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The dynamics of a system formed by a finite number N of globally coupled bistable oscillators and driven
by external forces is studied focusing on a global variable defined as the arithmetic mean of each oscillator
variable. Several models based on truncation schemes of a hierarchy of stochastic equations for a set of
fluctuating cumulant variables are presented. This hierarchy is derived using Itô stochastic calculus, and the
noise terms in it are treated using an asymptotic approximation valid for large N. In addition, a simplified
one-variable model based on an effective potential is also considered. These models are tested in the frame-
work of the phenomenon of stochastic resonance. In turn, they are used to explain in simple terms the very
large gains recently observed in these finite systems.
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I. INTRODUCTION

Noise induced phenomena in nonlinear systems have at-
tracted a great deal of attention in a variety of contexts in
physics, chemistry, and the life sciences. An important ex-
ample is the phenomenon of stochastic resonance �SR� �1�,
in which the response of the system �output� to external driv-
ing �input� is amplified and optimized for certain values of
the noise parameters. More specifically, the nonmonotonic
behavior of the output signal-to-noise ratio �SNR� with the
strength of the noise is a widely accepted signature of SR. In
addition, a dimensionless quantity known as the SR gain is
usually defined as the ratio of the output SNR over the input
SNR.

Very recently, very large SR gains have been reported for
systems formed by a finite number N of globally coupled
bistable oscillators �2,3�. Here the term global coupling is
used to indicate that each oscillator interacts with all other
oscillators. These systems were used years ago by Kometani
and Shimizu �4� as an empirical model to describe muscle
contraction. Later on, Desai and Zwanzig �5� gave a more
detailed statistical mechanical description, finding an order-
disorder transition for a variable defined as the expectation
value of the position of one oscillator. This variable is used
to study the global behavior of the coupled bistable system.
Desai and Zwanzig focused on systems with infinitely large
sizes, N→�, investigating the system dynamics by looking
at the central cumulant moments of the position of a single
oscillator. In addition, a Gaussian approximation was pro-
posed in order to close the cumulant moment hierarchy and
obtain analytical expressions. A similar approach is currently
used as a mean field approximation in the investigation of
various noise-induced phenomena such as noise-induced
phase transitions �6,7�. Recently, in order to study the effect
of fluctuations due to the finite size of the system, Pikovsky
et al. �8� extended this approach by replacing the expectation
values of one-oscillator properties �·� by arithmetic means
over all oscillators N−1�i=1

N �·�. A Gaussian approximation, in-
cluding noisy terms, was derived and used to illustrate the

phenomenon of system size resonance, in which the SR
quantifiers display a nonmonotonic behavior as a function of
N. In this paper, the work by Pikovsky et al. is extended to
higher orders in the fluctuating cumulant dynamics. The
Gaussian approximation is rederived using a rigorous for-
malism based on Itô stochastic calculus and compared with
other approximations.

One important goal of this paper is to explain the very
large gain values observed in globally coupled bistable sys-
tems �2,3�, especially when compared with those observed in
uncoupled or isolated bistable systems. To that effect, it is
desirable to derive a simplified theory in which the number
of degrees of freedom is much smaller than the number of
coupled oscillators, thus being more amenable to analytical
treatment or qualitative interpretation. In this regard, the
Gaussian approximation is a practical alternative, though in
principle not fully satisfactory, because it is not based on a
small parameter expansion but on an uncontrolled assump-
tion �the neglect of cumulants higher than the second� that is
known to be not accurate even in the limit of an infinite
system �5�.

In this paper, this approximation is presented, as well as
other simplified models with a reduced number of degrees of
freedom which are able to mimic the most important features
of the system dynamics with a finite size. These simplified
models represent different approximation schemes and might
be regarded as an expansion or generalization of the work by
Desai and Zwanzig �5� and Pikovsky et al. �8�.

The paper is organized as follows. In the next section, the
model system and the SR quantifiers are defined. The sim-
plified models are presented in Sec. III. These models are
compared to the original model system by means of com-
puter simulations in Sec. IV. Finally, Sec. V provides a short
summary and conclusions.

II. MODEL AND DEFINITIONS

Let us consider a set of N interacting bistable oscillators,
each one of them characterized by a single degree of freedom
xi �i=1, . . . ,N�, whose dynamics is governed by the Lange-
vin equations �4,5�*dcubero@us.es
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ẋi = xi − xi
3 +

�

N
�
j=1

N

�xj − xi� + �i�t� + F�t� , �1�

where �i�t� is a Gaussian white noise with zero average and

��i�t�� j�s�� = 2D�ij��t − s� . �2�

� is a coupling parameter defining the strength of the inter-
action between oscillators and F�t� is an external driving
force of period T.

