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We investigate the effective permittivity � of two-phase two-dimensional heterostructures, consisting of an
inclusion �or cross section of infinite parallel, infinitely long, identical, cylinders, where the properties and
characteristics are invariant along the perpendicular cross sectional plane�, of permittivity �2=�2�+�2�i with �2�
being positive or negative, in a matrix of permittivity �1 �hereafter, assumed to be real valued and positive�.
Our method for computing �=��+��i is based on formulating the conservation of electric displacement flux
through the interface separating the two media on systems with periodic boundary conditions in one direction.
We identify two distinct behaviors in the surface fraction �2 dependence of the effective permittivity according

the value of
��2��
�1

relative to 1, which is a consequence of the duality symmetry. The incorporation of negative
values of �2� into our calculations leads to a peak in ����2� whereas ����2� decreases to zero, which are both
results of an electrostatic resonance �ER� phenomenon. We demonstrate that one can generate heterostructures
characterized by an upward shift in the ER position as �2� is increased. This suggests that, in principle, this
property can be used to provide a wide range of innovative structures from specially designed composite
materials, e.g., reconfigurable composite device. The comparison of our data with Maxwell Garnett �MG� and
Bruggeman �SBG� homogenization formalisms permits a quantitative assessment of the ability of the two
methods to capture the effects of surface fraction on �. These methods have severe inadequacies, which arise
physically from an incorrect treatment of the higher multipoles than dipole moments. We argue that the
inappropriateness of SBG formula can originate from its prerogative that phase 1 and phase 2 are treated
symmetrically. Our calculations show that MG formula may provide reasonable estimates for �, even close to
the ER position, of homogenized two-phase heterostructures with the real part of the complex-valued permit-
tivities of phases having opposite signs and provided that ��2����2�.
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While composite materials �CM� present a rich set of
physical phenomena, many aspects of them are still
poorly understood. The resolution of this problem has fasci-
nated and confounded many generations of scholars, both
theoretically and in the laboratory. With the advent of
modern scientific computing, numerical simulations are be-
ing used to probe the generic features of the effective �rela-
tive� complex permittivity �=��+��i as a function of various
couplings and interactions between components in the
structure and due the presence of a hierarchy of length
scales in these systems �1–8�. A special place in this field
is occupied by the control of dielectric properties by
exploiting the specific features of the electrostatic resonan-
ces �ER� �8–12�. From a theoretical point of view, ER
occur when a metallic or dielectric particle �phase 2 of
permittivity �2� with a negative real part of the permittivity is
embedded in a dielectric host �phase 1 of permittivity �1�
with a positive real part of the permittivity. Such ER, for
which �� decreases to zero while �� displays a peak, can
occur only for special values of

�2

�1
which have to be real

and negative, e.g., for metal-in-insulator CM there is a range
of frequencies between �−1 �� is the conductivity mean
free time� and �p �the plasma frequency of the metal�, where

�2

�1
is very nearly real and negative �8,13�. These ER occur

at the poles of �

�2
when expressed as a function of

�2

�1
.

McPhedran and McKenzie �14� have pictures of some of the
ER for a square array of circular cylinders. While a great
deal of insight into the position of these resonances as a
function of geometric parameters has been gained, it has be-
come equally clear that the proper design of the dielectric
environment can result in dramatic effects in ER features. In
addition, previous numerical investigations revealed that in
arrays of elliptical particles with a core-shell structure em-
bedded in a surrounding host, there exist so-called intrinsic
ER �in the long-wavelength limit� whose features can be
tuned by properly selecting the core and shell material pa-
rameters, and also the polarization of an electric field �12�.
Experiments have taken advantage of these tunable param-
eters to study metamaterials, i.e., subwavelength sized struc-
tures which are intended to exhibit novel electromagnetic
properties such as negative index of refraction �12,14–17�.
Prompted by the link between ER, homogenization theory,
and computational electromagnetism a number of research-
ers have begun to study the dielectric properties of artificially
engineered CM in technologies for such applications as
microwave biosensors, nanophotonics, and heterogeneous
catalysis.

