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We study the transition from coherent to incoherent dynamics in a nonlinear triplet of broadband combs of
waves. Expanding the analysis of previous works, we investigate what happens when the band of available
modes is much larger than that of the initial narrower combs within which the nonlinear interaction is not
subjected to selection rules involving wave momenta. Here selection rules are present and active, and we
examine how and when coherence can be defined.
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I. INTRODUCTION

Wave-triplet interactions model a vast number of cases
where the nonlinear wave dynamics of physical systems can
be described in terms of three dominant modes. The interac-
tion is seen in a variety of situations, ranging from three-
wave interactions in laser-plasma and optical systems to pul-
sar emission of electromagnetic radiation, including wave
interactions in fluids and in several other settings �1–4�.

The conservative interaction, which will be our focus
here, is more easily handled when the interaction involves
only the three pure modes of the triplet. However, a more
realistic view should allow for a microscopic description,
where each of the pure modes is replaced with a comb with
many submodes. This has been done in a number of papers
�5–8� where several results have been derived along recent
years. The main lesson one learns is that the dynamics can be
correctly described in terms of three single or central modes,
as long as nonlinearities are strong enough to lock all sub-
modes into a single coherent mode. For practical purposes
the coherent modes can then be viewed as pure modes of the
triplet interaction. On the other hand, if locking is not effec-
tive, each of the submodes follows its own linear dynamics
and coherence is lost. Random phase approximations can
then be invoked to analyze the problem �9�, but the concept
of a pure triplet has to be abandoned.

A recent paper �8� shows how combs of modes can be
very naturally formed in a wave system: the essential re-
quirement, as we shall review, is that the nonlinear interac-
tion take place under spatially inhomogeneous conditions.
When the inhomogeneity is present, wave vector matching
among the interacting modes need not to be exact since it
includes the reciprocal vectors of the inhomogeneities. What
happens then is that even if the initial conditions involve a
small number of wave modes, in a very short time interval
the initial modes scatter off the inhomogeneities, creating
groups of many modes, the initial combs. Another but
equivalent way to see how combs are related to inhomoge-
neities is to realize that in the interaction of tightly packed
group of modes, neighboring wave vectors cannot be prop-
erly resolved in finite-size spatial scales, a typical occurrence
in experimental settings �10,11�. In this case whole groups of

modes with similar wave vectors are altogether excited,
forming the combs. The interaction acquires the aspect of a
mean-field theory, where modes of one comb interact with
averages taken over modes of the remaining combs �10�.

In the past, models for wave combs were based on combs
with a fixed number of modes. Once the combs were formed,
submodes could evolve in time, but always preserving a pre-
fixed total number within each of the combs. A recent analy-
sis �12� shows that combs with a prefixed number of modes
cannot actually maintain this number if the interaction takes
place in a homogeneous environment. As one may conclude
from the comments above, this happens by virtue of the fact
that homogeneity is unable to create a natural wave vector
scale which could accommodate a given finite number of
modes. Reference �12� indeed shows that as the wave dy-
namics develops, more and more modes are gradually ex-
cited and included in the interaction.

This leads us to the central question of the present analy-
sis: namely, can the wave interaction in inhomogeneous set-
tings be well described with combs of a finite number of
modes? We shall see that the answer depends on the time
scales and the wave vector scales one is interested in.

The plan of the paper is the following. In Sec. II we first
define a convenient interaction model, allowing for an inho-
mogeneous environment, and explore how the model can be
used to create the picture of interacting combs with fixed
number of modes, simultaneously analyzing its inherent
limitations. In Sec. III we examine what happens when the
constraint of a constant prefixed number of modes is relaxed.
In Sec. IV we summarize our results.

