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Computing monomer-dimer systems through matrix permanent
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The monomer-dimer model is fundamental in statistical mechanics. However, it is #P-complete in compu-
tation, even for two-dimensional problems. A formulation for the partition function of the monomer-dimer
system is proposed in this paper by transforming the number of all matchings of a bipartite graph into the
number of perfect matchings of an extended bipartite graph, which can be given by a matrix permanent.
Sequential importance sampling algorithm is applied to compute the permanents. For two-dimensional lattice
with periodic condition, the monomer-dimer constant is known as £h,=0.662798972834. We obtain
0.6627+0.0002 for our approximation, which shows the robustness and the efficiency of the algorithm. For
three-dimensional problem, our numerical result is 0.7847+0.0014, which agrees with the best known bounds.
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I. INTRODUCTION

A monomer-dimer model is considered in which the set of
sites in a lattice is covered by a nonoverlapping arrangement
of monomers (molecules occupying one site) and dimers
(molecules occupying two sites that are neighbors in the lat-
tice). It is fundamental in lattice statistical mechanics [1,2].
A two-dimensional monomer-dimer model with size m
=(m,,m,) is a rectangle lattice with m; X m, sites. The two-
dimensional monomer-dimer systems are used to investigate
the properties of adsorbed diatomic molecules on a crystal
surface [3]; the three-dimensional systems occur classically
in the theory of mixtures of molecules of different sizes [4]
as well as the cell cluster theory of the liquid state [5]. A
more complete description of the history and the significance
of the monomer-dimer model can be found in Ref. [1], and
references therein.

All possible monomer-dimer coverings for a given lattice
defines the configuration space of a monomer-dimer system.
A fundamental question for such a statistical mechanics
model is to determine the cardinal number of the configura-
tion space. Practically, most of the thermodynamic properties
of physical systems can be obtained from the number of all
possible ways that a given lattice can be covered. Thus a
considerable attention has been devoted to such a counting
problem. For a d-dimensional cubic lattice with size m
=(m,,m,,...,my), this cardinal number is denoted by
Z(m,d). It is proved that the following limit exists:

] In Z(m,d)
hy=lim ————.

m—oo m1m2 e md

The limit %, is called monomer-dimer constant [6].

Even for the simplest two-dimensional models, there are
very few closed form results on the monomer-dimer con-
stant. Baxter and Gaunt [7,8] give estimates of the constants
using the asymptotic expansions. Hammersley and Menon
[9] estimate the &, by calculating lower and upper bounds.
Numerical simulation should play an important role. How-
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ever it has been proved that computing the monomer-dimer
constant is a #P-complete problem even for two-dimensional
problems [10], which shows the hardness of the computa-
tion. The Monte Carlo methods are applied to study the prob-
lem in Refs. [2,6,11], which is a natural consideration.

Recently, Friedland and Peled [12] proposed methods for
the estimation of multidimensional topological entropy. Ap-
plying the methods to the computation of monomer-dimer
constant, they obtain 4,=0.66279897, which agrees with the
heuristic estimation e"2=1.940215351 of Baxter [7], and
0.7653<h3=<0.7862. Two-dimensional model with fixed
dimer density was studied intensively by Kong [13]. The
monomer-dimer constant with 12 digits accuracy for two-
dimensional problem is given as h,=0.662798972834.

In this paper, we propose a formulation that transforms
the counting of all matchings in a bipartite graph to the
counting of perfect matchings in an extended bipartite graph.
Hence, the monomer-dimer systems in any dimension can be
computed by permanents of the matrices. Permanent of a
matrix is studied for a long time [14,15]. After Valiant proves
that evaluating the permanent of a 0-1 matrix is a
#P-complete problem [16], many randomized approximate
algorithms are developed [17-19]. They can give reasonable
estimations for permanents within acceptable computer time.

We consider cubic lattices with periodic condition, and
concentrate on two- and three-dimensional lattices in the
computation. The algorithms are applicable to other dimen-
sions and domains other than rectangle. For simplicity of
notation, we assume that m;=m,=---=m, But this is not
essential for the algorithms.

