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Numerical study of the transmission of energy in discrete arrays of sine-Gordon equations

in two space dimensions
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In this paper, we provide a numerical approximation to the occurrence of the process of nonlinear su-
pratransmission in semiunbounded, discrete, (2+ 1)-dimensional systems of sine-Gordon equations subject to
harmonic Neumann boundary data irradiating with a frequency in the forbidden band gap. The model is a
generalization of the one describing semi-infinite, discrete, (1+ 1)-dimensional, parallel arrays of Josephson
junctions connected through superconducting wires, subject to the action of an ac current at the end. The
computational results are obtained using a finite-difference scheme for sine-Gordon and nonlinear Klein-
Gordon media, and the method is applied to systems of harmonic oscillators when Dirichlet data are imposed
to the boundary. Our numerical results show that energy is transmitted into the medium in the form of discrete

breathers.
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I. INTRODUCTION

When one talks about the analytical study of the process
of supratransmission in nonlinear media, one must necessar-
ily talk about the pioneering work of Geniet and Leon [1] in
coupled systems of sine-Gordon equations. The problem—
which consists in the determination of the critical amplitude
at which a nonlinear medium subject to a harmonic distur-
bance irradiating at a frequency in the forbidden band gap
propagates nonlinear intrinsic modes—is characterized by a
sudden increase in the energy injected in the system by the
driving boundary.

Supratransmission has been studied in many one-
dimensional discrete systems like the Fermi-Pasta-Ulam
model [2], systems of sine-Gordon and Klein-Gordon equa-
tions [1], double sine-Gordon equations [3], Bragg media in
the nonlinear Kerr regime [4], and even in continuous media
governed by sine-Gordon equations subject to Dirichlet [5]
or Neumann boundary data [6]. The presence of the process
of supratransmision in discrete systems with two space di-
mensions has been suggested for the case of Neumann
boundary data [6], and several application papers have been
realized in the one-dimensional case [7-10].

Analytically, the process of nonlinear supratransmission
has been studied in the discrete Fermi-Pasta-Ulam [2] and
sine-Gordon [5,6] models through the continuous-limiting
case when the coupling coefficient is large. In those cases,
the quoted citations possess accurate mathematical predic-
tions of the phenomenon. However, we must emphasize that
the two-dimensional scenario has been left aside by the spe-
cialized literature, mainly due to the fact that the analytical
study of this situation is more complicated than its one-
dimensional counterpart; needless to mention that a three-
dimensional version of the problem is, by far, more challeng-

ing [11].
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From a pragmatical perspective and in view of the char-
acterization of supratransmission in the energy domain, a
thorough numerical analysis of the process should make use
of techniques that provide consistent approximations of the
problem under study both in the solution domain and in the
energy domain. An analysis like this has been satisfactorily
carried out, for instance, in [12], or in the numerical study of
propagation of binary signals in media governed by coupled
sine-Gordon equations [13,14].

In the present paper, we study numerically the process
of supratransmission in semiunbounded, discrete, two-
dimensional media governed by coupled sine-Gordon equa-
tions when the boundary is subject to harmonic driving. Our
computations are based on a numerical method with suitable
computational characteristics to analyze the process, which
in turn is a generalization of a method for conservative sys-
tems [15]. We must remark that the results presented in this
work have been checked in the solution domain against a
classical Runge-Kutta method of order 4; however, we must
clarify that the simulations presented here make use of the
finite-difference scheme introduced in Sec. III.

