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Acoustical vortices �AV� are the acoustical equivalent of optical vortices �OV� that are a key feature in the
discipline of singular optics. For linear waves, OV and AV possess the same properties. But as nonlinearities
are different in optics and acoustics, the nonlinear behavior of these structures has to be different. In this paper,
a numerical investigation of the three-dimensional �3D� nonlinear propagation of acoustical vortices through
homogeneous or heterogeneous media is reported. First, an original numerical method is described and com-
pared to existing ones. Then, it is used to study the dynamics of AV in a nonlinear regime. The nonlinear
properties of acoustical vortices in a homogeneous medium are investigated. It is shown that shock waves can
be produced during propagation, leading to an interesting spatiotemporal wave field with an azimuthal shock.
The dynamics of the topological charge, intrinsic property of AV or OV, is studied in the nonlinear regime
through different focusing lenses. Inversion of the topological charge is observed if the AV propagates through
a 1D focusing medium �cylindrical lens�, while the charge remains constant if the medium is 2D �spherical
lens�. These last results already observed in linear optics are generalized here to the nonlinear behavior through
the investigation of harmonics which show the same behavior as the fundamental with respect to inversion.
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I. INTRODUCTION

A wave can be described by its amplitude, its phase, and
its polarization. Under some circumstances, one of these
quantities can be undetermined. If the phase is undetermined,
then the wave possesses a phase singularity. Phase singulari-
ties can be classified into three categories: edge, screw, or
mixed type dislocations of wave front �1�. Nye and Berry �1�
showed how these structures are generic and important for
the wave’s theory. Since that seminal paper, importance of
phase singularities �especially screw dislocations� is increas-
ing in many fields of physics: optics, Bose-Einstein conden-
sates, liquid crystals, etc. The best example is optics for
which a field of research called singular optics has risen up
�2�. Singular optics deals mainly with the study of optical
vortices �OV�. Acoustical vortices �AV� are the acoustical
equivalent of OV, with phase singularities of the screw type.
It means their phase has a helical shape winding up around a
line where the phase is not defined �the phase singularity�.
The number of 2� jumps of the phase appearing along a
close contour containing the phase singularity is called the
topological charge �denoted l in the paper�. The topological
charge is an integer which can be positive or negative. Its
sign is obtained from the direction of rotation for which the
phase has positive jumps. The convention is that the sign is
positive if the rotation is counterclockwise and negative if
the rotation is clockwise �3�. Figure 1 presents numerical
simulation of a single acoustical or optical vortex with a

charge +1. This particular shape of the phase induces a par-
ticular amplitude pattern. At the location of the phase singu-
larity, the amplitude of the field is null so that there is a
“dark” core. If the vortex is embedded in a Gaussian enve-
lope, then the root mean square �RMS� amplitude represen-
tation shows that the vortex is characterized by a “bright”
ring surrounding a “dark” core. This pattern is also referred
in optics as the doughnut shape. If the propagation is linear,
AV and OV have the same properties. First of all, there are
generic features of the wave field �1�. In optics, OV are natu-
rally produced by laser cavities �4�. In acoustics, Hefner and
Marston �5� showed experimentally that only four transduc-
ers with � /2 phase shift are sufficient to produce AV. Also,
AV or OV with a unity topological charge are structurally
stable �6�. Small perturbations do not destroy the phase pat-
tern �see �7� in optics and �8� in acoustics�. Moreover, OV or
AV carry an angular momentum �9�. This property can also
be interpreted as a conservation law of the topological
charge. Thomas and Marchiano �10� showed that if the
propagation medium is inviscid and isotropic, then the topo-
logical charge is constant during the propagation. This theo-
retical result is valid both for acoustical waves and electro-
magnetic waves in dielectric media. It generalizes a previous
study valid only for electromagnetic waves in vacuum �9�.
The conservation of the topological charge is a good ex-
ample of interesting properties valid both for acoustics or
optics. Nevertheless, if waves are not linear, the physical
behavior is different. In this paper, we propose a numerical
investigation of the properties of acoustical vortices in non-
linear regime through homogeneous media and also weakly
heterogeneous ones. The numerical investigation is made*marchi@lmm.jussieu.fr
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with a code able to handle the three-dimensional �3D� one-
way paraxial propagation of nonlinear waves in weakly het-
erogeneous media. The algorithm is based on a spectral treat-
ment of the diffraction associated with a semianalytical
solution of the nonlinear effects. It is an algorithm which is
described here. It allows one to explore the complex behav-
ior of AV in the nonlinear regime. Particular attention has
been paid to strongly nonlinear vortices with shock waves in
homogeneous media, and the propagation of nonlinear AV
through 1D or 2D lenses. Section II is devoted to the presen-
tation of the numerical code. Section III deals with the
propagation of acoustical vortices in strongly nonlinear re-
gime, especially when shock waves are generated, leading to
the formation of an azimuthal shock. Finally, Section IV pre-
sents the features of the nonlinear propagation of AV through
heterogeneous media.

