectors. This method only requires
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β
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0.96

0.98

1

ρ

FIG. 11. Bond density calculated for K=2, 	=0.8 using CT-
MRG with L=1000. The circle indicates the location of the
collapsed-crystalline phase transition calculated using data collapse
�see Fig. 12�. The transition can be seen to occur at a density
�=1.
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FIG. 12. �Color online� Data collapse of the corner density �c

for 	=0.8, K=2 fitted with �c,
=0.2744, �c=2.349, and �=0.96.
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FIG. 13. Estimates for �c using various methods for 	=0.8, K
=2. The arrow shows the value �c=2.349 found using the data
collapse method.
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two lattice widths to estimate the location of the tricritical
point. Additionally, the high-K transition line is found using
Eq. �15� with these same two eigenvalues. The method de-
scribed therefore also locates the position of the crystalliza-
tion transition along the low-K transition line. The phase
diagram calculated by this method is shown in Fig. 14. For
small 	 there is no solution. However this region of the
phase diagram corresponds to the region which is expected
to behave similarly to the pure hydrogen-bonding model, and
therefore the condition �e=�o corresponds to the first order
transition line.

In Fig. 15 the phase diagram is calculated using the peaks
of the two susceptibilities. The upper line is calculated by
looking for the peak of the fluctuations of �� while the lower

line is calculated using the peaks of the fluctuations of �. For
	 less than about 0.4 the two sets of lines merge and give
estimates for the single hydrogen-bonding-like first order
line, while for values of 	 larger than about 0.5 the two sets
of lines are distinct, the lower line corresponding to the line
of �-like tricritical points, while the upper line corresponds
to the critical crystallization line. Somewhere in the region
	=0.4→0.5 these two lines merge into a higher order mul-
ticritical point.

Looking closely at Fig. 14 it may be seen that the upper
and lower transition lines tend to come together in the region
	=0.3→0.5, with the lower line developing a plateau. It
is probable that the multicritical point is not located at the
cusp where solutions end, but at a higher value of 	, prob-
ably in the same range of values. The methods employed in
this article were not able to determine this point more accu-
rately. The CTMRG, which enables larger sizes to be ob-
tained, becomes impractical in this region, particularly when
the number of constraints required to define the point is
considered.

IV. DISCUSSION

There are now a number of similar models which display
an anisotropic crystalline phase, with a variety of different
types of high-density transition. The first is the vertex-
interacting self-avoiding walk due to Blöte and Nienhuis �7�,
which displays an Ising-like high-density transition with �
=1. The hydrogen-bonding model was shown to also have a
critical transition �15�, but in a different universality class,
which is confirmed in this article, where the value ��0.87
is found. Lastly the bond-interacting �-point model �12�
which is conjectured to have a softer, higher order critical
transition.

What is interesting in the model presented here is that
two different high-K critical behaviors are displayed in one
model. For smaller values of 	 the transition from the col-
lapsed to crystalline phase is of the hydrogen-bonding class,
and occurs at densities which are close to �=1 but on
close inspection we clearly have ��1, as may be seen in
Fig. 5.

Data collapse for 	=0.8 gave �=0.96 for the best fit,
however, the fitting was less clear than for 	=0.2 and it is
possible that the correction terms are more important. The
value of � calculated would then be an effective exponent. It
is tempting to conjecture that the true value of �=1, in anal-
ogy with the vertex-interacting model. However, as may be
seen in Fig. 11 the transition may be seen to occur well after
the density saturates to �=1. If this is the case, then the walk
is essentially a Hamiltonian walk at the transition, and looks
very similar to the model with a penalty for the formation of
corners in the Hamiltonian walk limit studied by Saleur �18�,
where he conjectured that the transition was of infinite order
BKT transition of the same type as in the F model, but is in
contradiction to the results presented here. This contradiction
was first seen in the hydrogen model in the Hamiltonian limit
�15�, where the transfer matrix results also gave estimates
close to �=1. This is a point which warrants further investi-
gation.
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FIG. 14. Phase diagram in the 	-� plane calculated using phe-
nomenological RG and eigenvalue crossings. The solid lines show
the solutions to the condition �e=�o, expected to coincide with the
self-avoiding walk-crystalline transition.
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FIG. 15. Phase diagram in the 	-� plane calculated using the
peaks of �� and ��� calculated using transfer matrices. The peaks of
� fluctuations pick out the line of � points, while the peak of ��
fluctuations pick out the transition between the isotropic collapsed
phase and the anisotropic crystalline phase. These two lines merge
to form the first order transition line separating the SAW phase from
the crystalline phase.

D. P. FOSTER AND C. PINETTES PHYSICAL REVIEW E 77, 021115 �2008�

021115-8



The results found here are to some extent confirmed by a
Monte Carlo study, mainly in three dimensions, which has
appeared during the final stages of this work �19�. Notably,
based on a flat-PERM study, a similar phase transition to that

presented in Figs. 14 and 15 is found. The transition from the
collapsed phase to the crystalline phase along the surface
where the walk length just diverges was seen to be probably
critical, as is the case here.
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