To characterize the system as a whole we define the col-
lective or global variable S�t� as

S�t� =
1

N
�
i=1

N

xi�t� . �3�

The stochastic resonance quantifiers for this variable are de-
fined in the usual way. The one-time correlation function,

C��� =
1

T
�

0

T

dt�S�t + ��S�t���, �4�

can be written as the sum of two contributions: A coherent
part,

Ccoh��� =
1

T
�

0

T

dt�S�t + �����S�t���, �5�

which is periodic with period T, and an incoherent part,

Cincoh��� = C��� − Ccoh��� , �6�

which decays to zero for large values of � and reflects the
correlation of the process S�t� at different times due to fluc-
tuations. In the expressions above, the notation �¯� indicates
an average over the noise realizations and the subscript “�”
indicates the long time limit of the noise average, i.e., its
value after waiting for t long enough that transients have
died out. The SNR of a random signal measures the signal
strength relative to its background noise. More specifically,
we calculate the output SNR as

Rout =
Qu

Ql
, �7�

where

Qu =
2

T
�

0

T

d� Ccoh���cos���� , �8�

�=2� /T being the driving frequency, and

Ql =
2

�
�

0

�

d� Cincoh���cos���� . �9�

Note that the quantity Qu is proportional to the so-called
spectral amplification, which is another widely used SR
quantifier.

As the size of the system N is increased while keeping the
interaction parameter � constant, the collective variable S�t�
becomes less noisy, becoming completely deterministic in
the limit N→�. As a result, Rout diverges in that limit. This

is a consequence of the averaging process implicit in the
definition �3�.

The SR gain is defined as

G =
Rout

Rin
, �10�

where Rin is the SNR of the collective input signal
N−1�i=1

N �F�t�+�i�t��. For example, for a periodic rectangular
driving force of amplitude A, the input SNR is given by
Rin=4A2N / ��D�. The SR gain �10� is a dimensionless quan-
tity that measures the amplification of the system response
with respect to the collective input signal. The input SNR Rin
diverges linearly with N in the limit N→�, so that the SR
gain remains finite.

Since in a system with coupled linear oscillators the SNR
of the collective process equals the SNR of the collective
input signal, i.e., Rout

�L�=Rin, the SR gain also measures the
response of the nonlinear system with respect to that of a
linear system subject to the same deterministic and stochastic
forces.

Additionally, in the absence of interaction between the
bistable oscillators �the case �=0�, the collective SR gain G
equals the SR gain of each independent oscillator �2�. Thus,
by comparing the SR gain values of the collective variable of
a finite set of interacting oscillators with those observed in
the case N=1, we have a useful tool to highlight nonlinear
effects that are a direct consequence of the coupling between
the oscillators.

III. FINITE SIZE DYNAMICS

In this section, we define a set of stochastic processes,
which we will refer to as fluctuating cumulants, in order to
describe the dynamics of a finite system of coupled oscilla-
tors in terms of a reduced number of variables. Then, by
using Itô stochastic calculus, we derive the hierarchy of
equations that these cumulants obey. A few approximation
schemes are proposed for systems with a large but finite
number of oscillators. Finally, we introduce a simple one-
variable model in which the dynamics of S�t� is mimicked by
using an effective potential.

The fact that the infinite system �N=�� is completely de-
terministic, and the approximations described in this section
are valid for large N, makes these methods especially appro-
priate to study the effect of fluctuations due to the finite size
of the system.

A. Fluctuating cumulants

Let us define the set of stochastic variables

Mk�t� =
1

N
�
i=1

N

�xi�t� − S�t��k, �11�

with k being a positive integer. We will refer to Mk as the
fluctuating moment of order k. Note that M1�t�=0.

In order to obtain a hierarchy of stochastic differential
equations for these variables, we need first to choose a con-
venient stochastic interpretation. The Langevin equations �1�
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are well defined and do not depend on the stochastic inter-
pretation. Note, however, that the specific form of the sto-
chastic differential equations for the fluctuating moments do
depend on the stochastic calculus utilized. In the following,
unless explicitly stated, Itô stochastic calculus is assumed. It
is customary within this calculus to use a notation to express
the stochastic differential equations in which there is no ex-
plicit mention to the white noises �see for example �9��. In
particular, Eq. �1� would be written as

dxi = 	xi − xi
3 +

�

N
�
j=1

N

�xj − xi� + F�t�
dt + �2D�1/2dBi,

�12�

where dBi, with i=1, . . . ,N, is the differential of the Wiener
process Bi�t� with properties

dBi�t�dBj�t� = �ijdt . �13�

The Gaussian white noise �i�t� can be viewed as proportional
to the derivative of Bi�t�, �i= �2D�1/2dBi /dt, though it is not
an ordinary stochastic process but a generalized process and
requires a special formalism to be defined rigorously �see �9�
and references within�. Here we will use both notations at
convenience.