II. THEORETICAL AND NUMERICAL MODEL

A. Physical model

A particular category of acoustical vortices is the so-
called Gauss-Laguerre �GL� beams which are known to carry
screw dislocations. Basically �see Sec. III for more details�,
they are made by an helical phase nested in a Gaussian en-
velope. For linear propagation, the GL beams are solutions of
the paraxial equation �11�. Consequently, the propagation of
these structures is well described in the framework of the
paraxial approximation. This is valid both for optics and
acoustics. If the wave’s amplitude is sufficiently high, non-
linear effects cannot be neglected. In optics, the propagation
is then well described by the nonlinear Schrödinger equation.
In acoustics �in fluids�, the main nonlinearities are quadratic
and proportional to the instantaneous pressure �and not the
envelope�. Moreover, acoustical waves, contrarily to optical
waves, are nondispersive for usual media �air, water,…�.
These major differences, briefly described above, drastically
change the physical behavior of the nonlinear waves between
acoustics and optics. For acoustics, the paraxial approxima-
tion of the nonlinear wave equation leads to the so-called
Khokhlov-Zabolotskaya �KZ� equation �12�. This equation
has been generalized to take into account weak heterogene-
ities in sound speed �13–15�. Under its dimensionless form,
the generalized KZ equation is

�2P

�Z��
= ��P + Hc

�2P

��2 + �
�2P2

��2 , �1�

where P is the dimensionless pressure �P= p / P0 with p the
physical pressure and P0 a characteristic pressure�, � is the
dimensionless delayed time ��=�0�t−z /c0� with t the physi-
cal time, c0 the mean speed of sound within the ambient
fluid, and �0 the characteristic angular frequency�, �� the
tranverse Laplacian ��=�2 /�X2+�2 /�Y2, with X=2x /a and
Y =2y /a the dimensionless transverse coordinates �x and y
are the physical transverse coordinates and a is a character-
istic dimension of the source�, Z is the dimensionless coor-
dinate along the main axis of propagation �Z=z /LR with z the
coordinate along the axis of propagation and LR=k0a2 /2 the
Rayleigh distance with k0 the characteristic wave number
k0=�0 /c0�, �=LR /LS is the ratio between the Rayleigh dis-
tance and the shock formation distance for a plane wave, Hc
is the heterogeneous coefficient defined by the relation

Hc�X,Y,Z� = k0LR
ch − c0

ch
�2�

where ch�X ,Y ,Z� is the heterogeneous speed of sound. To
establish Eq. �1� the variations of ch are supposed to be

small, �
�ch−c0�

ch
��1.

B. Numerical resolution

Numerous papers are devoted to the numerical resolution
of the KZ or Khokhlov-Zabolotskaya-Kuznetsov �KZK�
equation �16� �that last equation also takes into account the
thermoviscous absorption�. The main results concern the
study of the interaction between diffraction, nonlinearities,

FIG. 1. RMS amplitude �top view� and phase �bottom view� of
a single linear vortex of charge 1 in the plane �X ,Y ,Z=0�.
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and attenuation during the propagation of a sound beam. Nu-
merical methods can be classified into four categories.

The first one consists in solving the equation entirely in
the frequency domain. This method was first applied to cal-
culate the pressure fields produced by axisymmetric sources
in the near field �17�. This code is known as Bergen code. It
was then used to investigate many other situations: focused
beams �18� and interaction between finite amplitude beams
�19�. Three-dimensional codes based on this approach have
been developed �20–22�, most of them were used to investi-
gate the generation of harmonics from a rectangular aperture
source. This spectral approach obtained great success. In par-
ticular, it is very well adapted to treat attenuation but is not
the best method to handle strong nonlinearities such as shock
waves accurately. Indeed, because of the spectral treatment
of nonlinearities, Gibbs oscillations �artificial oscillations as-
sociated to the discrete Fourier transform of a discontinuous
signal� appear behind the shocks and so impair the accuracy
of the numerical solution.