In the next section, a formulation of the monomer-dimer
model in bipartite graph is presented. The partition function
of the system is represented as the permanent of the adja-
cency matrix of the graph in Sec. III. Computational methods
are discussed in Sec. IV. The sequential importance sampling
algorithms are applied to compute the matrix permanent. In
Sec. V, numerical results are given which clearly show the
efficiency of our formulation and the computational meth-
ods. Finally in Sec. VI, some discussions and comments are
given.
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FIG. 1. (Color online) (a) A (4,4) lattice. (b) A covering with
two monomers and seven dimers on the lattice in (a).

II. FORMULATION IN BIPARTITE GRAPH

Consider a lattice with the site number N (N is even), and
define n=N/2. [Figure 1(a) shows a (4,4) planer lattice, with
N=4X4=16 and n=8.] Each site in the lattice is regarded as
a vertex, and an edge between two vertices exists if they are
neighbors in the lattice. Hence a graph G=(V,E) is naturally
defined. Using the terminology of graph theory, a monomer-
dimer system can be represented as a covering of the vertices
of the graph G=(V,E) by a nonoverlapping arrangement of
monomers and dimers. Figure 1(b) shows a covering of the
lattice in Fig. 1(a) with two monomers and seven dimers.

Actually the monomer-dimer configurations can easily be
mapped as matchings in the graph G. The sites of a cubic
lattice can be divided into two vertex sets V| and V,. A site
and its neighbor should always belong to different vertex
sets. Consider the lattice in Fig. 1(a) as an example. All
circles give the vertex set V; and all stars give the set V,.
There are edges between the neighbors, and all edges form
the edge set E. Thus an undirected bipartite graph
G(V,UV,,E) is constructed (see Fig. 2). In terms of the
graph theory, a covering of all vertices with dimers is a per-

FIG. 2. The bipartite graph G(V; U V,,E).
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FIG. 3. (Color online) The auxiliary graph G(B).

fect matching of the bipartite graph, and a covering with k
dimers is a k-matching of the graph. Hence the cardinal num-
ber of the configuration space of the monomer-dimer model
equals to the number of all possible matchings in the
bipartite.

III. PARTITION FUNCTION VIA PERMANENTS OF
ADJACENCY MATRICES

The partition function of the monomer-dimer system is
defined as

Z(\) = Zg(\) = 2 mk, (1)
k=0

where m;=m(G) is the number of k-matchings in the graph
G, which is equivalent to the number of monomer-dimer
configurations with k dimers. Z5(1) enumerates all possible
matchings in G.

Let G be a bipartite graph and A be the adjacency matrix
of the graph G. The number of perfect matchings in G is
equal to the permanent of the matrix A, which is defined as

perm(A) = > [T aip- )

oell, i=1

Here I1, is the symmetric group of degree n.

A  matrix permanent formulation for enumerating
k-matching in a bipartite graph is proposed by Friedland and
Levy recently [21]. For any given k, the method by Friedland
and Levy can compute m,. Thus Z;(1), all possible match-
ings in the graph G, can be given by Eq. (1). In this way the
monomer-dimer constant can be approximated. Note that the
number of matrix permanents that have to be computed is n,
and the n could not be a big number.

Here in the following we propose a new formulation in
matrix permanent by constructing an auxiliary bipartite
graph. The number of all possible matchings can be approxi-
mated directly.

Let A be the adjacent matrix of a bipartite graph G. Thus
A is a 0-1 matrix. Denote G(A) as the bipartite graph with
adjacent matrix A. An auxiliary graph is constructed as an
extended graph of G(A) (see Fig. 3) as follows. Vertex sets
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V1 and V2 are added to V; and V,, respectlvely, hence the
vertex sets for the extended graph are V, U V1 and V,U V2
The cardinal numbers of the new sets V1 and V, are both .
Each vertex in V| is adjacent to one vertex in ,Yz’ and differ-
ent vertex in Vy links to different vertex in V,. Hence th*ere
are exactly n edges linking V, and V,. Each vertex of V| is
adjacent to all vertexes in V,U V Let

B_(A In><n> 3
1 1 ’ )

nXn nXn

where 1,., is the n X n matrix whose entries are all equal to
1, and [, «,, is the identity matrix of order n. It is obvious that
B is a 0-1 matrix, and it is the adjacent matrix of the auxil-
iary graph.