II. MODEL

The investigation starts as we consider the set of fully
dimensionless space-time equations governing the decay of
mode 1 into modes 2 and 3:

i�ta1�x,t� + ivg1�xa1�x,t� = s�x�a2�x,t�a3�x,t� , �1�

i�ta2�x,t� + ivg2�xa2�x,t� = s�x�a1�x,t�a3�x,t�*, �2�
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i�ta3�x,t� + ivg3�xa3�x,t� = s�x�a1�x,t�a2�x,t�*. �3�

Set �1�–�3� actually describes the slow modulational dynam-
ics for the complex wave amplitudes ap�x , t� �p=1,2 ,3� of
corresponding carrier waves whose frequencies and wave
vectors are matched. The combs are thus the multitude of
sideband modes forming around each of three high-
frequency carriers. i2=−1, and the real function s�x� is the
spatially dependent form factor introducing inhomogeneity
into the problem. The function s�x� could be typically asso-
ciated with inhomogeneous density distributions in plasma
systems, for instance.

Let us first of all see how the classical picture of combs
with a given number of modes can arise from the basic set.
We first need a structure for the function s�x�. We define it as
an even function centered at x=0 and a characteristic half
width ls, as follows:

s = s�x/ls� = s��x�/ls� ,

s��x�/ls � 1� → 0, s�0� = 1, �4�

where for mathematical convenience, and with no loss of
generality, we assumed a scaling that renders s�0�=1. This
kind of function restricts the effective interaction region as
commented in the Introduction and can be used to introduce
the basic wave vector associated with the inhomogeneities of
the system in the form ks�1 / ls. Now we write each of the
waves ap�x , t� as combs of many modes:

ap�x,t� =� âp��p,t�ei�pxd�p, �5�

where �p denotes the wave vectors of submodes within each
comb.

Spatial Fourier analysis of set �1�–�3� produces the fol-
lowing group of equations for the various submodes:

iȧ̂1��1� = vg1�1â1��1� + �
�2,�3

ŝ��1 − �2 − �3�

�â2��2�â3��3�d�2d�3, �6�

iȧ̂p��2� = vg2�2â2��2� + �
�1,�3

ŝ��1 − �2 − �3�

�â1��1�â3��3�*d�1d�3, �7�

iȧ̂3��3� = vg3�3â3��3� + �
�1,�2

ŝ��1 − �2 − �3�

�â1��1�â2��2�*d�1d�2, �8�

with

s�x/ls� = �
−�

�

ŝ��s�ei�sxd�s, ŝ��s� =
1

2�
�

−�

�

s�x/ls�e−i�sxdx ,

�9�

ŝ��s� also even. One thus sees from the second equation of
Eqs. �9� that, in general, wave vector mismatches of magni-

tudes up to ��1−�2−�3�max�� / ls among the interacting sub-
modes are allowed. If one defines a bandwidth � in the form
−� /2��p�� /2, one concludes that all modes initially
placed within the bands will interact simultaneously, with no
constraints due to selection rules, provided � / ls�3� /2. We
shall refer to this regime as the regime of democratic inter-
action because selection rules are not operative here; under
this regime, any three modes within the bands are coupled
with the same strength. If ls→�, one recovers the matched
selection rule �1=�2+�3, but for finite ls’s any triple modes
within the bands are connected. The approximate dynamics
of bands can be obtained if one assumes ŝ��1−�2−�3�
� ŝ�0� for ��p�	� /2, discarding all modes outside the
combs; we note that under this approximation, and consider-
ing the normalization choice s�0�=1, the first equation of
Eqs. �9� informs us that ŝ�0��1 / �3��. In this case, and mov-
ing into the discrete version of our continuum equations with
�p=1,2,3→�m=2�m /L	m�L �m is an integer denoting the
modal number�, d�pâp��p�=�Lâp��p�= �2� /L�âp��p�→ âpm,
and L as the system length, one arrives at the set already
explored by various authors �5–7,10,13�:

iȧ̂1q = vg1�qâ1q +
1

3N�


m,n

â2mâ3n, �10�

iȧ̂2m = vg2�mâ2m +
1

3N�


q,n

â1qâ3n
* , �11�

iȧ̂3n = vg3�nâ3n +
1

3N�


q,m

â1qâ2m
* . �12�

To obtain set �10�–�12� the prefactor �L / �3��= �1 /3���L /��
of the nonlinear terms in the discrete version is written as
�1 /3� / �1 /N��, N�	� /�L being therefore a measure of the
number of modes composing the combs in the Fourier recip-
rocal space; the factor of 3 can be absorbed into convenient
rescalings. As mentioned, set �10�–�12� comprises the classi-
cal form of the broadband triplet interaction, where selection
rules among the wave vectors are absent in virtue of finite
size of the interaction region. Several interesting results have
been obtained, the most prominent of which concerning the
competition between the linear and nonlinear terms. If the
linear bandwidth terms associated with the group velocities
are absent, one shows that in steady state the wave systems
oscillates with a single nonlinear frequency 
. If �
� is larger
than the largest linear frequency vg� /2 �when unnecessary,
modal and comb subindexes are occasionally suppressed to
simplify notation�, a phase-locking mechanism is present,
preventing an initially coherent comb from decohering. In
general, when a linear bandwidth is present a time propaga-
tor g�t� can be constructed for the total amplitude, or macro-
scopic field of each comb,

Ap 	 

j

âpj , �13�

in the form �8�
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g →�g�t� =
1

�
�

−�/2

�/2

− ieivg�td� = − i

sin�vgt�

2



vgt�

2

�time domain� ,

ĝ��� =
ln��� − vg�/2�2� − ln��� + vg�/2�2�

2vg�
−

i� sign�vg�/2 − �� + i� sign�vg�/2 + ��
2vg�

�frequency domain� .
�

�14�

The factor −i exp�ivg�t� in the time domain expression is
essentially the propagator for the microscopic mode with
wave vector �, and the total propagator is obtained through
an integration over the whole comb. If in the second equation
of Eqs. �14� one identifies the Fourier frequency � with the
dominant nonlinear frequency 
, the conclusion is that a
dissipative-like term arises whenever �
��vg� /2. In ex-
treme nonlinear cases with �
��vg� /2, coherence is pre-
served. In fact, a relatively straightforward procedure involv-
ing expansion of ĝ around 
 and a Fourier inversion from
frequency to time domain allows us to write a coupled set for
the macroscopic fields �8� which gives a good qualitative
view of the dynamics in the democratic regime:

iȦ1 � 
1A1 +
1

3
A2A3, �15�

iȦ2 � 
2A2 +
1

3
A1A3

*, �16�

iȦ3 � 
3A3 +
1

3
A1A2

*, �17�

where 
→ �vg��2 / �12
� if vg��
 and 
→−ivg� if
vg��
. One sees that given the autonomous aspect of set
�15�–�17� one predicts decay �shrinking of volumes in the
corresponding phase space� if � becomes larger than the
nonlinear frequency.

We shall obtain 
 explicitly for some cases, but let us first
dwell on the role of the width �. It is a fixed quantity which
corresponds to one-third of the total interaction range defined
by the form factor ŝ��s�. The width � contains a number
N�=� /�L of modes which in the past were supposed to be
the only active modes of the wave system. However, the
traditional model set �10�–�12� is only an approximation to
the full nonlinear system �6�–�8�, where one deliberately dis-
cards all modes outside the comb of the given width �. The
assumption looks right because, as mentioned, modes within
the comb are expected to be more strongly and more quickly
excited than modes outside. However, when one looks at the
full set of equations there is always a nonlinear coupling
which may eventually interlace and excite all modes, even
those not initially placed inside the combs. In a real system
with a band extension naturally much larger than the width
�, the propagator for the entire macroscopic field should be
rewritten as in Eq. �14�, but with � replaced with �T, the

latter quantity representing the total bandwidth available to
the modes. Thus, even if �
 � �vg� /2, one might still have
�
 � �vg�T /2, a situation where coherence decay might be
present. Of course, if one takes �T as the full bandwidth, and
�T��, not all modes will interact democratically and selec-
tion rules shall reappear. In that case, previous results must
be reevaluated. In particular, from the standpoint of macro-
scopic modes, the systems ceases to be autonomous since the
nonlinear terms can no longer be written only in terms of A1,
A2, and A3. Therefore one cannot prove or disprove that vol-
umes in the phase space of the macroscopic modes are
shrinking, as happens with the approximate form given by
Eqs. �15�–�17�. Nevertheless, a dissipative term is present
and the macroscopic modes are likely to decay in time—this
is what really happens as we show next.