In many instances the effective permittivity � of CM can
be scaled to collapse to a common set of master curves
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described by �

�1
= f� �2

�1
,�2 ,A�, where �2 denotes the surface

fraction of phase 2, and the depolarization factor A �0�A
�1� is a functional of inclusion shape and permittivity mis-
match only �4�. By now, a broad choice of analytic expres-

sions is available for the function f which may score very
well if compared to experimental or numerical data �1–8�.
For example, the Maxwell Garnett �MG� �1–8� form for f
is given by

f��2

�1
,�2,A� = 1 +

�2��2

�1
− 1�

1 + A�1 − �2���2

�1
− 1� . �1�

Note that the roles of host and inclusion in Eq. �1� are not reciprocal. This result can also be derived by standard Lorentz local
field arguments. In other instances, the function f is more complex, e.g., for Böttcher equation �also termed symmetric
Bruggeman, SBG� �1–8�, it can be computed as

f��2

�1
,�2,A� =

1 − A�1 +
�2

�1
� + �2��2

�1
− 1� ��	1 − A�1 +

�2

�1
� + �2��2

�1
− 1�
2

+ 4A�1 − A�
�2

�1

2�1 − A�
. �2�

Note that the roles of host and inclusion media are recipro-
cal. In this way of thinking the procedure amounts to finding
the roots of a second-order polynomial and the physical root
of Eq. �2� is determined from requirements of positivity of �
�or of the imaginary part �� of � corresponding to dissipa-
tion�. For many decades, Eqs. �1� and �2� were not chal-
lenged; they serve everyone well. When more attention was
paid to the foundations of analysis, many started wondering
about the limitations of these equations. More specifically,
the dipolar nature of MG and SBG approaches fundamen-
tally limits the range of applicability of Eqs. �1� and �2�
�3,6–8�. It is often stated that laboratory or numerical data
can be approximated arbitrarily accurately with Eq. �1� or
Eq. �2� only in the dilute limit, i.e., when �2 is sufficiently
small. However, delineating the precise limits of applicabil-
ity of homogenization formalisms remains one of the major
challenges for modern composite physics.

CM with interesting properties may be conceptualized if
the real part of the complex-valued permittivities of the two-
phase media have opposite signs. This situation is typical of
metal-in-insulator CM for example, but our analysis is also
relevant to the study of the previously mentioned metamate-
rials. This possibility has recently become feasible with the
fabrication of dielectric-magnetic structures displaying a
negative index of refraction in the microwave range of fre-
quency �15,17�. The relative merits of the different homog-
enization approaches have been debated �2,5–8�, but there
have been relatively few comparisons of the different meth-
ods in the relevant CM. Quantifying the ER properties of this
kind of CM versus composition can thus provide insights
into polarization mechanisms of dielectric heterostructures
and also improve our understanding of metamaterials and
ultimately, the electromagnetic wave transport in unconven-
tional CM.

In light of these theoretical results, the motivation for this
work stems from a recent analytical study by Mackay and

Lakhtakia �ML� �18� who have shown that homogenization
formalisms have fundamental limitations when they are ap-
plied to deal with weakly dissipative component mediums
characterized by permittivities with real parts of opposite
signs. In this paper we take a step forwards remedying the
abovementioned deficiency by presenting, for two-phase
CM, a numerical study of how � depends on

�2

�1
, the impact of

inclusion shape on the ER positions, along with a compari-
son with analytics. Building on earlier work �4�, the calcula-
tions discussed in this paper are carried out within a finite
element �FE� based program which utilizes the conservation
of electric displacement flux through an interface separating
media. More importantly these results extend the ML analy-
sis to CM containing specific inclusion shapes and with com-
ponent mediums characterized by complex-valued permit-
tivities whose real parts have opposite signs. A feature of our
analysis is that we are able to quantify the degree to which
different homogenization methods may capture the ER fea-
tures.