The last three methods rely on the fractional step proce-
dure �23�. KZK equation is a one-way equation that models
propagation along a privileged direction �Z axis�. The frac-
tional step procedure consists in separating the physical ef-
fects over a small step �Z. The equation is solved over each
step by solving separately the various equations relative to
the physical mechanisms. The coupling between the various
effects is obtained by the repetition of the process.

The second method consists in treating diffraction and
attenuation in the frequency domain and nonlinear effects in
the temporal domain. This method was proposed by Bakh-
valov et al. �24�. They treated diffraction in frequential do-
main with an implicit finite differences scheme, and nonlin-
ear effects in temporal domain with a Godunov method. This
pseudospectral approach has also been used to treat the prob-
lem of focusing of sonic boom on fold caustics �25� though a
generalized KZ equation with the heterogeneous term pro-
portional to the distance from the caustic. Three-dimensional
codes based on that approach have been recently developed
�26�. The frequency domain is well suited to treat the attenu-
ation effects, and the time domain allows a good treatment of
shock waves �depending on the chosen method�. The treat-
ment of diffraction is quite well done with finite differences
but has the major drawback to be dissipative with a standard
first-order implicit scheme, or dispersive with a second-order
Crank-Nicholson scheme.

In the third method proposed by Lee and Hamilton �27�,
the KZK equation is directly solved in the time domain. Dif-
ferent finite differences schemes solve the diffraction, the
nonlinear and the attenuation subequations of the split-step
procedure. This code is known as Texas code. This numerical
resolution relies on an appropriate treatment of the diffrac-
tion term which is first integrated with respect to time, then
is numerically solved by Simpson’s rule and an implicit
backward finite difference scheme. The resolution of the
nonlinear equation is based on Poisson’s solution valid if the
propagation distance is less than the shock distance. Three-
dimensional solvers based on that approach have been re-
cently proposed �28,29�. More recently, Jing and Cleveland
proposed a 3D solver extended to take into account inhomo-
geneities �15�. Coulouvrat and co-workers �30,31� used this

approach to study, respectively, the nonlinear Fresnel diffrac-
tion and the focusing of shock waves at a caustic cusp. How-
ever, instead of using the KZ equation formulated in pres-
sure, they proposed to solve the KZ equation formulated in
potential. This formulation is well adapted to the treatment of
the shock waves and does not require very small advance-
ment steps. The nonlinear equation is solved in the temporal
domain by the Hayes method �32�. This method has many
advantages because it is based on an analytical solution of
the inviscid Burgers’ equation, so that it is fast and accurate.
Nevertheless, the resolution of the diffraction part has the
same drawbacks �dissipation and/or dispersion� than those of
the second class of algorithms.

The last method does not solve the KZK equation directly
but handles diffraction, nonlinearity, and attenuation in a
phenomenological way. This technique originally proposed
by Christopher and Parker �33� relies again on the split-step
procedure. They demonstrated that this approach can be used
for axisymmetric sources. The diffraction is taken into ac-
count by a technique similar to the angular spectrum �reso-
lution of the wave equation� �34� using the discrete Hankel
transform. Zemp et al. use the angular spectrum method to
solve the 3D problem �35�. Tavakholi and co-workers
�36,37� used the same phenomenological approach, but en-
tirely in the time domain by solving the Rayleigh integral.
Moreover, this last technique has the major drawback to be
very time consuming.

We propose, here, a code to simulate nonlinear three-
dimensional propagation through a weakly heterogeneous
media. It is based on a pseudospectral approach �similar to
the second category of codes described above�. Diffraction
and heterogeneities are treated by spectral methods �not fi-
nite differences� and nonlinear effects are taken into account
using Hayes analytical solution. This choice has been done to
combine the main advantages of each technique. It allows us
to have a code handling diffraction without dissipation or
dispersion, and able to capture strong nonlinearities such as
shock waves.