Using Itô differentiation rules �9� we find the following
stochastic differential equations for the fluctuating moments

Ṁk

k
= �1 − 3S2 − ��Mk − Mk+2 − 3SMk+1 + �M3 + 3SM2�Mk−1

+ �k − 1�D�1 −
1

N
� − 	Mk−1 + 
k−1, �14�

where


k�t� =
1

N
�
i=1

N

�xi�t� − S�t��k�i�t� �15�

and

	�t� = 
0�t� =
1

N
�
i=1

N

�i�t� �16�

are �-correlated noises with the following first moments:

�	�t�� = �
k�t�� = 0, �17�

�	�t�	�t��� =
2D

N
��t� − t� , �18�

�
k�t�
k��t��� =
2D

N
��t� − t��Mk+k��t�� . �19�

Notice that the result �19� is only obtained from Eq. �15�
when Itô calculus is assumed �see Appendix A�. Using Stra-
tonovich calculus leads to a much more intricate expression
in which the approach proposed in this paper is not appli-
cable.

Additionally, note that Eq. �19� implies that the processes

k are not uncorrelated. Rigorously, only 	�t� is a Gaussian

process. Nevertheless, it can be shown that in the asymptotic
limit of a very large number of oscillators, N→�, all 
k tend
toward a Gaussian behavior �see Appendix B�. This property
will allow us to rewrite Eq. �14� as a closed set of stochastic
equations for the fluctuating variables in that limit.

We can define a set of fluctuating cumulants by using the
formula

Kn = Mn − �
k=1

n−1
�n − 1�!

k ! �n − 1 − k�!
Kn−kMk. �20�

Equation �20� is the formula that relates the moments with
the cumulant moments of a single-variable stochastic distri-
bution. When the stochastic variable is Gaussian, all cumu-
lants Kn, with n�3, exactly vanish. A description in terms of
cumulants is preferable because, unlike a description with
moments, it is expected that higher order cumulants are neg-
ligible in comparison with lower order cumulants, especially
if the deviation with respect to a Gaussian behavior is not
very large.

In terms of the fluctuating cumulants Kn, the first three
equations of the hierarchy �14� are

Ṡ = S − S3 − 3SK2 − K3 + 	 + F�t� , �21�

K̇2

2
= �1 − 3S2 − ��K2 − 3SK3 − 3K2

2 − K4 + D�1 −
1

N
� + 
1,

�22�

K̇3

3
= �1 − 3S2 − ��K3 − 3S�2K2

2 + K4�

− 9K2K3 − K5 − K2	 + 
2. �23�

The noise terms 	 and 
k vanish in the formal limit N→�,
therefore leading to a deterministic hierarchy of equations for
the fluctuating moments or cumulants. This deterministic hi-
erarchy is equivalent to the nonlinear hierarchy obtained by
Desai and Zwanzig in �5� for the cumulant moments of the
process y1�t�=x1�t�−S�t�. In contrast to the theory presented
in Ref. �5�, which is based on the calculation of one-time
expectation values, the fluctuating cumulant approach will
allow us to study dynamical properties such as autocorrela-
tion functions.

When N is finite, the hierarchy of equations that Mk or Kk
obeys is not closed, since the noise processes 
k depend on
Mk in a nontrivial way. In the next subsections we present a
few approximative schemes that overcome this difficulty for
systems with a large number of coupled oscillators.

B. Second order approximation

If we retain the first two of Eqs. �21�–�23�, neglect all
fluctuating cumulants Kn with n�3, and also neglect the
term 1 /N and the noise 
1�t� in Eq. �22�, we obtain a closed
set of equations for the processes S�t� and K2�t�:

Ṡ = S − S3 − 3SK2 + 	 + F�t� ,

FINITE-SIZE FLUCTUATIONS AND STOCHASTIC… PHYSICAL REVIEW E 77, 021112 �2008�

021112-3



K̇2

2
= �1 − 3S2 − ��K2 − 3K2

2 + D . �24�

This set of equations was proposed by Pikovsky et al. in Ref.
�8�. This truncation scheme has been called “the Gaussian
approximation” because all fluctuating cumulants with order
higher than the second one are neglected. There is no reason
to expect a priori that these higher order cumulants can be
neglected in any limit, other than the hope that their contri-
bution is small. Note, in addition, that in this scheme the
�-correlated noise 
1�t� is neglected without justification.