Let M,;(A) denote the number of all possible matchings
in the graph G(A). Now consider the graph G(B). Note that
perm(B) always gives the number of perfect matchings in the
graph G(B). In a perfect matching of G(B), each vertex in V,
is assigned to be adjacent to a vertex in V, U V2 The number
of all possible assignment between V| and V,UV, equals to

M (A). After the adjacent edges between V; and V, U V2 are
chosen, there are n‘ p0551b111tles for choosing the adjacent
edges between Vl and V,U V2 So we have M(A)-n!
=perm(B), that is,

Ian
) : (4)

lan

1 A
Ma(A) = ,perm

]an

Moreover we can get the following formulation:

NA Ly, <
) >=Emk>x". (5)
1 1 k=0

nXn

1
Zs(\) = —perm(
n!

nXn

Hence the partition function of the monomer-dimer sys-
tem is formulated as the permanent of a matrix. It is impor-
tant to notice that the matrix B is very special in structure,
which will be explored in the efficient numerical algorithms.

IV. COMPUTATIONAL METHODS

A bridge between the computation of permanent and the
partition function of the monomer-dimer system is estab-
lished via the relationships (4) and (5). Thus the partition
function of the monomer-dimer model can be computed or
approximated by taking the advantage of the efficient
algorithms in matrix permanent.

The definition of the permanent [perm(A)] looks similar
to that of the determinant [det(A)]. However, it is much
harder to be computed, even for 0-1 matrices [ 16]. Hence the
approximate algorithms would be a nature consideration. The
well known approximate methods for matrix permanents are
Monte Carlo algorithms. One way to do so is to relate matrix
permanents to matrix determinants by randomizing the ele-
ments of matrices [17,18]. However it is not suit for large
scale computation such as monomer-dimer problems.

The Markov chain Monte Carlo approach can give a fully
polynomial randomized approximation scheme for the per-
manent of arbitrary non-negative matrix. This result is im-
portant theoretically and obtained by Jerrum, Sinclair, and
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Vigoda [19]. Beichl, O’Leary, and Sullivan [11] compute the
number of k-matchings of the monomer-dimer model using
Markov chain Monte Carlo method. They improve the
Kenyon, Randall, and Sinclair (KRS) method [2] and obtain
numerical results for the monomer-dimer systems.

The Monte Carlo methods with sequential importance
sampling (SIS), which are a kind of practical algorithms for
approximating permanent of relatively large matrices, would
be more promising for the monomer-dimer problem
[20,22,23]. Beichl and Sullivan give the best known numeri-
cal result for three-dimensional dimer constant by using the
techniques [23]. It would be an efficient method for the
monomer-dimer model as well, because of the formulation
that we establish through the auxiliary graph in the last sec-
tion. The framework of sequential importance sampling for
the permanent of an nXn 0-1 matrix A is as follows.

Algorithm SIS: Step 1. Choose a nonzero element from
the first row of the matrix A with some probability p;. Sup-
pose the column index of this element be k;. Set all the other
entries in the first row and the k;th column to O’s,

Step 2. Proceed to the next row, applying the same sam-
pling strategy as step 1, recursively. Hence the values
Pa2,...,P, Can be obtained

The output X of algorllthzm SIS is a random variable. It is
an unbiased estimator to the permanent of a 0-1 matrix A.
Different strategies of choosing the probability distributions
would lead to different sequential importance sampling
algorithms.

In the procedure of SIS, only nonzero terms are valuable
to the computation. It is important to notice that algorithm
SIS never produce any zero sample for the matrix B defined
in Eq. (3) because of the special structure of the matrix.
Assume that the k (k<<n) nonzero elements in the first k
rows of matrix B have been chosen successfully. It is noted
that (n+1i)-th column must keep unchanged for all (i >k) up
to now. Then at least one nonzero element by, .44 in the
(k+1)-th row of the B can be chosen in the procedure of SIS
algorithm. Thus the formulation and computational methods
never meet any zero term. This fact is crucial for the effi-
ciency of the algorithm.