Numerical calculations were performed using the FE
Comsol MULTIPHYSICS software �19� and the procedure
sorted out � on a personal computer with a Pentium IV pro-
cessor �3 GHz�. By way of example, specific results are
given below for a series of �nonoverlapping� inclusion with
two simple shapes which are illustrated in Fig. 1�a�. The CM
discussed here are two-dimensional �2D� deterministic two-
phase heterostructures �or cross sections of infinite parallel,
infinitely long, identical, cylinders, where the properties and
characteristics are invariant along the perpendicular cross
sectional plane, with reference to Fig. 1�b��, where there is
no source charge. In all cases, the simulation cell � is a
square of length L=1. Periodic boundary conditions are en-
forced in the x direction for these structures. Comsol Mult-
iphysics permits the closely controlled generation of FE
meshes through the use of input files containing complete
instructions for node-by-node and element-by-element mesh
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specification, along with imposition of boundary conditions.
In this work, the y axis was defined as pointing in the direc-
tion of the applied electric field. Omitting the details of deri-
vation, which are similar to those described elsewhere �4�,
the effective �relative� permittivity along the direction corre-
sponding to the applied field, i.e., �=�y, can be found by
integration via /S�i�x ,y� �V

�y dxdy=��V2−V1�L, where V2

−V1 denotes the difference of potential imposed in the y
direction, L is the size of the unit cell and S is the “surface”
of the interface separating the two media. Since there is no
induced polarization charge on the surfaces if the electric
field is in the z direction, it is easy to show that �z=�1+ ��2

−�1��2. The potential on the top face of the square V2 is
fixed at a value of 1 V, while that on the bottom face V1 is
fixed at 0 V. For a disk, A= 1

2 �4–6�. In the simulations �2
��2c, where �2c corresponds to the touching inclusions
limit in the regular lattice.

A technical remark is in order. While strictly correct only
in a dc situation, these calculations can be extended to the
quasistatic case for which, in general,���0 and �� may vio-
late the dc restriction ���1 �13�. In the case of electromag-
netic radiation this means that all length scales must be much
smaller than the wavelength of radiation and the skin depth
�in case of a metal� or, equivalently, that the effective wave
vector for the CM k= �

c
���	=− �

c
������	� should be much

smaller than 1

 , where 
 denotes a typical length scale that

characterizes the inhomogeneities in the material medium,
and c is the speed of light in vacuum.

As a preliminary test we have checked that our method
reproduces known results for ideal nondissipative component
mediums. Figure 2 illustrates the two-branch structure of the
surface fraction dependence of the effective permittivity for a
discoidal inclusion of component medium 2 embedded in the
host component medium 1 �with reference to Fig. 1�a��. The
data presented are for different sets of �1 and �2. Examining
all the data in Fig. 2, we first note that the upper branch
�lower� corresponds to

�2

�1
�1 � �2

�1
�1�. We assign the ob-

served features in Fig. 2 to the Keller-Dykhne duality �or
phase exchange� relation �6,7�, i.e., ���1 ,�2����2 ,�1�=�1�2.

In order to further understand the impact of
�2

�1
on ���2� we

have checked whether the MG and SBG estimates of �
�shown as curves in Fig. 2� can closely match the FE dielec-
tric response. Comparison of the two theoretical curves and
the FE data �all symbols are superposed� in Fig. 2 suggests
that this can happen over a limited range of �2 values for
SBG formula ��2�0.15�, but it is perhaps more surprising to
observe that this can happen over a significant broader range
for MG formula with discrepancies being significant close
only if �2��2c= 


4 . The standard argument to explain this
behavior is that when the inclusions come close to each other
the dipole approximation is no longer adequate since the
nonuniformity of the field due to the other inclusions acting
on a given inclusion becomes important. Higher multipoles
than the dipoles must be used. Our results assume particular
significance at large filling fractions because it is reasonable
to hypothesize that we go beyond the lowest �dipolar� order
to consider the effects of higher multipole interactions,
which are absent in the MG and SBG approaches, which
assume a priori that the polarization is electric dipole in
nature, so higher-order electric terms are ignored. One of the
formulas, SBG, is found to be significantly worse in the abil-
ity to capture the effect of �2 on �. Further reflexion might
suggest that the SBG formula fails for the fundamental rea-

(a)

(b)
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y

FIG. 1. �a� Schematic diagrams of the structural motifs of the
inhomogeneous mixtures considered in this work. Two types of
inclusions �gray region� are considered: disk and square. �b� Sche-
matic illustration of the simulated cell employed to determine the
effective complex permittivity of our model system consisting of a
two-phase system, composed of a single 2D inclusion �phase 2 of
permittivity �2�, or cross section of an infinite cylinder, embedded
in the host �phase 1 of permittivity �1�. The model space can simu-
late a capacitor by applying a potential difference between the top
and bottom faces of the model space. The evaluation of the effective
permittivity, along the direction corresponding to the applied field,
i.e., �=�y, requires that the conservation of the electric displace-
ment flux through the “surface” S has to be solved subject to ap-
propriate the relevant boundary conditions for the potential. We fix
V1=0 V and V2=1 V and assume that �V

�n =0 on the other side faces.
L and S have both been set to unity.