C. Third order approximation

Let us now focus on a third order truncation scheme. We
will retain the three Eqs. �21�–�23�, but consistently neglect
K4 and K5.

Since each 
k�t� for k=1,2 , . . . is a Gaussian process in
the lowest order in N−1 �see Appendix B�, its probability
distribution is completely determined by its first moments
�17�–�19�. As mentioned before, the processes 
k�t� are not
independent of each other. Thus it is preferable to express
them in terms of a set of independent Gaussian noises 	l�t�
with zero mean and

�	l�t�	l��t��� =
2D

N
�ll���t − t�� , �25�

where l , l��0 and 	0
	. With the expansion


k = �
l=0

k

ckl	l, �26�

we only need to select the coefficients ckl so that the corre-
lations �19� are satisfied. This can be achieved by using the
Gram-Schmidt orthonormalization method. The result for the
first two terms is


1 = �K2�1/2	1, �27�


2 = �K2�	 +
�K3�

�K2�1/2	1 +
��K4��K2� + 2�K2�3 − �K3�2�1/2

�K2�1/2 	2.

�28�

Note, however, that in these expressions the coefficients ckl
appear as functions of the average values of the fluctuating
cumulants Kn. Thus, if we plan to solve Eqs. �21�–�23� using
Eqs. �27� and �28�, we would have to consider the equation
of motion for �Kn� �5� and solve the whole set of equations
self-consistently. Alternatively, we could use a slightly dif-
ferent version of Eqs. �27� and �28� in which the expected
values �Kn� are replaced by Kn. This way, the correlations
�19� for the first noise terms are also identically satisfied, and
the fact that the fluctuating cumulants become deterministic
in the limit N→� guarantees that the proposed expressions
for the noises 
k�t� are Gaussian in the lowest order in N−1.
Since all Gaussian processes are completely determined by
their first two moments, both methods to generate the noise
sources 
k are mathematically equivalent in the asymptotic

limit of large N, though the latter is more physically appeal-
ing because in this case the instantaneous value of the noise
source 
k�t� in one trajectory does not depend on averages
over trajectories but on single-trajectory values.

Using the latter procedure, the following stochastic differ-
ential equations with multiplicative noise are obtained:

Ṡ = S − S3 − 3SK2 − K3 + 	 + F�t� ,

K̇2

2
= �1 − 3S2 − ��K2 − 3SK3 − 3K2

2 + D + �K2�1/2	1,

K̇3

3
= �1 − 3S2 − ��K3 − 6SK2

2 − 9K2K3

+
K3	1 + �2K2

3 − K3
2�1/2	2

�K2�1/2 . �29�

This method also has the advantage that the system of Eqs.
�29� can be solved numerically using standard stochastic
algorithms �10�. It represents a third order approximation
scheme. Finally, notice that this scheme can be applied in a
straightforward way to obtain the corresponding equations of
an arbitrary order truncation of the fluctuating cumulant hi-
erarchy.

D. Effective potential

As we increase the truncation order of the fluctuating cu-
mulant hierarchy, as we have discussed above, a more accu-
rate approximation is obtained. However, the number of
equations is also increased. On the other hand, we may won-
der how good a description based on a single differential
equation is. The aim is to derive a simplified model that may
not mimic quantitatively but qualitatively the coupled system
dynamics, in addition to being more amenable to analytical
treatment.

Here we consider the following single stochastic equa-
tion:

Ṡ = − Ueff� �S� + 	 + F�t� , �30�

where 	�t� is the Gaussian white noise defined by Eqs. �17�
and �18� and Ueff�S� is an effective potential to be specified.

We can determine the effective potential uniquely by re-
quiring the model to reproduce the equilibrium properties of
the original system. The stationary probability density Peq�S�
of the Langevin equation �30� in the absence of external
driving is given by �11�

Peq�S� = Z−1 exp�−
NUeff�S�

D
� , �31�

where Z is a normalization constant. Therefore, by inverting
Eq. �31�, we find an expression for the effective potential up
to an additive constant c,
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Ueff�S� = −
N

D
ln Peq�S� + c . �32�

In Ref. �5�, Desai and Zwanzig presented an analytical ex-
pression for the equilibrium density Peq�S� by retaining the
leading term in the asymptotic expansion for large N. We
will refer to Ueff

����S� as the corresponding effective potential.
This analytical solution shows that for a given value of �
there exists a D=Dc such that, for values D greater than Dc,
the effective potential Ueff

����S� is monostable with a minimum
located at S0=0. For 0�D
Dc, the effective potential is
bistable with two minima at �S0, S0 being a function of �
and D. Figure 1 depicts this situation for a system with �
=0.5. The calculated critical noise for this value of � is Dc
�0.2645 �5�.