The generalized KZ equation �1� can be formulated in
terms of the acoustical potential 	 �related to the pressure by
the following relation: P= �	

�� .�:

�2	

�Z��
= ��	 + Hc

�2	

��2 + �
�

��
� �	

��
�2

. �3�

This formulation is well suited for the numerical reso-
lution of problem with strong nonlinearities. It corresponds
to a weak formulation of the problem where the discontinui-
ties �shock waves� are replaced by angular points. The clas-
sical split-step procedure is used to handle separately diffrac-
tion, heterogeneities, and nonlinear effects. Starting from the
pressure at plane Z=0, the pressure field is calculated plane
by plane, all planes being parallel. Planes are regularly
spaced with a step �Z. Calculations between two planes are
achieved by the following algorithm:

�1� Calculation of the potential field in the frequency do-
main by using the Fourier transform with respect to time
�denoted F��.

�2� Resolution of the diffraction part of Eq. �3� �left-hand
side and the first term of the right-hand side�.
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�3� Resolution of the heterogeneity part of Eq. �3� �left-
hand side and the second term of the right-hand side�.

�4� Calculation of potential field in the temporal domain
by using the inverse Fourier transform �denoted F�

−1�.
�5� Resolution of the nonlinear part of Eq. �3� �left-hand

side and the third term of the right-hand side�.
Steps 1 to 5 are repeated for each plane until the final

plane is reached. Diffraction and heterogeneity equations are
solved in frequency domain. The Fourier transform of the

potential is 	̂�X ,Y ,Z ,��=F��	�X ,Y ,Z ,��	, with � the di-
mensionless angular frequency. Thus the diffraction equation
is reduced to

− i�
�	̂

�Z
= ��	̂ . �4�

This equation can be solved by a method inspired from
the angular spectrum method. Introducing the 2D Fourier
transform operator in regards to spatial coordinates X and Y,
F�X,Y�, the Fourier transform in time and space of the pres-

sure is noted, 	̂
¯ �kX ,kY ,Z ,��=F�X,Y��	̂�X ,Y ,Z ,��	, kX and

kY being the conjugate variables of X and Y through the 2D
spatial Fourier transform. Applying the 2D spatial Fourier
transform operator to the equation of diffraction �Eq. �4��
expressed in the frequency domain allows us to formulate the
diffraction problem by a simple ordinary differential equa-
tion

�	̂
¯

�Z
= − i

kx
2 + ky

2

�
	̂
¯

. �5�

The solution of this equation is

	̂
¯ �kX,kY,Z,�� = 	̂

¯ �kX,kY,Z = 0,��exp�− i
kx

2 + ky
2

�
Z� . �6�

The solution in the �X ,Y ,Z ,�� space can be calculated by
applying the inverse spatial Fourier transform operator to the
solution �Eq. �7��,

	̂�X,Y,Z,�� = F�X,Y�
−1 �	̂¯ �kX,kY,Z,��	 . �7�

The resolution of the diffraction equation is thus quasiexact
since it is based on an analytical solution in the �kX ,kY ,Z ,��
space.

The heterogeneity equation in the frequency domain is

�	̂

�Z
= − i�Hc�X,Y,Z�	̂ . �8�

This equation has to be solved over a �Z step. Assuming that
the medium is almost homogeneous over �Z �which is true if
the step �Z is sufficiently small�, the function Hc depends
only on the transverse variables X and Y, so that it is possible
to obtain a simple solution of the heterogeneity equation,

	̂�X,Y,�Z,�� = 	̂�X,Y,Z = 0,��exp�− i�Hc�X,Y��Z� .

�9�

The nonlinear effects are taken into account in the time
domain by solving the inviscid Burgers’ equation formulated
in potential,

�	

�Z
= �

�

��
� �	

��
�2

. �10�

This equation is solved by the Hayes’ method �32,30�.
This resolution is achieved thanks to an analytical implicit
solution of the Burgers’ equation �Poisson’s solution� taking
into account the weak shock theory �the single valued and
physically admissible potential is the maximum value of the
multivalued ones�.

To solve the problem numerically, boundary conditions
have to be specified. As seen below, the potential in the
source plane Z=0 is required. The boundary conditions in X
and Y �the tranverse coordinates� are chosen to impose a null
potential sufficiently far away from the center of the beam
�	�X→ 
� ,Y ,Z ,��=0 and 	�X ,Y → 
� ,Z ,��=0�.