0.1

1
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0 0.2 0.4 0.6 0.8
� �

1

�
�

FIG. 2. Surface fraction of phase 2 dependence of the normal-
ized effective permittivity of the 2D composite structure, composed
of a circular inclusion in the matrix, to the matrix permitivity �1.
The open circle, triangle, and square symbols correspond to ��1

=1, �2=10�, ��1=10, �2=100�, and ��1=100, �2=1000�, respec-
tively. The solid circle, triangle, and square symbols correspond to �
�1=10, �2=1�, ��1=100, �2=10�, and ��1=1000, �2=100�, respec-
tively. Observe that all symbols are superposed. Solid �dashed� lines
show the values of � as predicted by the MG �SBG� equation.
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son that phase 1 and phase 2 are treated symmetrically. It is
also instructive to see how the local-field varies in the spatial
configuration that we considered. As further illustration we

plot in Fig. 3 the local electric field enhancement factor
�E�r��

E0
,

where E0 is the applied electric field. The observation of this
plot goes against the notion of uniform electric field which
underlies mean-field analysis and provides a hint for explain-
ing the observed discrepancies between the numerical data
and the predicted analytical values of � �20,21�.

We now focus on the case when the inclusion permittivity
is a complex-valued quantity, e.g., �2�=�1� and �2�=1. In Fig.
4�a�, the calculated ��

�1
is plotted against �2 along with the

corresponding MG and SBG curves in order to explain the

observed trends. Figure 4�b� gives the corresponding results
for ��

�2�
. It is worth noting that the trend in Fig. 4�a� closely

resembles that displayed in the previous nondisspative situ-
ation. We observed also �not shown� that the values of ��
become more pronounced if �2� is increased. Also shown, by
the solid and dashed lines, are the expectation from the the-
oretical variation in �� and �� with �2 from MG et SBG
analysis, respectively. One can see that Eq. �1� models the
data quite well even for the case of concentrated composite
of dissipative inclusions. It is a particularly interesting result
because irrespective of the details of the structure of the sys-
tem, it can be shown �6,7� that Eq. �1� together with the
complement formed by interchange of phases 1 and 2, form
a pair of bound on �. It should also be noted that the dashed
line �SBG� reproduces the solid line �MG� for �2�0.15. The
color plot of Fig. 5 can yield quantitative information related
to the the local electric field enhancement factor. From the
plot it may be noted that the electric field inside the inclusion
is not uniform.

Motivated by the above results, we proceed with a more
in-depth analysis of the case of isotropic CM which arise
from component mediums characterized by complex-valued
permittivities whose real parts have opposite signs �22�. We
consider an identical composite structure consisting of an
isolated circular inclusion in the matrix and we assign the
following sets of � values corresponding to the different pan-
els in Fig. 6. The upper panels, i.e., �a� and �b�, show the
evolution of � as �2 is varied for �1=10 and �2=−10+ i. The
lower panels, i.e., �b� and �c�, give the the corresponding
values for �1=1 and �2=−1+ i. The peak in �� is strongly
reminiscent of the ER phenomenon. Based on the results of
the FE simulations displayed in Fig. 6, a precise estimate of
the ER position �2r can be obtained: �2r increases up to
0.05, and 0.447, in simulations performed at �2=−10+ i, and
�2=−1+ i, respectively. With decreasing ��2��, the ER is sig-
nificantly broadened and attenuated. We have also compared
the quantitative predictions of our simulations with SBG and
MG models calculations. An obvious difference between the
two curves is that SBG does not correctly predict the trends
in �� and �� over the accessible range of �2. It comes as a
surprise that the MG reproduces quite well the ER profile,
even when the ER position is outside the dilute limit, i.e.,
Figs. 6�c� and 6�d�, and even if ��2����2�, i.e., Figs. 6�a� and