For a system with a finite size N, we can calculate nu-
merically Peq�S� by simulating the Langevin equations
�1� and computing the histogram of the collective variable
S�t� after a sufficiently large time when the system has
equilibrated. Figure 1 shows the resulting effective potential
Ueff

�N��S� for a system with N=10 oscillators. It can be seen
that the deviations with respect to the infinite size potential
Ueff

����S� are very small, even for such a small system.

IV. STOCHASTIC RESONANCE REVISITED

In this section, we compare numerically the predictions of
the effective models presented in Sec. III in the framework
of SR. The simplified character of these models will allow us
to explain in intuitive terms the highly nonlinear effects ob-
served in the stochastic resonance quantifiers �2,3�.

We will restrict our study to a periodic rectangular driving
force,

F�t� = �− 1�n�t�A , �33�

where n�t�= �2t /T�, �z� being the floor function of z. The input
SNR for forces of this type can be readily calculated as Rin
=4A2N / ��D�. In all cases reported here the coupling
strength is fixed to �=0.5, the driving frequency �=2� /T to
�=0.01, and the driving amplitude to A=0.3. This amplitude
is subthreshold in the sense that the driving force �33� cannot
induce sustained oscillations between the different attractors
of the dynamics in the absence of noise �i.e., for D=0�.

The stochastic differential equations presented in the
preceding sections were solved numerically by using weak
predictor-corrector algorithms of order 2.0 �10�.

Figure 2 shows several SR quantifiers as a function of the
noise strength D for a coupled system with N=10 oscillators.
A strong amplification of the collective response is observed,
with SR gains reaching very large values, especially when
compared with uncoupled systems subject to the same input
signals �see Ref. �12��. These findings were first reported in
�2�. Since the numerator Qu of the SNR remains of the same
order of magnitude for the range of noise strength values
plotted, the large values of the SR gain are mainly due to the
reduction of a few orders of magnitude of the denominator
Ql, as shown in the top-right panel of Fig. 2.

The SR quantifiers obtained with the effective potential
model described by Eq. �30� are depicted by triangles in Fig.
2. Triangles pointing upward correspond to the effective po-
tential Ueff

��� in the asymptotic limit N→�, whereas triangles
pointing downward correspond to the effective potential
Ueff

�10� computed numerically for a system with N=10. In Fig.
2, it can be seen that the latter leads to a better agreement
than the former for Qu due to the small but appreciable dis-
crepancies observed in Fig. 1. However, no significant im-
provement is seen in the rest of the quantifiers: Ql, the SNR,
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FIG. 1. �Color online� Effective potential for the simple Lange-
vin model �30� for two systems with �=0.5. Top panel corresponds
to D=0.08 �
Dc�0.2645� and the bottom panel to D=0.4 ��Dc�.
The solid lines depict the analytical solution given in Ref. �5�,
whereas the dotted lines correspond to the effective potential ob-
tained using the simulation method described in the text for a sys-
tem with N=10.
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FIG. 2. �Color online� Effective dynamics for a coupled system
with N=10 oscillators subject to a rectangular driving of amplitude
A=0.3 and frequency �=0.01. Several stochastic resonance quan-
tifiers are depicted vs the noise strength D. From top left to right
bottom: The numerator of the SNR �Qu�, the denominator �Ql�, the
output SNR �Rout�, and the gain �G�. The solid lines depict the
numerical solution of the full Langevin dynamics �1�. The dotted
and dashed lines correspond to the fluctuating cumulants approach
truncated at the second �24� and third order �29�, respectively. The
results for the effective potential approach �30� are depicted by
triangles pointing upward �Ueff

���� and downward �Ueff
�10��.
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and the gain. In general, the effective potential approach is
able to describe qualitatively the phenomenon, displaying a
nonmonotonic behavior with a maximum at about the same
value of the noise strength D than the original system. Nev-
ertheless, quantitatively the agreement is not so good, show-
ing a consistent underestimation of the noise term Ql by
roughly a factor of 2. The fact that this approach underesti-
mates the fluctuations of the collective variable is easy to
understand if one takes into account that the effective poten-
tial is a mean-field-like idealization in which the real dis-
crete, more noisy, interaction is replaced by a smoothed po-
tential.