III. MORE ACCURATE VIEW: THE EXTENDED
BROADBAND INTERACTION

As said, the full set �6�–�8� is equivalent to the its coun-
terpart spatial set �1�–�3�. The connection is relevant because
if one discards space derivatives, exact solutions can be ob-
tained. These exact solutions form the basis for further
progress as one includes the space derivatives.

A. Neglecting space derivatives

Taking vgp�x→0 in the Eqs. �1�–�3� a stationary solution
can be obtained in the form Ap�x , t�=�p�x�exp�i�p�x , t��,
where �1=−2�1�x�s�x�t, �2,3=−�1�x�s�x�t, and �2,3

=�2�1�x� and where �1�x� is an arbitrary x-dependent func-
tion; we note that in the stationary state phases depend on
time, but amplitudes do not. Once �1�x� is defined, the com-
plete solution is automatically found. And once the space-
time solution is found, Fourier transforms can be used to
move into the reciprocal space. To further specify the system
with localized initial conditions, both in the real and recip-
rocal spaces, we shall make the following choice for the
combs and the form factor s in the spatial representation:

�1�x� = �0 exp�− x2/l�
2� ,

s�x/ls� = exp�− x2/ls
2� . �18�

The comb thus defined has width �1 / l� in the reciprocal
space, and in order that its modes interact democratically at
least initially, we require 1 / ls�3 / l� as explained earlier—in
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all numerical work we actually take 1 / ls=3 / l�. We shall also
assume that �T�� and write for the exponential distribution
�=2� / l�.

Independently of the choices we make for �1�x� and s�x�
we are already in position to define coherence in the present
case. We simply note that since

ap�x,t� = 

j

âpje
i�jx, �19�

it is true that the macroscopic fields Ap introduced earlier in
Eq. �13� obey simple expressions—we write down the one
obeyed by A1:

A1 = 

j

â1j = �0 exp�− 2i�0t� . �20�

From the equation above we see that the macroscopic field
oscillates harmonically with frequency 
	−2�0 and with
constant amplitude �0. This is what we shall take as a coher-
ent state: a nondecaying macroscopic mode oscillating with
constant amplitude and constant frequency. The question that
poses itself here is to determine how many microscopic
modes actually participate in the coherent state. In other
words, would it be true to assume that only the modes inside
the initially defined combs are active? At a first glance one
might suspect the answer would be positive since those are
the modes interacting more strongly in the system. However,
we had already pointed out that due to the nonlinear cascad-
ing structure of the interaction, some energy may flow from
low to high wave vectors, and this is what actually happens.
This can be seen more formally with the help of some tools.
Keeping focus on the first comb, one first chooses a range D
defined by −D /2���D /2 and performs a partial summa-
tion over its internal modes,

ID 	 �
−D/2

D/2

a1��1�d�1

=
1

2�
�

−D/2

D/2 �
−�

�

e−i�1x�1�x�exp�− 2i�1�x�s�x�t�dxd�1.

�21�

For a finite band D, the integral over �1, performed first,
yields a �-like structure as a function of x, with height D /2�
and width 2� /D. If one supposes 1 /D small, the remaining
integration over x can be done with the help of a saddle
approximation near x=0 where the space derivative of fields
and form factor vanish. The final result can be written in the
form

ID � e−2i�0t��0D
Erfi�e3i�/4��2�0ts��0�/2/D�

�ts��0�
, �22�

where s�	d2s /dx2, where Erfi��� denotes the imaginary er-
ror function as a function of argument � and where we recall
that s�x� varies faster than �1�x�. We see that all depends on
the behavior of the imaginary error function for large and
small arguments. If ����1, Erfi�����, and if ����1,
Erfi���� i. One therefore concludes that

�ID� � �constant when t � ls
2D2/2�2�0,

1
�t

when t � ls
2D2/2�2�0. � �23�

In other words, given a range D there is an intrinsic limiting
time for coherence,