FIG. 3. �Color online� Local electric field enhancement factor
�E�r��

E0
for the 2D composite structure consisting of a circular inclu-

sion in the matrix:�E�r�� �E0� denotes the norm of the local electric
field �the applied electric field�. �2=0.782. �2=1 and �1=10.
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FIG. 4. �Color online� �a� The dependence of the real part ��
�1

of
the effective permittivity � of a 2D composite structure consisting
of a circular inclusion in the matrix as a function of the surface

fraction of phase 2 and two values of
�2�

�1�
and �2�=1. Symbols are ���

�1�=10 and �2�=1, ��� �1�=1 and �2�=10. Solid �dashed� lines show
the values of � as predicted by the MG �SBG� equation. �b� Same as
in �a� for the imaginary part, ��

�2�
, of the effective permittivity.

FIG. 5. �Color online� Local electric field enhancement factor
�E�r��

E0
for the 2D composite structure consisting of a circular inclu-

sion in the matrix: �E�r�� �E0� denotes the norm of the local electric
field �the applied electric field�. �2=0.782. �2=1+ i and �1=1.
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6�b�. The fact that the SBG equation does not reproduce the
correct ER position �2r for this kind of heterostructure is
consistent with the recent analytical study of ML �18� who
suggested that the SBG homogenization formalism is inap-
plicable for CM having two isotropic dielectric component
mediums with �1��2��0 and ��2����2�. Figure 7 allows us to
visualize the electric field norm in the �x ,y� plane corre-
sponding to the resonant state of the upper panel of Fig. 6,
which is significantly increased compared to what is ob-
served in Fig. 5 ��1��0 and �2��0�. The ER features were
analyzed further with varying �2� over two orders of magni-
tude. These results show that �2r upshifts as �2� is increased
�Fig. 8�. For purpose of comparison, Fig. 8 also shows the
evolution of �2r for three values of �2�. We would like to
draw attention to the “S-shaped” profile observed for the
different situations which is quite insensitive to the choice of
�2� for the range of values of �2� considered.

Of particular interest here is the question of how shape
anisotropy can influence the ER. The actual value of the

depolarization factor A for irregular inclusions of arbitrary
shape is therefore of great practical importance. However,
determining the value of this parameter is in general a chal-
lenging problem since not only does it depend on the par-
ticular geometry of inclusion but it can also depends on the
permittivity ratio

�2

�1
, see, e.g., Ref. �4�. For that reason and to

avoid demanding long-time simulations, we next examine
the square inclusion sketched in Fig. 1�a� for which the ac-
curate value of A are known �4�, i.e., A=0.43. The values of
� are found in a fashion similar to the previously considered
case of an isolated circular inclusion, under the same bound-
ary conditions. Typical calculations of � are shown in Figs. 9
and 10�a�–10�d� for the square inclusion without and dissi-
pation, respectively. Under these circumstances, the depen-
dence of �

�1
versus �2 has a trend similar to the case of disk.

The main point with Fig. 9 is its illustration of the duality
symmetry which implies that A↔1−A when �1↔�2. Next
we consider, in Fig. 10, the results for CM having component
mediums characterized by complex-valued permittivities
whose real parts have opposite signs. In addition, Fig. 10
compares the performance of Eqs. �1� and �2� to represent
the behavior of ��

�1
and ��

�2�
with the FE data. In a similar

fashion as was evidenced in the case of disk, decreasing ��2��
significantly broadens and attenuates the ER profile. The
comparison permits a quantitative assessment of the ability
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FIG. 6. �a� The dependence of the real part ��
�1

of the effective
permittivity of a composite structure consisting of a circular inclu-
sion in the matrix as a function of the surface fraction of phase 2

and two values of
�2�

�1�
. �2�=−�1�=−10 and �2�=1. Solid �dashed� lines

show the values of � as predicted by the MG �SBG� equation. �b�
Same as in �a� for the imaginary part, ��

�2�
, of the effective permittiv-

ity. �c� Same as in �a� for �2�=−�1�=−1 and �2�=1. �d� Same as in �b�
for �2�=−�1�=−1 and �2�=1.