A slightly better quantitative agreement is obtained with
the Gaussian approximation described by Eq. �24�, i.e., the
fluctuating cumulants approach truncated at the second order,
which is depicted in Fig. 2 by dotted lines. It can be seen that
the SNR is in better agreement, though the SR gain around
the maximum has not been improved significantly overall. A
considerably enhanced agreement is achieved by the third
order approach in Eq. �29�, which is represented in Fig. 2 by
dashed lines. It can be seen that this third order approxima-
tion slightly underestimates the noise term Ql for large
enough values of D. This is what one would expect, because
this method neglects the higher order cumulants K4 and K5 in
Eq. �29� �see Eqs. �22� and �23��, which, if present, would
increase the fluctuations of the lower order cumulants.

Figure 3 confirms the above discussed behavior of the
simplified models for a larger system with N=30. Again, the
effective potential theory and the Gaussian approximation
provide mainly a qualitative picture, with quantitative pre-
dictions within the same order of magnitude. The best quan-
titative agreement is also observed to be given by the third-
order fluctuating cumulant scheme. The main differences
with respect to the smaller system discussed before are in the
quantity Qu, which is proportional to the spectral amplifica-
tion. In this case the system is large enough so that very
small differences are observed between the effective poten-
tial Ueff

�30� and Ueff
���. They both provide data in very good

agreement with the original system data. In addition, notice
that the Gaussian approximation data for Qu deviates appre-
ciably from the system data for large enough values of D.

The fact that the third order approximation leads to a good
agreement for Qu indicates that the third cumulant plays an
important role for the spectral amplification at these noise
strength values.

Finally, we now use these simplified models to explain the
very large gain values observed in globally coupled bistable
systems �2,3�, and particularly those observed in the bottom-
right panels of Figs. 2 and 3. These gain values are much
larger than those observed in uncoupled or isolated bistable
systems subject to the same rectangular input signals �12�,
and thus are due to the interaction between the oscillators.
For the sake of simplicity we will use the effective potential
approximation in the following discussion, though similar
arguments can be used within the other schemes presented in
Sec. III. The only noisy term in Eq. �30� is 	�t�, which has a
strength of D /N. Thus we can fix the individual noise
strength D and still be able to get rid of the noise by consid-
ering the limit N→�. This way Eq. �30� becomes determin-
istic and we can apply the concept of static threshold for a
finite value of D. A simple analysis of the infinite size po-
tential shows that a constant driving of A=0.3 is able to
remove one of the two attractors of the dynamics for systems
with noise strength values D larger than Dc�A=0.3��0.02
�and, of course, smaller than Dc�A=0�=Dc�0.2645, the
noise value where the effective potential turns monostable in
the absence of driving�. Therefore, most of the data points in
Figs. 2 and 3 correspond to suprathreshold dynamics when
viewed from the perspective of the Langevin equation �30�.
The response is expected to be more amplified with suprath-
reshold signals than with subthreshold signals, because, for
the first ones, the presence of noise is not necessary in order
to produce jumps between the two locations of the time-
dependent attractor. For instance, only gains larger than unity
have been found for an isolated bistable system subject to
monochromatic signals when the driving amplitude is su-
prathreshold �13�, with gain values reaching a few tenths
above unity. In fact, the above consideration may well ex-
plain why gains larger than unity �also a few tenths above
unity� are found for globally coupled bistable systems sub-
ject to monochromatic signals �2�: The collective variable
dynamics is effectively suprathreshold.

A numerical analysis of the deterministic version �i.e.,
without the noise terms 	k� of Eqs. �29� governing the third
order approximation confirms that, under a constant driving
of A=0.3, there is a transition at about 0.02 between a situ-
ation in which the system presents two attractors �subthresh-
old dynamics� and only one �suprathreshold dynamics�. In
fact, this analysis can also be carried out with the fluctuating
cumulant theory presented in Sec. III with an arbitrary order
of truncation and thus with an arbitrary order of accuracy.

Let us illustrate the above discussion by considering two
systems: One with a noise strength value D=0.017, which is
just below the transition value Dc�A=0.3�, and one with D
=0.2, well above that transition value. Figures 4 and 5 show
the behavior of the stochastic resonance quantifiers as a func-
tion of the system size N for these two systems under the
same rectangular driving with A=0.3 and �=0.01. It can be
seen that, for large enough N, the size of the fluctuations �Ql�
is always reduced as N is increased, as expected. However,
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FIG. 3. �Color online� Same as in Fig. 2 but for a system with
N=30.
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both systems display a very different behavior. In Fig. 4 the
SR quantifiers Qu, SNR, and the gain are observed to de-
crease monotonically as N is increased. This is what is ex-
pected for a system under subthreshold dynamics, because
the driving force alone is unable to provoke jumps between
the attractors and needs the presence of fluctuations. In the
limit N→�, the fluctuations, and thus the jumps, are com-
pletely suppressed. On the other hand, a very different be-
havior is observed in Fig. 5 for a noise strength value above
the transition value corresponding to this driving amplitude.
In this case, there is only one attractor, which is displaced to
the positive or negative axis around the origin according to
the instantaneous sign of the driving force. Here the presence
of finite size fluctuations is only a nuisance to the driven
oscillations of the collective variable. As a result, the spectral
amplification and the SR gain grow with N toward the finite
values which correspond to the infinite system.