�D 	
D2ls

2

2�2�0
, �24�

where by intrinsic we understand the limiting time obtained
in the absence of the linear-frequency bandwidth—i.e., by
taking vg=0. We know from our discussion regarding Eq. �9�
that ls�� / �3� /2�, so the intrinsic coherence time for modes
within the original packet would be given by �D=��1 /�0
which is relatively small since this is essentially the period of
the nonlinear wave. Our conclusion is that the initial packet
can be hardly called a coherent structure even in the absence
of the frequency bandwidth. The collection of modes that
could be seen as a coherent structure is any one where
D��. In that case it is still true that decay will be present,
but for all practical purposes �D would be so much larger
than the period of the nonlinear wave that a physical setting
or equipment resolving modes up to ��D would perceive
the wave system as coherent.

A second important time scale has to be defined for the
wave system. It is the time scale of the excitation of indi-
vidual modes in reciprocal space. Looking again at the first
comb—the reasonings are similar for the other two—we first
recall the expression A1�x , t�=�1�x�exp�i�1�x , t�� for the
steady-state field. �1�x� is constant in time, and the phase
�1�x�=−2�1�x�s�x�t depends both on the spatial coordinate
and time. If one evaluates the phase gradient ��1 /�x and
looks at the maximum of this quantity as the largest wave
vector involved in the dynamics, one derives the relation

��max� � �2�0/ls�t , �25�

which shows that the packet spreads over reciprocal space at
a rate �2�0 / ls. The time for excitation of any particular
wave vector �max is thus �exc��max�=�maxls /2�0. If we take
�max=D /2, we see that for the typical case Dls�1,
�D��exc��max=D /2�, which means that in the absence of
linear-frequency bandwidths, the coherence time of a packet
of range D is in general much longer than the time required
to activate the modes at the borders of the packet.

In Fig. 1 we display the contrasting behaviors for ID in
the cases Dls�1 and Dls�1. In the simulations we integrate
set �1�–�3� with a pseudospectral method, using a grid of
length L=N=215, N denoting the number of nodes which for
scaling simplicity is equal to the length. In all numerical
analyses we use �0=1; the choice is not restrictive because
field scales can always be absorbed in space and time.
Considering ls=29 and l�=3ls, panel �a� displays the case
D=2� /L�28, for which Dls=2��22 and �D�32, while in
panel �b�, Dls=2��26, for which �D�8200. Panel �a� re-
veals a fast decay, but coherence is far more persistent in
panel �b�. It is noticeable that in panel �b� the function ID,
although initially laminar, develops slight modulations after
a very sharp instant along the time axis. This very sharp
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instant corresponds to t=�exc�D /2�. Indeed, the excitation
time reads �exc�D /2�=100.5 in this particular instance. This
is confirmed in panel �c� where, for the same parameters as
panel �b�, we show the time evolution of the real part of
mode with wave vector D /2. The superscript r means “real
part” and the submodal index d reads d	�D /2� / �2� /L�
=211 in this case, as defined in the context of the discrete
equations �10�–�12�. We emphasize that as mode �=D /2 is
excited, the coherence of the packet D, although undergoing
a modulational process, does not decay.

Of course, the presence of a bandwidth for the linear fre-
quencies may change the entire picture, and this is the sub-
ject of the next section.

B. Effects of space derivatives and the associated linear-
frequency bandwidth

Since the full nonlinear system is not autonomous from
the perspective of macroscopic modes, one cannot make very
formal predictions about coherence decay due to the fre-
quency bandwidths, like we did in the approximations lead-
ing to Eqs. �15�–�17�. However, some estimates can still be
made.

Let us consider our expression �25� for the maximal wave
vector involved in the dynamics. When �max reaches the
value �r corresponding to the resonant frequency, vg1�r
	2�0, coherence is expected to be lost, but now due to reso-
nant effects. Under this circumstance, the largest excited lin-
ear frequency would become comparable to the nonlinear
triplet frequency 
 and coherent nonlinear effects would be
no longer dominant. The time to attain resonance, let us call
it �r	�exc��r�, can be obtained as one uses �max=�r in Eq.
�25�:

�r 	 ls/vg1. �26�

A given collection of modes of range D will remain coherent
as long as t��coh	min��D ,�r�. To illustrate this point, let us

take the case analyzed in the panel �b� of Fig. 1. In that case
�D is large and we do not expect to see coherence decay soon
if the linear frequencies are absent. But now let us add a
frequency bandwidth with vg1 chosen such that a given mode
of the spectrum becomes resonant with �r��D; we
achieve this requirement with vg1=1 / ��L29� which yields
�r�50��D. For completeness we take vg1,2=0 which corre-
sponds to one wave moving relatively to the other two. The
setting would be of relevance to Brillouin scattering, for in-
stance, where two electromagnetic waves with the same
group velocity interact with a slower ion wave; we would be
examining the process in the frame where the electromag-
netic wave is stationary. The resulting dynamics is then dis-
played in Fig. 2, where one clearly sees a fast decay whereas
for vg=0 one sees persistent coherence as previously shown
in Fig. 1�b�.

Expressions �24� and �26� therefore provide us with a
simple tool to make estimates on the circumstances allowing
coherence to be seen in the nonlinear triplet system. Once
one has defined an extended comb distributed over a range
−D /2���D /2 of wave vectors with D /��1 and once one
knows the group velocity vg for this particular class of wave,
the coherence time can be obtained.

IV. FINAL REMARKS

In this paper we developed a technique to investigate co-
herence in nonlinear triplets, when the available band of
modes is much larger than that of the initial combs. If modes
remain restricted to their initial combs, the series of approxi-
mations outlined in Sec. II allows us to describe the system
as an interaction of macroscopic modes. In the presently
studied case, one cannot resort to these approximations be-
cause initially low-amplitude, idle modes outside the initial
range will be gradually excited at a rate �2�0 / ls, whenever
the whole available band is larger than �. Coherence in this,
perhaps, more realistic case is a little more involved subject
to define. One first defines the range D of interest. The range
has an intrinsic coherence time �D defined in the absence of
any frequency bandwidth—i.e., for vg=0: �D=D2ls

2 / �2�2�0�.
�D is the largest coherence time of a collection of modes

-2.0

-1.0

0.0

1.0

2.0

-2.0

-1.0
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1.0
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time
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-0.01

0.00
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0.02

1d

D

r

D

(a)

(b)

(c)

I

a

FIG. 1. ID as a function of time for Dls=2��22 in �a� and for
Dls=2��26 in �b�. In �c� we show the times series for the real part
of the borderline mode with wave vector �=D /2, ls=29, and
l�=3ls. The group velocity is zero for all waves, and all quantities
are dimensionless.

0 50 100 150
time

-2.0

-1.0

0.0

1.0

2.0

I
D

FIG. 2. Coherence decay due to the resonant effect. Parameters
are those of panel �b� of Fig. 1, with the exception of vg1 which here
reads vg1=1 / �29�L�, defining a resonant time �r�50.
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contained within the limits −D /2���D /2. Then, once the
range D is defined, one has to look at the excitation time �r
of the resonant mode, which does not necessarily belong to
the range D; we found that �r= ls /vg. Gathering together both
time scales, the final conclusion is that the coherence time
�coh satisfies �coh=min��D ,�r�. We have also observed and
stressed that coherence gains some substantial meaning only
when several nonlinear oscillations occur prior to �D. Since
in our normalized variables the period of the nonlinear oscil-
lation is �1 /�0, one concludes that the dynamics resembles
a nonlinear phase-locking process only when D�� and
vg���0.

Let us connect our results with those of previous works.
Our macroscopic model does not look into fine microscopic
scales of size, say, lmic, where discrete effects become rel-
evant. Therefore an upper limit Dmax�1 / lmic does exist be-

yond which mode dynamics is naturally attenuated by micro-
scopic effects. One can, however, imagine that modes with
wave vectors ����Dmax /2 are initially small and heavily
damped; if this is true, they will be minimally excited during
the dynamics. Under these circumstances the condition on �D
for an inaccessible D�Dmax ceases to exist �since �D→� in
this case� and we are left only with the condition on the
group velocity and linear bandwidth, which is similar to
what is discussed in previous investigations. For
D�Dmax �D is finite and physically relevant.
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