II. MATHEMATICAL MODEL

Our point of departure is motivated by the study of semi-
infinite, discrete arrays of parallel Josephson junctions con-
nected through superconducting wires and perturbed har-
monically at the boundary by a frequency in the forbidden
band gap [6,16,17]. In this context, the (1+1)-dimensional
model studied is

li, — ¢’ A, + yii, +sinu, =0, nel", (1)

subject to boundary condition c*(uy—u,)=¢, where ¢(t)
=A sin({r). Here, the real variable u, physically represents
the gauge invariant phase difference [16], and A,u, denotes
the finite second difference u,,;—2u,+u,_;. Both the
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FIG. 1. (Color online) Snapshots of solutions to undamped problem (3) with ¢=5 at three different times (r=139 for the first row, ¢
=144 for the second row, and r=147 for the third row), for a driving frequency of 0.9 and two driving amplitudes: one at which supratrans-
mission has not taken place (A=1.05, left-hand column), and another at which it has just started (A=1.06, right-hand column). The inset
figures represent the solutions of the problem on the diagonal line m=n. The graphs are presented as numerical evidence of the existence of
a critical threshold above which transmission of energy in (3) takes place.

coupling coefficient ¢ and the damping coefficient are as- of non-negative integers m and n. Define the discrete Laplac-
sumed to be non-negative numbers, and ) <1. ian operator

In order to extend this problem to a higher dimensional
scenario, we let u,, , be a real function of time for every pair Ay = U1+ U g+ Uyt F Uy — Ay (2)
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FIG. 2. (Color online) Graphs of state versus time (top row) and local energy versus time (bottom row) of the junction located in node
(50,50) in an array consisting of 150? nodes governed by (3), subject to a harmonic driving with a frequency of 0.9, and an amplitude of 1.05
(left-hand column) and 1.06 (right-hand column). A potential function G(u)=1-cos u and a coefficient of coupling equal to 5 were
employed. The figure is presented as a preliminary proof of the existence of supratransmission in two-dimensional discrete arrays described

by (3).

for every pair of positive integers m and n. For such values
of m and n, this work studies the problem

. 2 B ’ _
um,n Y AMm,n + yum,n +G (um,n) - 0,

Mm,n(o) = um,n(o) =0,

— _ 2
Upo—Up1=Uyy— U= qb/c .

A3)

By analogy with the one-dimensional case, ¢ is called the
coupling coefficient and 7y is the coefficient of external
damping, while G is either the classical potential for a sine-
Gordon system—when G(u)=1-cos u—or the potential for
a nonlinear Klein-Gordon equation—in the case that G(u)
=%u2—4l!u4+éu6. Meanwhile, the function ¢ is the har-
monic function defined above, which irradiates at a fre-
quency ) in the forbidden band gap of the medium, that is,
<.

It is worth noticing that the conservative case yields a
Hamiltonian for the junction in node (m,n) given by the

expression

l, c? 2
Hm,n = Eum,n + E(umﬂ,n - um,n)
2
¢ 2
+ E(”m,nﬂ - um,n) + G(”m,n) } (4)

for any positive integers m and n. After including the poten-
tial functions between the couplings in the boundaries of the
system, it can be checked that the total energy of the medium
at a fixed time is provided by

E= 2 2 Hm,n + E( 2 (um,l - Mm,O)z + 2 (ul,n - uO,n)z) .
m=1 n=1 m=1 n=1
(5)

III. NUMERICAL TECHNIQUE

Take a regular partition O0=7,<<t; <--- <ty,=T of the time
interval [0,7] with time step equal to Af, and for each
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FIG. 3. (Color online) Graph of total energy of a system gov-
erned by (3) versus driving amplitude, for a driving frequency of
0.9, a period of time equal to 200, a potential function G(u)=1
—cos u, and c¢=5.

k=0,1,...,M, represent the approximate solution to our
problem on site (m,n) at time #; and the value of the function
¢ at 1, by ufn’n and ¢, respectively. Conveying that

Kkl kel
5tum,n ~%mn T “Ymne
K kel k k-1
5t2um,n - um,n - 2Mm,n + U
Kk k k
52xum,n =Upn— 2“/71,71 + U1 0o

ko _ k
5_2u mn+1 2M mn—l’

the problem under study takes the following discrete form,
for every positive integer m and n:

Sut
m,n 2 k k k
(At)£ -c (éfum’n + 5§um’n) + Eétum’n
k+1 k-1
Glut) = Glugea)
k 1 k-1 -
m+n um,n
0
um n= - 0
s.t. cz(um0 - um,l) = ¢y, (6)

k k
C2(u0,n - ul,n) = ¢

The local energy H,,, of the Josephson junction located at
(m,n) in the kth time step will be approximated numerically
by the discrete expression