Finally, let us notice that the phenomenon of system size
resonance �8�, i.e., the nonmonotonic behavior of the SR
quantifiers when plotted as a function of N, could only ap-
pear in a parameter region in which the system dynamics is

subthreshold. Nevertheless, this phenomenon is not observed
in Fig. 4. This is due to the fact that the strength of the
fluctuations is very small even for small values of the system
size N, already below the optimal noise value in which the
response is maximized. Any further increase of the system
size reduces the fluctuations and, thus, the jumps between the
attractors.

V. CONCLUSIONS

Starting from the Langevin equations defining the model
system, we have derived, using Itô stochastic calculus, a hi-
erarchy of exact stochastic differential equations for a set of
fluctuating cumulant variables, defined by using the arith-
metic mean over all oscillators. Due to the useful mathemati-
cal properties of Itô stochastic calculus, the hierarchy con-
tains noise terms with simple autocorrelation properties.
Furthermore, the approach proposed in this paper for the
fluctuating cumulants is not directly applicable with Stra-
tonovich calculus. In the limit of an infinite number of oscil-
lators, the whole hierarchy reduces to the one obtained by
Desai and Zwanzig �5� for the expected values of the cumu-
lants. In contrast to the theory presented in Ref �5�, the fluc-
tuating cumulant approach allows us to study a wide range of
collective dynamical properties like autocorrelation functions
or the SNR, in addition to effects due to finite size fluctua-
tions.

Nevertheless, the noise terms that appear in the exact hi-
erarchy for the fluctuating cumulant variables depend in a
complicated way on the fluctuating cumulants and approxi-
mations have to be taken in order to obtain a closed set of
stochastic differential equations. Here it is shown that this
difficulty can be overcome in the asymptotic limit of a very
large number of oscillators. However, one still has the incon-
venience of dealing with a hierarchy with an infinite number
of equations, and a truncation scheme is desirable. A Gauss-
ian approximation was proposed by Pikovsky et al. in Ref.
�8�, and here it is presented as a second-order truncation
scheme of the fluctuating cumulant hierarchy. In addition, an
arbritrary-order truncation method is proposed, with explicit
expressions given for the third order only. This third order
approach turns out to provide the best quantitative agreement
with the SR data. Finally, a rather simple approach based on
a single variable and the use of an effective potential is pro-
posed.

The spectral amplification of the collective variable as a
function of the noise strength D of systems with N=10 and
N=30 bistable oscillators is found to be in good agreement
with the predictions given by all the approximations, though
small but appreciable systematic deviations are observed for
the Gaussian approximation for a system with N=30 oscilla-
tors. Additionally, the effective potential theory and the
Gaussian approximation do not account well for the SNR or
the SR gain of the collective variable, though the data is
within the same order of magnitude. A systematic underesti-
mation of the fluctuations of the collective variable is done
by the effective potential approach due to the mean-field-like
character of this simplified theory. The best quantitative
agreement of the SNR and the SR gain is given by the third-
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order fluctuating cumulant theory, although a small system-
atic underestimation of the fluctuations is still observed with
this third order theory due to the neglect of higher order
fluctuating cumulants.

Furthermore, using any of the approximations presented,
we are able to explain the very large gain values observed in
Refs. �2,3�. Specifically, it is shown that the driving ampli-
tudes used are suprathreshold from the point of view of the
effective dynamics in the range of noise strength values uti-
lized in those works, i.e., there is only one attractor of the
dynamics under the presence of the driving force and this
attractor oscillates following the driving force. Simulation
results, showing several SR quantifiers as a function of the
system size N, confirm this behavior.

