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Cyclotron resonant wave-particle interactions are studied in the context of Hamiltonian theory with utiliza-
tion of Lie transform techniques. The canonical perturbation method for single particle motion is used for
providing results for the collective particle behavior under interaction with wave fields of either localized or
periodic profiles. Analytical expressions for the calculation of phase-averaged quantities of physical interest as
well as the diffusion equation are derived. In the lowest order of perturbation, the method reformulates in a
rigorous and unifying context the derivation of well-known results, namely Madey’s theorem and quasilinear
diffusion equation. Proceeding to higher order the method provides results consisting of fourth-order accurate
analytical expressions for the calculation of phase-averaged quantities as well as the derivation of a fourth-
order accurate diffusion equation, with higher-order derivatives, which is the extension of the well-known
Fokker-Planck equation beyond the quasilinear approximation. Higher-order terms are related to the effect of
nonlinear resonant coupling between different spectral components of the waves, on the evolution of the
particle distribution function.
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I. INTRODUCTION

Cyclotron resonant wave-particle interactions form the
underlying mechanism of a variety of phenomena occurring
in nature as well as in technological applications and de-
vices, where a plasma or a particle beam interacts with elec-
tromagnetic waves. The fundamental importance and the
complex character of such interactions have resulted in ex-
tensive research studies and, consequently, in considerable
progress in understanding the features of wave and particle
dynamics under resonant interactions. Their complicated fea-
tures, resulting from the nonlinear character of the interac-
tion, have motivated the field of chaotic dynamics for which
the wave-particle interactions have been used as a main para-
digm �Chap. 2, Ref. �1��. On the other hand, resonant wave-
particle interactions constitute the operation principle of sev-
eral devices of major technological interest, and as such they
must be understood and optimized for efficient device design
and performance; consequently there exist a large set of still
open issues. Among the most important applications is the
interaction of rf radiation with tokamak plasmas in fusion
devices, for the electron cyclotron resonant heating �ECRH�
and current drive �CD� �2–7�, and the electron beam interac-
tion with electromagnetic waves in gyrodevices, for the high-
power, high-frequency microwave generation �8–13�.

The presence of an electromagnetic �or electrostatic�
wave results in perturbation of the free particle motion, so
that a test particle can either gain or lose energy, depending
drastically on its initial position and momentum. Its motion
can become chaotic under certain conditions where reso-
nance overlap occur in the phase space of the system
�14–34�. The collective dynamical behavior of a large en-
semble of such particles determines the state of the system as
well as the energy exchange between the wave and the par-
ticles and its study utilizes a kinetic theory description
�35–38�. The complete picture of the plasma state is de-

scribed by the self-consistent model, consisting of the kinetic
�Vlasov� equation coupled with the Maxwell equations for
the wave fields. It is in the first part of the self-consistent
model, i.e., the Vlasov equation for a given wave field, that
we are focusing in this work in order to reduce the original
Vlasov equation to an equation having lower number of di-
mensions; namely, in terms of action-angle variables, an ac-
tion diffusion equation, where the angle dependence has
been eliminated. This equation, within its respective domain
of validity, can replace the Vlasov equation in the fully self-
consistent model, and the corresponding action distribution
function can be used for the calculation of the source terms
of the Maxwell equations, namely charge and current densi-
ties. A common approach for studying theoretically or nu-
merically the resulting system, as already utilized in previous
studies where the Vlasov equation has been replaced by the
quasilinear Fokker-Planck equation, is the following: The
two parts of the self-consistent model are treated in an itera-
tive fashion; starting from a given wave field, determined by
the linear plasma dispersion relation, the particle distribution
function is calculated and subsequently used for obtaining
the source terms of the Maxwell field equations. Thus, the
new field is provided and used for the calculation of a new
distribution function. This iterative procedure converges to
the self-consistent field and distribution function.