PHYSICAL REVIEW E 77, 016602 (2008)

Amplitude

81 02 03 04 05 06 07 08 09
Frequency

FIG. 4. (Color online) Diagram of bifurcation of smallest driv-
ing amplitude at which nonlinear supratransmission starts versus
driving frequency, for an undamped large medium governed by (3),
with G(u)=1-cos u and c=5.

k+1 k 2 2
1(u, —u c
Hk _ = m,n nm,n k+1 k+l k
- + 2 (um+1 n m n)(um+1 n um,n)

e Ar
2 k+1
c G(u,,,) + G(
+ E(uﬁ:rlwl ﬁj—rlt)( m n+l n) + 2
(7

Meanwhile the total energy at time #, will be approximated
by the formula

E/Fi%

m=1 n=1

2 o0

k ¢ K+l k+ly, k k

Hm,n + E( E (umfl - ume)(um,l - Mm,O)
m=1

+E(uk+1 g )il , - uo,)) (8)

It is worth noticing that the computational schemes presented
in this section are consistent with the problem under study in
this paper, both in the solution and the energy domains.
Moreover, the method is conditionally stable, having a sta-
bility region given by 8c?(At)?—yAt<4. Technically, the
method is implicit and nonlinear, so that its practical imple-
mentation requires Newton’s method to solve systems of
nonlinear equations. It is not difficult to check that this pro-
cedure yields a tridiagonal system which may be solved by
Crout’s technique for band matrices.

IV. SIMULATIONS

We employ the numerical method described in the preced-
ing section in order to approximate solutions of (3). Numeri-
cally, we will fix c=5, y=0, a time step of 0.05, and consider
a square system of N X N nodes satisfying (3) and the bound-
ary conditions

Up N+l —UpN= 0,
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MN+1,n - uN,n = O’ (9)

where N=150. Moreover, in order to simulate an unbounded
medium we include a variable damping coefficient v,,, in
each node (m,n), which is equal to zero everywhere except
in those nodes satisfying m =120 or n=120, in which case
Ym.n=3. Furthermore, observe that the boundary conditions
(9) translate into the discrete expressions

k ko
Uy N+1 — Uy N = 0’

(10)

k ko_
Unsy = Uy, =0.

In addition, in order to avoid the generation of shock waves
at the initial time, we slowly and linearly increase the driving
amplitude at the boundary during a finite period of time be-
fore reaching the constant desired amplitude.

To start with, we fix the driving frequency of the medium
at 1=0.9, and compute the solution of the system for three
different times and for two different driving amplitudes, A
=1.05 and A=1.06. The results are presented in Fig. 1, in
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which the left-hand column shows the states of the system
corresponding to A=1.05 for times #=139, 144,147, while
the right-hand column shows the corresponding solutions for
A=1.06. It is clear that the propagation of energy into the
system takes place in the latter case (apparently in the form
of solitary waves). This fact is verified by the inset figures
associated to each graph, in which the corresponding solu-
tions for the nodes in the diagonal m=n are presented.

The time evolution of the junction on node (50,50) over a
time period of 200 is checked then in the solution and the
energy domains, obtaining thus Fig. 2. Observe that the case
when the amplitude is 1.05 yields a local energy which is
approximately equal to zero at all time. On the other hand,
when the amplitude is equal to 1.06, a drastic increase in the
local energy is observed around the time 140. This results
evidence numerically the existence of supratransmission in
system (3), at least for {1=0.9.