To summarize, the numerical procedure to solve the gen-
eralized KZ equation described below is based on a pseu-
dospectral algorithm. This allows us to treat the diffraction
and heterogeneity without numerical dispersion and/or dissi-
pation in a fast way thanks to the fast Fourier transform
�FFT� algorithms. Note that, absorption and/or dispersion
can also easily be implemented. Moreover, nonlinearities are
efficiently taken into account in the time domain by the
Hayes’ method. This allows one to deal with strong nonlinear
effects such as shock waves �see Sec. III�. All the calcula-
tions are performed on the potential variable. The pressure is
computed only in the last plane by a numerical derivation of
the potential, achieved by a standard centered second-order
finite differences scheme. The numerical procedure is ap-
plied in the next sections to investigate properties of acous-
tical vortices. Of course, acoustical vortices are not the only
physical objects which can be studied by this numerical tool
and the algorithm is adapted to many various other situa-
tions.

III. NONLINEAR PROPAGATION OF ACOUSTICAL
VORTICES THROUGH HOMOGENEOUS MEDIA

The Gauss-Laguerre �GL� beams are known to carry a
screw dislocation and can be qualified as “acoustical vorti-
ces.” They have the double advantage to have a limited spa-
tial extension �and consequently to be of finite energy�, and
to be a solution of the paraxial equation in linear regime �11�.
The pressure associated to a GL beam at point �R ,�� ��R ,��
are the dimensionless cylindrical coordinates with R the di-
mensionless radial coordinate defined by R= �2 /a�
x2+y2,
and � the angle locating the current point in the transverse
plane� in a plane parallel to the source plane and located at a
distance Z from it, can be expressed by the following dimen-
sionless formulation �11�:

P�R,�,Z,�� = Pn,l�R,�,Z�exp�− i�� , �11�

where the dimensionless variables are defined in Sec. II A
and the term Pn,l�R ,� ,Z� describes the pressure distribution
in the planes transverse to the direction of propagation,
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Pn,l�R,�,Z� = G�R,Z�An,l�R,Z�	l���
n�Z� . �12�

The different terms in that last expression, respectively,
describe the Gaussian envelope of the beam �G�, the ampli-
tude structure near the dark core �An,l�, the phase structure of
the beam 	l, and the Gouy phase 
n.

The Gaussian envelope of the beam is

G�R,Z� =
D

�1 + Z2�1/2 exp� − R2

1 + Z2�exp�− i
R2Z

4�1 + Z2�� ,

�13�

where D is a normalization constant.
The amplitude structure near the center of the beam is

given by

An,l�R,Z� = � R
2

�1 + Z2�1/2��l�

L�n−�l��/2
�l� � 2R2

1 + Z2� , �14�

where L�n−�l��/2
�l� denotes the generalized Laguerre polynomials

�38� with n= �l� , �l�+2, �l�+4, . . .. the radial index and l the
topological charge.

The helical structure of the phase of the beam is due to the
term

	l��� = exp�il�� . �15�

An additional phase term is required to take into account
the Gouy phase,


n�z� = exp�− i�n + 1�arctan�Z�� . �16�

The linear propagation has been extensively studied.
However, as already mentioned, the nonlinear propagation is
different in optics and acoustics. In acoustics �in fluids�, the
classical nonlinearities are quadratic �see Eq. �1��. They in-
troduce a dependence of the speed of sound proportional to
the instantaneous pressure. One consequence is the deforma-
tion of the temporal profile of the wave, which can lead to
the formation of shock waves. In the frequency domain, the
nonlinearities induce a cascade of harmonics of the funda-
mental frequency �for a continuous wave�, all the harmonics
being produced by an energy pumping process. Thomas and
Marchiano �10� showed theoretically and experimentally that
the ratio between the topological charge and the frequency
has to be constant for propagation in an inviscid and isotro-
pic medium. Hence, the p harmonic of the fundamental will
display a topological charge pq, if the charge of the funda-
mental is q. This law is valid both for acoustics and optics
and is in agreement with the experimental observations. It

FIG. 2. RMS amplitude �top view� and phase �bottom view� of the pressure field at the fundamental frequency in the plane Z=0.6 for a
linear ��=0, left column� and a nonlinear ��=1.53, right column� AV.
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was observed in optics �39� that a single OV of charge 1
doubles its charge by passing through a frequency doubling
crystal. In acoustics, the generation of harmonics is also ac-
companied by an increase of the topological charge �10,8�.
But in acoustics, contrary to optics, usual media are not dis-
persive, and the process can be observed on a large number
of harmonics.