Remark. Looking at the monomer-dimer model directly,
each stochastic experiment by the SIS algorithm simply gen-
erates a monomer-dimer configuration in random. Consider
the vertexes in V; in turn. For the current vertex, one can
choose to either combine it with one of its unoccupied neigh-
bors in V, so that the current vertex and the chosen neighbor
are covered by a dimer, or just keep itself isolated. The de-
cision above is made in random. Repeating this procedure,
an admissible configuration of the monomer-dimer system
will be obtained without interruption. Viewing the procedure
above in the SIS algorithm, forming a dimer corresponds to
choosing 1 in the matrix A, otherwise to choosing 1 in the
matrix /,x,. Thus the SIS algorithm would always produce
nonzero term.

Now we apply algorithm SIS to compute the permanent
of the matrix B in Eq. (3). The matrix structure is so special
that all the elements in the (n+1)th to (2n)th rows of B are 1.
Hence only the first n rows of B are needed to be considered.
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TABLE 1. Comparison of three SIS algorithms for small two-
dimensional lattice. m denotes the size of (m,m) lattice. 10 000
samples are taken for each algorithm. Value denotes the approxi-
mate cardinal number of configuration space of the lattice, and
computer times are given in seconds.

Ras Liu BS
time time time exact
m value (s) value (s) value (s) value
2 6.9999 1.72 7.0000 1.99 7.0017 4.164 7
4 41198  4.14 41071 555 40984 19.47 41025
Assume that one sampling gets probability values

P1>DP2»--->P,- The sampling value should be assigned as
11 1
—— e —nl.
pPiP2  Pn

If N samples are obtained by Algorithm SIS, the number of
all matchings can be approximated by

perm(B)Ngi 1 1
= (i)ﬁ'”[ﬁ'

Mal4)= n! j=1 Pi " P3

Three different importance sampling methods Ras by
[22], Liu by [20], and Beichl and Sullivan (BS) by [23] are
used, respectively, to compute the number of the cardinal
number of the configuration space. The results are given in
Table I. The convergence rates of the three algorithms for
m=4 are also shown in Fig. 4. Simple examples show that
both Liu and BS give good results, and Liu runs faster in the
computation of monomer-dimer model.

Notice that the probability distribution of the random vari-
able Y=In X looks similar to the normal distribution. If the
probability distribution of Y is normal with N(u, o), then the
expectation of X would be

1200

1000 * Liu |q

800F ¢ s
600f
400p
200y,
o-
—200f

400, 2 4 6 8 10

FIG. 4. (Color online) A (4, 4) lattice is considered, and thus the
adjacent matrix is 16X 16. The x axis denotes the number of
samples and the y axis denotes the error of the approximate cardinal
number of configuration space.
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TABLE II. m denotes the size of the planar (m,m) lattice. Every
time, the number of samples we take is 100 000. We do this several
times to compute the approximate of In Z(n,2)/m?. SIS gives the
median value of the approximate values; time I denotes the time in
seconds for one sampling implemented in 2.8 GHz Dell and time 11
denotes that in 400 MHz IBM PC. A-PRE presents the values given
in Ref. [11].

m SIS Time I (s) Time II (s) A-PRE

4 0.663866 0.0006 0.0050 0.6611
0.662851 0.0017 0.0110 0.6629

8 0.662897 0.0028 0.0220 0.6611

10 0.662951 0.0038 0.0330 0.6663

12 0.662990 0.0055 0.0770 0.6646

14 0.662852 0.0072 0.0820 0.6638

16 0.662644 0.0100 0.1320

18 0.663390 0.0138 0.1920

20 0.662960 0.0181 0.2530

22 0.663031 0.0237 0.3300

24 0.662893 0.0307 0.4230

26 0.663754 0.0398 0.5490

28 0.663013 0.0507 0.7030

30 0.663062 0.0710 0.8790

32 0.662587 0.0769 1.0980

E(X) = E(e¥) = e#+72,

Other than computing the sample mean of X directly, we can
estimate the sample mean & and sample standard deviation o
of the random variable Y first.

V. EXPERIMENTAL RESULTS FOR PERIODIC LATTICES

The algorithm SIS is used to approximate permanents,
which give approximation to the monomer-dimer constants.
The algorithms were programmed in MATLAB 7.0 and the
results in this paper are computed on a Dell PC with CPU
2.8 GHz.

A. Experiments on two-dimensional lattices

The computational results for two-dimensional monomer-
dimer problems with periodic boundary conditions are pre-
sented in Table II. Results by Beichl, O’Leary, and Sullivan
using the A-PRE method [11], which is the best known for
the monomer-dimer covering problems, are also listed.