Next, we obtain the total energy E of the medium under
study for several values of A and a fixed frequency of 0.9. In
view of the evidence introduced in the previous paragraph,
we expect to see a drastic increase in the total energy of the
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FIG. 5. (Color online) Graphs of state versus time (top row) and local energy versus time (bottom row) of the junction located in node
(50,50) in an array consisting of 150% nodes governed by (3), subject to a harmonic driving with a frequency of 0.9, and an amplitude of 1.05
(left-hand column) and 1.06 (right-hand column). A potential function G(u):%uz—Lu‘W éu(’ and a coefficient of coupling equal to 5 were

employed.

a
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system around the value A=1.06. The behavior of E versus A
is depicted in Fig. 3, for a period of time equal to 200. The
results clearly confirm the presence of the process of nonlin-
ear supratransmission in our medium. Figure 4 gives an es-
timate of the critical amplitude at which supratransmission
starts versus driving frequency.

Finally, we wish to establish that supratransmission is
likewise present in (2+ 1)-dimensional systems consisting of
nonlinear Klein-Gordon equations. First, we obtain graphs of
time evolution of the amplitude and the local energy of node
(50,50), for 2=0.9 and two different values of A, 1.05 and
1.06. The results are shown in Fig. 5, and they establish that
there exists a drastic change in the energy domain between
the values of amplitude employed.

We study next the behavior of the total energy of the
system over a time period of 200 versus driving amplitude,
for the same fixed driving frequency. The results are dis-
played in Fig. 6; it clearly establishes the presence of su-
pratransmission in this situation.

V. MECHANICAL SYSTEMS

Consider a semi-infinite chain of identical harmonic oscil-
lators initially at rest in their natural positions, coupled
through identical springs with a constant coupling coefficient
c. The first pendulum of the chain is perturbed harmonically
with a frequency () in the forbidden band gap of the system,
and the medium is assumed to suffer the actions of constant
external damping. The model describing the physical behav-
ior of this system is given by the mixed-value problem

&? d
d;" - A, + yf +G'(u,) =0,
u,(0)=0, nelZ",
R 7+ (11)
s.t.y —2(0)=0, nelZ,
dt

ug(t) = (1), t=0.

Assume that u,,, is a real function of time for every m,n
e 7*. A natural generalization of mixed-value problem (11)
to two space dimensions is given by the initial-value problem
with Dirichlet boundary data

2 . ' _
Upp—C AMm,n + Ym,n +G (um,n) = O,

. {um’n(O) —li,(0) =0, "

- um,()(t) = uO,n(t) = ¢(t)

For our computations, the boundary conditions will take the
form uﬁl’():u’(‘)’n:cﬁk. We choose a coupling coefficient equal
to 5, a time step of 0.05, N=300, and we drive system (12)
with y=0.01 and m=0 at a frequency =0.9. Two ampli-
tude values are employed, 1.52 and 1.53. The resulting simu-
lations at three different times are shown in Fig. 7. The
graphs evidence a drastic change in the behavior of

PHYSICAL REVIEW E 77, 016602 (2008)

solutions; in fact, for A=1.52 there is no evidence of trans-
mission of energy into the system by the driving boundary.
Meanwhile, for A=1.53 our results show that nonlinear
modes (discrete breathers, to be exact) are created at the
origin.

We look at these circumstances locally at a specific site, in
the solution and the energy domains. Indeed, Fig. 8 presents
graphs of solution us, 5y and local energy Hsg sy versus time
of site (50,50) in a system (12) driven with the specifications
quoted in the paragraph above. Again, a well-defined differ-
ence in the behavior of solutions is perceived between the
driving amplitude values 1.52 and 1.53, indicating thus the
presence of supratransmission in the medium. A similar situ-
ation happens in the energy domain: whereas the energy is
essentially equal to zero for A=1.52, it is evidently nonzero
for A=1.53. Evidently, the graphs of us 5, and Hs 5o versus
time are consistent in both cases. Moreover, the qualitative
behavior of the solution when A=1.53 resembles qualita-
tively the (1+1)-dimensional case [1].