This law can be checked numerically with the present
code. A single vortex of charge one �l=1 and n=1 in Eq.
�11�� is taken at the source �Z=0�. Its amplitude is chosen
sufficiently high to induce nonlinear propagation ��=1.53,
consequently the shock formation distance for a plane wave
is Z=0.65�. Figure 2 shows the RMS amplitude of the pres-
sure and the phase of a linear �left column� and a nonlinear

�right column� AV in the plane Z=0.6 �less than the shock
distance for a plane wave for the nonlinear AV� for the fun-
damental frequency. As described in the Introduction, the
phase clearly displays a helical structure which turns around
the center of the beam for which the value of the phase is
undefined for both AV. The discontinuity line �jump from
white to black� has a spiral shape. This effect is not a non-
linear effect since it is exactly the same for the linear and the
nonlinear AV. It is a classical diffraction effect already ob-
served both in optics �3� and acoustics �5�. The RMS ampli-
tude is characterized by a “doughnut” shape. The RMS am-
plitude and the phase of the fundamental are very similar in
linear and nonlinear regime. For the linear regime the ampli-
tude is less than the maximal amplitude of the initial AV �0.8
versus 1�, due to the diffraction effects which spread out the
energy of the beam on a greater surface than the initial one.
For the nonlinear AV, the amplitude is further reduced �0.75

FIG. 3. Phase for the �a� third, �b� fifth, �c� seventh, and �d�
ninth harmonic in planes �X ,Y ,Z=0.6� �left row� and �X ,Y ,Z=1�
�right row� of a single nonlinear AV ��=1.53�.

FIG. 4. RMS amplitude in plane Z=1 �top view� and pressure
versus time at points �X=0,Y =0�, �X=1,Y =0�, �X=2,Y =0�, �X
=3,Y =0�, and �X=4,Y =0� �bottom view� for a nonlinear AV ��
=1.53�. The asterisks in the top view stand for the position of the
different points.
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versus 0.8�. This is due to the combined effects of diffraction
and nonlinearity. Indeed, nonlinear effects induce a transfer
of energy from the fundamental frequency to the harmonics.

Figure 3 shows the phase of the beam for the third, fifth,
seventh, and ninth harmonics across two parallel planes lo-
cated in Z=0.6 �left column� and Z=1 �right view�. The first
plane corresponds to a propagation distance below the shock
formation distance, i.e., in the range of validity of the theo-
retical law. As expected, the ratio between the total topologi-
cal charge �visualized by the number of white to black jump
when rotating around the center� and the harmonics is con-
stant �equal to one�. Nevertheless, it seems that only vortices
with unity charge can be produced: for instance when the
total charge is 3, this is due to three vortices of charge 1 and
not to a single vortex of charge +3. These observations are in

agreement with the concept of structural stability developed
by Nye �6� and observed for linear OV �7� and AV �8�. Only
vortices with unity charge are stable structures. The smallest
perturbations destroy the higher-order vortices which degen-
erate into unity vortices �nevertheless the total topological
charge remains constant�. The second plane is located be-
yond the shock formation distance. Rigorously, the conser-
vation law cannot be applied once shocks are formed. In-
deed, beyond the shock formation distance, the entropy
increases �through pressure jumps� and an energy dissipation
occurs through the shocks. Then, the wave propagation can-
not be considered as an inviscid process. Nevertheless, these
perturbations seems to be weak and gradual enough not to
break the conservation law for the total topological charge.
No experimental observations have been done for this re-
gime.

Figure 4 shows the RMS pressure �top view� at this dis-
tance �Z=1� and the temporal signals �bottom view� for the
points �X=0,Y =0�, �X=1,Y =0�, �X=2,Y =0�, �X=3,Y =0�,
and �X=4,Y =0�. The spatial shape of the RMS pressure re-
mains the doughnut, even though the maximal amplitude is
decreasing compared to the previous planes �because of en-
ergy dissipation and spreading of the beam�. At the center of
the beam, the pressure is very weak �not exactly zero be-
cause of the coupling between nonlinearities and diffraction�.
At the point �X=1,Y =0� the amplitude is more important.
Nonlinear effects take place as shown by the steepening of
the wave form. Nevertheless, no shock is visible. At the point
�X=2,Y =0� a shock is clearly visible. It is strongly asym-
metric, the positive part being much larger than the negative
one which is a classical feature of the interaction between
diffraction and nonlinearities. At point �X=3,Y =0� a shock
wave is still present but its amplitude is weaker than previ-
ously observed. Finally, at point �X=4,Y =0�, the shock
wave is no longer visible as the amplitude of the wave is not
sufficient anymore to create a shock wave. This representa-
tion of the shock waves is an incomplete view of the situa-
tion displaying only the Z-axis projection of the shock �for

FIG. 5. Instantaneous pressure in the plane �X ,Y ,Z=1� at four
different times: �=0 �a�, � /2 �b�, � �c�, and 3� /2 �d�, for linear
propagation ��=0, left column� and nonlinear propagation ��
=1.53, right column�.