FIG. 7. �Color online� Local electric field enhancement factor
�E�r��

E0
for the 2D composite structure consisting of a circular inclu-

sion in the matrix:�E�r�� �E0� denotes the norm of the local electric
field �the applied electric field�. �2=0.053. �2=−10+ i and �1=10.
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FIG. 8. Evolution of the surface fraction �2r corresponding to
the ER of a composite structure consisting of a circular inclusion
in the matrix as a function of �2�. Symbols are ��� �2�=−1,
��� �2�=−0.8, and ��� �2�=−0.9. The solid lines serve to guide the
eye.
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FIG. 9. Same as in Fig. 2 for a composite structure consisting of
a square inclusion in the matrix. The computations were performed
assuming A=0.43 in Eqs. �1� and �2� �4�.
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of the two methods to capture the effects of �2 on � and the
ER profile. Several features of the results are important.
First, for a dissipative inclusion medium with ��2����2�, i.e.,
Figs. 10�a� and 10�b�, none of the formalisms give a good
treatment of ���2�. Second, for a dissipative inclusion me-
dium with ��2����2�, it should be noted that the MG equation
provides a better description of the data than the SBG, even
close to the ER. In addition, the two curves superimpose in
the dilute limit �panels �c� and �d��, which is consistent with
the previous results of Figs. 6�c� and 6�d� corresponding to
the discoidal inclusion. In Fig. 11, we display the ER posi-
tion �2r for four values of �2�. The gradual shift of �2r with
increasing �2� is the salient feature, and is similar to that
observed for the discoidal inclusion in Fig. 7. Results from
numerical calculations of the local electric field enhancement
factor are plotted in Fig. 12. The fourfold symmetry of the
map is evident from this figure. The other noticeable feature
of Fig. 12 is the nonuniformity of the electric field distribu-
tion in the square inclusion, especially around its boundaries,
at the resonance.

We conclude with a few further comments. We start by
observing that the above results are valid for the two simple
shapes of inclusion considered. Other results can be expected
for other inclusion geometries. For instance, one could con-

sider fractal inclusions, which have been studied in great
detail in Ref. �4�. To illustrate the potential of our approach,
we performed simulations to illustrate how the ER features
are related to the shape of the inclusions and permittivity
ratio between the inclusion and the matrix. Indeed, this sug-
gests that, in principle, this property can be used to provide a
wide range of innovative structures from specially designed
composite materials, e.g., reconfigurable composite device
with materials whose permittivity and magnetic permeability
values may be designed to vary independently and arbitrarily
throughout a material, taking positive or negative values as
desired. Our study of the spatial distribution of the electric
field gives information about the symmetry properties of the
physical system in question. It should also be noted that the
present results are not inconsistent with the interpretation of
previous analytical calculations reported by ML in Ref. �18�.

We now reexamine some of the notable trends in ���2�
across the entire set of calculations. More importantly, our
data reveal that neither of the two homogenization methods
considered in this work give a particularly good treatment of
the ���2� variation. These methods have severe inadequa-
cies, which arise physically from an incorrect treatment of
the higher multipoles than dipole moments. As such, the de-
velopment presented here provides a method for the evalua-
tion of the effective complex permittivity beyond the con-
ventional dipolar MG approximation. The importance of the
higher than two order multipolar interactions was recently
stressed by Raab and co-workers �23�. In spite of evident
commonalities, there is a crucial difference between the two
approaches to homogenization considered here. Intriguingly,
of the two analytical methods, MG is found to provide the
better approximation to the FE estimation of �, especially for
dissipative inclusions even in the vicinity of the ER, albeit
with the restriction that ��2����2�, while the SBG formula
cannot at least provide a qualitative prediction of the location
of the ER. The reasons for this difference are as follows.
First of all, the SBG formula derives from an effective me-
dium approximation �EMA�. The analysis is one of con-
tinuum physics: EMA approaches assume that each constitu-
ent is surrounded by the same effective medium. It assumes
that the local electric field is the same in the surface occupied
by each component in the composite. The analysis is done in
the approximation of noninteracting inclusions �each inclu-
sion is subject to the same mean field, unperturbed by the
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FIG. 10. Same as in Fig. 6 for a composite structure consisting
of a square inclusion in the matrix.
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FIG. 11. Evolution of the surface fraction �2r corresponding to
the ER of a composite structure consisting of a square inclusion in
the matrix as a function of �2�. Symbols are ��� �2�=−1, ��� �2�=
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FIG. 12. �Color online� Local electric field enhancement factor
�E�r��

E0
for the resonant state of the 2D composite structure consisting

of a square inclusion in the matrix. E0 denotes the applied electric
field. �2=0.25, �2=10+ i, and �1=10.
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presence of other inclusions�. The accuracy and range of
validity of EMA is not easy to establish. In principle, this
approximation is rigorous at small surface fraction of inclu-
sions �provided that their mutual positions are uncorrelated
so that cluster-type configurations are excluded�. In other
words, in the effective medium the energy density is homo-
geneous by construction. It is also worth noting that what the
matrix is and what an inclusion is are determined by the
physical situation of the specific problem at hand, and it
cannot be arbitrarily interchanged just to obtain an agree-
ment with some calculations.

Lacking detailed information on the morphological fea-
tures and on the material interfaces is the main short-coming
of homogenization approaches. In spite of its relevance to
explain the dielectric response of CM quantitatively, the role
of microstructure has been largely neglected in simulation
work to date. However, in special cases such as those pre-
sented here, the symmetry and duality of the theory are pow-
erful enough to fix the exact �dipolar� couplings in the dilute
limit. As mentioned earlier, these behaviors also have prac-
tical implications for the physics of metamaterials when the
question of simultaneous negative permittivity and magnetic
permeability is addressed �24,25�.

Two comments, addressing possible extensions of the is-
sue at hand, are in order. We would like to note that the
long-wavelength limit for an arbitrary photonic crystal �PC�
of 2D periodicity, i.e., periodic arrangement of infinite cyl-
inders, was considered by many authors, e.g., Ref. �26�. PCs
are artificial arrays of dielectric materials with 1D, 2D, or 3D
periodicity. There is obvious similarity between the 2D peri-
odic arrangement of infinitely long cylinders and the com-
posites considered in the present work. Using the Fourier
expansion method, the authors of Ref. �26� derived compact
analytical formulas for � of 2D PCs. In a previous work �2�,
we found that our numerical results are very close to those
obtained by the Fourier expansion technique over the entire
range of volume fraction �26,27�. In another perspective,
considerable effort has been made to develop optical reflec-

tance spectroscopy �RS� for analysis of heterostructures.
Since the reflectance, i.e., the ratio of the energy of reflected
to incident wave, is related to �, e.g., Ref. �28�, our numeri-
cal calculations can bring interesting information on the re-
flectance of composite structures containing inclusions with
anisotropical dielectric properties, or irregular inclusions
�geometrically complex interfaces and boundaries� for which
analytical treatments are difficult to find. Since our analysis
can be extended to treat electric fields that oscillate with time
provided that the wavelengths and attenuation lengths asso-
ciated with the fields are much larger than the microstructure
dimension a detailed investigation of the effects of frequency
in the reflectance at microwave to infrared frequencies of
two-phase heterogeneous structures will be the subject of
future work �29�.

Lastly, we point out that the special cases considered here
are limited by being only 2D and the range of inclusion
geometries explored is unsufficient to carry out a complete
numerical scheme to characterize the ER phenomenon of
two-phase heterostructures. Our discussion of CM for which
the real part of the complex-valued permittivities of the two
phases have opposite signs does not exhaust the topic. Nev-
ertheless, the present calculations show a rich variety of re-
sults and pave the way to understanding the linear dielectric
response of more complex CM, i.e., with inclusions of ir-
regular �nonsmooth� shape, anisotropy in permittivity, 3D,
and arbitrary morphology, e.g., random, by showing that the
two homogenization approaches previously considered are
unsufficient to capture the main features of the composition
dependence of the effective complex permittivity of hetero-
structures. We expect that the quantitative information about
the limitation of two conventional approaches to homogeni-
zation reported in this paper will stimulate further theoretical
work in this area.

We have benefited from discussions about technical points
related to the material here with S. Lasquellec. The Labora-
toire d’Electronique et Systèmes de Télécommunications is
Unité Mixte de Recherche CNRS 6165.
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