Next, we consider driving frequencies ranging on the in-
terval [0.1,1]. For each such frequency and for driving am-
plitudes varying in [0,10], we compute the total energy of the
system during a time period of 7=2000 by integrating nu-
merically the function of total energy over [0, T]. The results
(not presented here for the sake of briefness) establish a sud-
den increase in the total energy of the system at a certain
critical amplitude that we call the supratransmission thresh-
old. The graph of approximate supratransmission threshold
versus driving frequency of a system (12) with coupling co-
efficient equal to 5 is presented in Fig. 9, using the standard
methodology [1,13]. Here we must notice that the su-
pratransmission threshold is a decreasing function of the
driving amplitude on [0.5,1], and that the phenomenon of
harmonic phonon quenching is present. This is in agreement
with the (1+1)-dimensional case.

x 10°

Total Energy

bo 0.95 1 1.05 1.1 1.15
Amplitude

FIG. 6. (Color online) Graph of total energy of a system gov-
erned by (3) versus driving amplitude, for a driving frequency of
0.9, a period of time equal to 200, G(u):%uz—ﬁu‘%éuf’, and
c=5.
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FIG. 7. (Color online) Snapshots of solutions to undamped problem (12) with ¢=35 at three different times (=113 for the first row,
t=119 for the second row, and 7=127 for the last row), for a driving frequency of 0.9 and two driving amplitudes: one at which supratrans-
mission has not taken place (A=1.52, left-hand column), and another at which it has just started (A=1.53, right-hand column). The inset
figures represent the solutions of the problem on the diagonal line m=n. The graphs are presented as numerical evidence of the existence of
a critical threshold above which transmission of energy in (12) takes place.

VI. CONCLUSIONS AND PERSPECTIVES dimensional systems of bounded discrete arrays that gener-

alize the model describing Josephson junctions coupled

In this work, we have presented numerical evidence that  through superconducting wires and subject to harmonic dis-
the processes of supratranmission is present in two- turbances in two adjacent sides. Bifurcation diagrams estab-
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FIG. 8. (Color online) Time-dependent graphs of approximate solutions usq 5o and local energies Hsg 5o of the junction located on site
(50,50) for problem (12), for a driving frequency of 0.9 and two driving amplitudes: one at which supratransmission has not taken place
(left-hand column), and another at which it has just started (right-hand column).

lishing the relationship between the critical amplitude at
which supratransmission first occurs versus driving fre-
quency have been provided with the help of a computational
technique with consistency properties in the solution and en-
ergy domains.

The computational results have been validated by the use
of traditional computational techniques. Moreover, our work
has established that the process of nonlinear supratransmis-
sion is also present in two-dimensional systems described by
discrete nonlinear Klein-Gordon equations, and even in sys-
tems of sine-Gordon equations subject to Dirichlet boundary
data, which is a model that arises in the physical description
of lattices consisting of harmonic oscillators coupled through
identical springs.

Several questions meriting attention are still left open. For
instance, the discovery of the analytical apparatus prescrib-
ing the dependence of the critical amplitude with respect to
the driving frequency, at least for the continuous limit case in
which the coupling coefficient tends to infinity, is a matter of
the utmost importance. Moreover, in view of the fact that

Amplitude
= N
- [$)) N [$)) (]

o
3]

81 02 03 04 05 06 07 08 09
Frequency

FIG. 9. (Color online) Graph of critical amplitude at which su-
pratransmission starts versus driving frequency for problem (12).
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one-dimensional and two-dimensional systems of coupled
sine-Gordon or Klein-Gordon equations have the capacity of
transmitting energy in the forbidden band gap, the question
arises as if higher dimensional systems possess the same ca-
pability.

On the other hand, it has been proved that supratransmis-
sion survives in the presence of external damping [3], and
the inclusion of several other parameters such as internal
damping, relativistic mass, and generalized Josephson cur-
rents. The process of nonlinear supratransmission is also
expected to be present in the (2+ 1)-dimensional scenario
under the presence of the same parameters, in which case,
the study of the effects of those parameters in the occurrence
of supratransmission is a task that merits further research.

PHYSICAL REVIEW E 77, 016602 (2008)

A priori, one expects to obtain similar qualitative results as
the ones obtained in the one-dimensional situation.
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