This situation resembles the effect of a high-frequency
signal in an isolated bistable system. In the latter case, the
high-frequency signal can be removed from the description
by means of an effective bistable potential with modified
parameters, with the consequence that previously subthresh-
old driving amplitudes can become suprathreshold from the
point of view of the effective potential �14�. In contrast, the
effective dynamics induced by the high-frequency signal has
been shown to provoke the opposite effect on an excitable
system, being able to suppress the excitable character of the
system �15�. This suggests that much work is needed in order
to extend the present analysis to finite sets of coupled excit-
able systems �16�.
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APPENDIX A: DERIVATION OF EQ. (19)

In the notation commonly utilized within the framework
of Itô calculus, Eq. �19� can be expressed as

d�k�t�d�l�t� =
2D

N
Mk+l�t�dt , �A1�

d�k�t�d�l�t�� = 0 for t � t�, �A2�

where �k�t�=�0
t d� 
k���. To prove these equations we start

from the definition �15� to arrive at

d�k�t� =
�2D�1/2

N
�
i=1

N

�yi�t��kdBi�t� , �A3�

where yi�t�=xi�t�−S�t�. Thus

d�k�t�d�l�t� =
2D

N2 �
i,j

�yi�t��k�yj�t��ldBi�t�dBj�t�

=
2D

N2 �
i

�yi�t��k+ldt =
2D

N
Mk+l�t�dt , �A4�

where we have used Eq. �13�. Similarly, using the fact that
the Wiener processes Bi�t� have independent increments, i.e.,
dBj�t�dBj�t��=0 for t� t�, and that the increments dBj�t�� are
independent of yi�t� at times t�� t, Eq. �A2� is readily
proven.

In order to clarify the advantages of Itô calculus in the
context of this paper, let us now compute the autocorrelation
of 
k�t� by using Stratonovich calculus. In this case we are
entitled to utilize the usual rules of differentiation of deter-
ministic calculus. To that aim, the Novikov-Furutsu theorem
�17–19� states that if ��t� is a Gaussian white noise with zero
mean and autocorrelation ���t���s��=2D��t−s�, then for any
functional g��� we have

���t�g���� =� ds���t���s��� �g���
���s� � = 2D� �g���

���t� � ,

�A5�

where �g��� /���t� denotes the functional derivative of g���.
Thus, assuming t� t�,

�
k�t�
l�t��� =
2D

N2 �
i,j
� ��yi�t�k�i�t�yj�t��l�

�� j�t��
�

=
2D

N2 �
i,j
���i�t�yi�t�k��yj�t��l�

�� j�t��
�

+ ��i�t�yj�t��l��yi�t�k�
�� j�t��

�
+ �yi�t�kyj�t��l ��i�t�

�� j�t��
�� . �A6�

Using repeatedly the Novikov-Furutsu theorem and the fact
that �yj�t� /��i�t�= �1 /2��ij, we arrive at Eq. �19� plus the
following two extra terms on the right-hand side of Eq. �19�

D2lk�Mk−1�t�Ml−1�t��� +
2D2l

N2 �
i
�yi�t�k�yi�t��l−1

��i�t�
� .

�A7�

These extra terms make the problem much more difficult to
deal with.

APPENDIX B: GAUSSIAN NOISES IN THE LIMIT
OF LARGE NUMBER OF OSCILLATORS

In this appendix we show that the process 
k�t� tends to a
Gaussian behavior as N→�. First note that the third moment
of 
k�t�,

�
k�t1�
k�t2�
k�t3�� = 0, �B1�

and all odd moments of 
k�t� vanish. If 
k�t� were Gaussian,
all cumulants higher than the second should be zero. This
requires all odd moments of 
k�t� to vanish but also a spe-
cific functional form of the even moments �11�. For instance,
were 
k�t� a Gaussian process, the fourth moment
�
k�t1�
k�t2�
k�t3�
k�t4�� would be given by
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�
k�t1�
k�t2���
k�t3�
k�t4�� + �
k�t1�
k�t3���
k�t2�
k�t4�� + �
k�t1�
k�t4���
k�t2�
k�t3�� . �B2�

Instead, a simple calculation shows that for a finite N the fourth moment is

�
k�t1�
k�t2�
k�t3�
k�t4�� = �2D

N
�2

��M2k�t1�M2k�t2����t1 − t4���t2 − t3� + �M2k�t1�M2k�t2����t1 − t3���t2 − t4�

+ �M2k�t2�M2k�t3����t1 − t2���t3 − t4�� . �B3�

Therefore, by considering Eq. �19�, it is clear that Eq. �B2�
does not equal Eq. �B3� unless

�M2k�t1�M2k�t2�� = �M2k�t1���M2k�t2�� . �B4�

This identity is asymptotically correct in the limit N→�,
because then all fluctuating moments become deterministic.
For a large enough N, Eq. �B4� will hold as a good approxi-
mation, showing a Gaussian behavior in the lowest order of a
N−1 expansion. Clearly, similar considerations apply to other
even moments of 
k�t�.
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