In order to compare the computational complexity of the
algorithms, a curve fitting results of CPU time for algorithms
SIS and A-PRE are shown in Fig. 5. Though the computers
used here are different, one can still see the trends in the
running times. It is clear that the running times for both SIS
and A-PRE grow polynomially with respect to m. The time
complexity of SIS, the method developed in this paper, is
about O(m?) for two-dimensional lattice, while the A-PRE
and the MCMC method in Ref. [11], is about O(m°).

In Ref. [11], the A-PRE is strongly depending on the
swap. It is sensitive to cache-memory of the computer. In
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* SIS
10000 O A-PRE
— fitting curve
8000 fitting curve *

40

FIG. 5. (Color online) The relations between the running time of
A-PRE method and SIS method with the lattice size m are shown.
Time I denotes the time in seconds for one sampling implemented
in 2.8 GHz Dell and time II denotes that in 400 MHz IBM PC.
A-PRE presents the values given in Ref. [11].

order to compare the algorithms more adequately, we run our
MATLAB program on a 400 MHz IBM PC to rule out the
factor of hardware. This machine is inferior to Sun-Ultra60
with 450 MHz that was used in Ref. [11]. The computational
times on the 400 MHz IBM PC are listed in Table II. The
results show that the computational times are roughly pro-
portional between CPU times on 400 MHz IBM PC and that
on 2.8 GHz Dell, which suggests that the SIS algorithm is
robust in hardware. Hence the method SIS can be applied to
relatively large monomer-dimer systems.

In order to fit the limit of In Z(m,2)/m* as m goes to
infinity, we apply regression to the computed values. The
regression function is the same as [23]

P1
y="5+ps, (6)
X

InZ(m,2)

where x denotes the lattice size m, y denotes — 5— and p, is
the monomer-dimer constant. The monomer-dimer constant
of two-dimensional problem with periodic boundary can be
obtained from the regression

h, =0.6627 +0.0002 with 95 % confidence.

The approximate results of the monomer-dimer constant co-
incides with the value /,=0.662798972834 in Ref. [13] very
well.

B. Experiments on three-dimensional lattices

For three-dimensional problem with periodic condition,
computational results are shown in Table III. The time com-
plexity for algorithm SIS in three-dimensional problems is
about O(m®).

To fit the limit of In Z(m,3)/m> as m goes to infinity, we
apply regression again. The function we use is
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TABLE III. m denotes the size of the cubic (m,m,m) lattice.
Every time, the number of samples we take is 100 000. We do this
several times to compute the approximate of In Z(m,3)/m>. SIS
gives the median value of the approximate values; time denotes the
time in seconds for one sampling. A-PRE presents the values given
in Ref. [11].

m SIS Time I(s) Time II(s) A-PRE
4 0.787359 0.0039 0.0270 0.7844
0.786661 0.0082 0.0990 0.7847
8 0.785821 0.0345 0.3740 0.7870
10 0.787093 0.0919 1.1420
12 0.785054 0.2483 3.1640
14 0.783476 0.6693 8.1620
Pi
y="+p>, (7)
X
. . InZ(m,3) .
where x denotes the lattice size m, y denotes —5— and p, is

the monomer-dimer constant. Notice that the regression
function here is different from the case of two-dimensional.
The regression result is

hy=0.7847 +0.0014 with 95 % confidence.

This agrees well with the best known bound 0.7653 < h;
=<0.7862 [12].

VI. DISCUSSIONS AND COMMENTS

The construction of the auxiliary bipartite graph is the key
step in our formulation. Hence the permanent of the matrix B
in Eq. (3) gives the total number of matchings in the original
bipartite graph G(A). The size of the matrix B doubles that of
A. However, since the special structure of the matrix B can
be exploited in the algorithm, the computational cost does
not really increase.

The regression function (6) for two-dimensional is dis-
cussed and used by other authors, for example, Ref. [23].
However, Eq. (7) for three-dimensional is just a result of
statistical experiments. We are unable to give it any physical
reasoning.

The basic contribution of this paper is the formulation and
computational methods for approximating the number of all
matchings in bipartite graphs. In this way, larger monomer-
dimer systems can be studied.
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