In most cases the kinetic equation governing the evolution
of the particle distribution function is simplified, under cer-
tain assumptions, to a quasilinear diffusion equation �QDE�
of the Fokker-Planck type �37–43�. The quasilinear diffusion
equation, describing an irreversible process corresponding to
slow time diffusion of particles and respective wave absorp-
tion, is currently the main model for studying the interaction
of electromagnetic waves with plasmas. The standard deriva-
tion procedure �37,39� of the QDE utilizes a rather heuristic
approach, under which several assumptions come into play.
However, the lack of a rigorous method for deriving the
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QDE as a low-order approximation of the original kinetic
equation, results to the difficulty of proceeding to a higher-
order approximation in a unified context and defining a hier-
archy of approximating equations, with corresponding do-
mains of validity. The latter is of particular importance, since
a number of previous studies �44–47� have shown that non-
quasilinear diffusion can take place under the presence of a
set of waves with relatively broad spectrum. Thus, several
works have studied the origin of the breakdown and the con-
troversies of the quasilinear theory �48–51� and have consid-
ered respective generalizations �49,50,52,53�. In addition, the
domain of validity of the quasilinear theory can be investi-
gated in terms of the nonlinearity parameter �6,34� defined as
�NL= tf /�bE, where tf and tbE are the particle flight time
through a wave packet and the oscillation period of a particle
trapped inside the wave, respectively. The limiting cases
�NL�1 and �NL�1 correspond to the quasilinear and the
adiabatic �34� case, respectively. Considering that �NL
� tan � �6�, where �=tan−1�v� /v�� is the pitch angle of par-
ticles, there is always a cone in the velocity space that falls
into the nonlinear regime.

Apart from the kinetic description and the approximate
QDE, the collective behavior of a particle beam has been
studied analytically with the application of perturbation
methods to the particle equations of motion. It has been
shown that first-order perturbation analysis for the single par-
ticle motion can result in second-order accurate calculations
of phase �or position� averaged quantities, a result that it is
known as Madey’s theorem. The latter has been mostly ap-
plied for the calculation of gain �efficiency� in microwave
sources �54�.

The main aim of this work is to provide a unified context
under which the collective particle behavior interacting with
an electromagnetic wave can be studied in terms of rigor-
ously obtained analytical approximations of phase-averaged
quantities and approximate diffusion equations. The ordering
of the respective perturbation scheme is related to the afore-
mentioned nonlinearity parameter, providing thus a direct
measure of the domain of validity of the results in the pa-
rameter and phase space. Our approach utilizes the canonical
perturbation method and the Lie transforms �55–61� as ap-
plied to the Hamiltonian system describing the single particle
motion and relates the single particle dynamics to the collec-
tive particle behavior. In this context, an alternative and more
general derivation procedure of the Fokker-Planck QDE is
provided and its relation to the Madey’s theorem as a quasi-
linear approximation, is shown. More importantly, the
adopted method allows for extending these results to higher
order: It is shown that a third-order canonical perturbation
analysis allows for fourth-order accurate calculations of
phase-averaged quantities, in analogy with the Madey’s theo-
rem, and can also be used in the derivation of a higher-order
diffusion equation. The latter includes higher-order deriva-
tives of the distribution function �than the QDE� and can be
considered as a deterministic analog of a higher-order expan-
sion of the master equation of a stochastic process �Chap. 9,
Ref. �62��.

Although, the method utilized in this work is quite generic
and applicable in a variety of systems describing resonant
wave-particle interactions, the specific paradigm under con-

sideration consists of a Hamiltonian describing the wave-
particle interaction close to a cyclotron resonance and it is
derived from the fully relativistic Hamiltonian under a set of
assumptions. These simplifications allow for focusing on the
consequences of considering perturbations beyond the quasi-
linear approximation, while there is no loss of generality
since most of the essential features of the nonlinear cyclotron
resonant wave-particle interactions are taken into account.
The corresponding assumptions can be easily removed and
the respective effects can be taken into account, generalizing
the results for more complex cases. Concerning the form of
the wave, the theory is applied in two cases: periodic waves
with discrete spectrum, commonly occurring in toroidal con-
figurations and localized waves having continuous spectrum
related to the ponderomotive effect in plasmas �63–69� and
to wave-particle interactions of finite length in microwave
devices �8–13�.