FIG. 6. Dimensionless pressure P versus angle � at radius R
=2 and at plane Z=1 for a linear AV ��=0, solid line� and a non-
linear AV ��=1.53, dashed line�.
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paraxial beam, the time dependence is equivalent to the spa-
tial dependence along the Z axis, see definition of the de-
layed time in Sec. II A�. Figure 5 presents the instantaneous
pressures over the plane �X ,Y ,Z=1� at four different times
��=0,� /2,� ,3� /2� computed for a linear propagation �left
column� and a nonlinear propagation with �=1.53 �right col-
umn�. This figure shows the spatial distribution of the pres-
sure field. For the linear propagation, there are two lobes
�one positive in white and one negative in black�. The tran-
sition between the two lobes is smooth. A complete rotation
of the pattern is achieved in one period. For the nonlinear
propagation, the two lobes are still visible. Nevertheless, the
transition between them is not smooth everywhere. It exists a
small area on each view where a shock wave is visible �sharp
transition between white and black�. What is visible on this
representation is the X and Y components of the shock wave.
To clarify this representation, the pressure at a fixed distance
R from the center of the beam �R=2� at T=0 for all the
values of the angle � (P�R=2,� ,Z=1,�=0�) is plotted in
Fig. 6 for the linear and nonlinear propagation. As expected,
the pressure corresponding to the linear case is smooth. But,
the pressure computed for the nonlinear propagation presents

clearly a shock. This view confirms the conclusions given
from Fig. 4, that in the nonlinear regime, there exists an
azimuthal shock. It may be of interest for acoustical tweezers
since the pressure of radiation is proportional to the spatial
derivative of the pressure field for small objects �bubbles,
microparticles for instance�.

IV. NONLINEAR PROPAGATION OF ACOUSTICAL
VORTICES THROUGH HETEROGENEOUS MEDIA

Propagation of AV through a weakly heterogeneous media
is now investigated. Two different situations are studied, the
first one is the propagation through a 1D acoustical lens and
the second one through a 2D acoustical lens. For each case,
the source is a single AV with charge +1 and a high ampli-
tude �same AV as in Sec. III�. Acoustical lenses are a half
cylinder for 1D focusing and a half ball for 2D focusing. To
create the focusing effect, the speed of sound of these two
lenses is chosen smaller than in the surrounding medium
�ch /c0=0.7�. The axis of the half cylinder is chosen to be the
Y axis to create a focusing in the X direction. The half ball
creates a focusing in both X and Y directions. The radii of the

FIG. 7. Nonlinear propagation of a single AV through a 1D acoustical lens. Top view presents the RMS amplitude in the plane �X ,Z�.
Bottom views are representations of the phase for the fundamental frequency and the second harmonic �across plane �X ,Y�� at different
distances: Z=0.07, 0.23, 0.32, and 0.85 �the positions of these planes are indicated by dashed lines on the top view�.
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half cylinder and the half ball are the same �Rlenses=33�� and
these inclusions are located at the same position. The lenses
are represented on the top views of Fig. 7 and Fig. 8 by white
solid lines. The elliptic shape is due to the fact that the scal-
ing is not the same on the X axis and on the Z axis. Focusing
on the X direction is visible on the top views of Figs. 7 and
8. Due to the focusing effect, the acoustical energy is spa-
tially concentrated, and results in an increase of the pressure
amplitude. For the 1D focusing the amplification factor is 2
and for the more efficient 2D focusing, the amplification fac-
tor is 4. According to the geometries of the lenses, these
values were expected. An interesting point is that the zero
amplitude along the core of the vortex is present during the
whole propagation, even at the focal point �located in Z
=0.23�.

Figure 7 also presents the evolution of the phase for the
1D lens during the propagation �in four planes located at Z
=0.07, 0.23, 0.32, and 0.85� for the fundamental �f0, first
line� and the second harmonic �2f0, second line�. Before the
focal point, the topological charge is +1 on f0 and +2 on 2f0.
The invariance of the ratio between the order of the harmonic
and the topological charge explains this result. At the focal

point, the pattern exhibits a +1 charge on f0 and is very noisy
on 2f0. Hence, this ratio is no longer constant. Beyond the
focal point �the last figures�, a −1 charge is now visible on f0
and a −2 charge appears on 2f0. Note that the −2 charge is
made of two charges −1 and not of a single vortex of charge
−2. Again this is related to the concept of structural stability.
These results show an inversion of the topological charge of
the fundamental and the harmonics. Such an inversion, how-
ever restricted to the linear case, has already been observed
for OV in an analogous situation �focusing through a cylin-
der lens� �40�. In practice, the propagation of vortices
through cylindrical lenses is important. In optics, this con-
figuration, called cylindrical lens converter, can be used to
produced GL beams from Hermite-Gaussian modes �41�.
The observations presented here are not in contradiction with
the theoretical law of charge conservation. Indeed, in the
case of the half cylinder, the isotropy of the medium is bro-
ken. Consequently, the law is no longer valid. For a 2D fo-
cusing, the situation have to be different as the 2D spherical
lens keeps the medium isotropic.

Figure 8 shows the evolution of the phase for the 2D lens
during the propagation �in Z=0.07, 0.23, 0.32, and 0.85� for
the fundamental �f0, first line� and the second harmonic �2f0,

FIG. 8. Nonlinear propagation of a single AV through a 2D acoustical lens. Top view presents the RMS amplitude in the plane �X ,Z�.
Bottom views are representations of the phase for the fundamental frequency and the second harmonic �across plane �X ,Y�� at different
distances: Z=0.07, 0.23, 0.32, and 0.85 �the positions of these planes are indicated by dash lines on the top view�.
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second line�. Before the focal point, the topological charge is
+1 on f0 and +2 on 2f0 in agreement with the theoretical law.
For both figures, the discontinuity line on the phase is a
spiral which turns in the anticlockwise direction. At the focal
point, the topological charge is +1 on f0, +2 on 2f0. The
discontinuity lines are now straight lines. Beyond the focal
spot, the topological charge is +1 on f0 and +2 on 2f0. There
is no inversion of the topological charge in this case. The
total topological charge is constant during the whole propa-
gation. Again, that conservation of the topological charge for
each harmonic is in full agreement with the conservation law
of the topological charge in an isotropic medium. The evo-
lution of the lines of discontinuities is interesting too. Be-
yond the focal point, the spiral shape is recovered. Neverthe-
less, the curvature of the spiral arms is now oriented as for a
divergent beam and looks similar to a clockwise rotation �see
Fig. 2�. It shows that diffraction acts as a defocusing effect
on the vortex beyond the focal plane. Note that the inversion
of the curvature of the spiral arms is not an inversion of the
topological charge.

V. CONCLUSIONS AND OUTLOOKS

A numerical tool which allows one to solve numerically
the nonlinear paraxial wave equation in a heterogeneous me-
dium has been presented. The treatment of the diffraction
and heterogeneities by spectral methods, and the treatment of

the nonlinearities by a time domain quasianalytical solution,
permits one to obtain fast calculation �the computation time
is about 3 hours for �NX�NY �NZ�NT�= �256�256�100
�128� on a classic PC �xeon 1.8 GHz�. This numerical tool
is particularly well suited to study the propagation of GL
beams because they are the solution of the paraxial equation
in linear regime. Numerical investigations show that it is
possible to form shock waves inside an acoustical vortex.
These shock waves have a tridimensional spiral shape. These
results allow us to predict the existence of an azimuthal
shock wave associated to nonlinear AV. This original result
could be applied to design acoustical devices such as acous-
tical tweezers. These numerical predictions must be checked
experimentally. The results obtained about the focusing
through 1D or 2D acoustical lenses outline interesting prop-
erties. Depending on the geometry of the acoustical lens, the
topological charge can be reversed or not, for the fundamen-
tal frequency and all the harmonics. This means that the
topological charge contains information on the media and
could be used as an information vector to explore mechanical
properties of medium. Moreover, the stability of the topo-
logical charge �even if it can be inversed for a shock wave� is
remarkable, as demonstrated by the zero amplitude stability
of the core of a vortex during the propagation through the
various acoustical lenses. Again, we think different applica-
tions of this property are possible and appealing.
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