The paper is organized as follows. A specific Hamiltonian
system is derived from the generic Hamiltonian describing
the wave-particle interaction, in the second section. The ca-
nonical perturbation method with the utilization of the Lie
transforms technique is applied to the Hamiltonian system
under consideration, in the third section. The fourth section
utilizes the results of the perturbation theory in order to pro-
vide high-order analytical calculations of phase-averaged
quantities, while in the fifth section, a higher-order diffusion
equation is derived. In the sixth section, the results are ap-
plied specifically to generic periodic waves and a localized
Gaussian wave, both related to realistic configurations. Fi-
nally, the results and conclusions are summarized in the last
section.

II. HAMILTONIAN SYSTEM

In the following we formulate the Hamiltonian system
describing the wave-particle interactions. A quite standard
derivation procedure of a simplified Hamiltonian is adopted
�similar to that of Ref. �6��; however it is briefly given in
Appendix A due to some modifications regarding the consid-
eration of a many-waves field. Therefore, we consider a
wave electric field consisting of multiple wave packets and
having the form

E = �
i

E0
�i��r�Re�f�i�F�i��r�ei�ki·r−�it�� , �1�

where E0
�i��r� is the amplitude which is constant along the

magnetic field �assumed to be uniform�, f�i��E�i� / 	E�i�	 is the
complex polarization vector, ki is the wave vector, �i is the
wave frequency, and the function F�i��r� describes the elec-
tric field profile. Each wave may correspond to a mode given
by a specific and, in general, different branch of the plasma
dispersion relation. A Cartesian coordinate system �x ,y ,z� is
used so that B=ezB0 and ki=exk�,i+ezk�,i, where �ex ,ey ,ez�
are the corresponding unit vectors. In the following, it is
assumed that the perpendicular scale of E0

�i�, f�i�, and F�i� is
large compared to the particle gyration radius and the varia-
tion of the polarization vector along the magnetic field is
considered negligible, resulting to E0

�i�=const, ki=const, and
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F�i��r�=F�i��z�. As shown in Appendix A, the simplified
Hamiltonian describing the particle motion under interaction
with the waves has the following form:

H = H0�J� + �H1�J,�,t� , �2�

where

H0�J� = J2, �3�

H1�J,�,t� = −
1

2
E�2J�k0/2eik0�g�t� + c.c. �4�

The parameter � is a dimensionless parameter, which denotes
the fact that H1�J ,�� is treated as a small perturbation; it will
be used for counting the order of the expansion in the fol-
lowing perturbation method and it can be set equal to unity
in the final results. The effective strength of the perturbation
introduced by each wave is directly related to the nonlinear-
ity parameter �NL as given in Ref. �6�. �J ,�� are the action-
angle variables of the unperturbed system H0�J� describing
the free particle motion �under the absence of the wave�. The
function g�t� provides the total wave field determined by the
profile F�i��z� and the frequency mismatch ��i� with respect
to the k0 harmonic of the gyrofrequency, of each wave
packet,

g�t� = �
i

wE
�i�F�i��t�ei�k0�−�it�. �5�

It is worth mentioning that the Hamiltonian �2� appears in a
wide range of applications where wave-particle interactions
occur such as ECRH and ECCD in fusion plasmas �6� as
well as in gyrotron cavities �Chap. 3 of Ref. �9�, and Refs.
�11–13,33��. This model is capable of describing the basic
underlying mechanism of cyclotron resonance which is of
physical and technological interest in configurations based
on wave-particle interactions. Moreover, the generic form of
the wave profiles, considered in the model, allows for the
study of particle interactions with a variety of waves such as
periodic waves having discrete spectra and/or solitary waves
having continuous spectra, as well as pulses ranging from
ordinary �adiabatic� wave packets to ultrashort �few cycle�
impulses. The resonant particle-mediated coupling of such
waves can be described beyond the limits of the quasilinear
theory, which ignores such interactions between waves
�48,49,51–53�. On the other hand, a Hamiltonian model quite
similar to Eqs. �2�–�4� �actually more restrictive, since the
perturbation H1 has been considered as independent of the
action J�, has been used for the investigation of the nonqua-
silinear character of diffusion in the particle velocity space,
under the presence of a relatively large spectrum of waves
�44–47,50�.

III. LIE TRANSFORM PERTURBATION THEORY

In order to extend the application of the canonical pertur-
bation theory to higher order, the utilization of the Lie trans-
form theory �55–58� is necessary for treating the complexity
of the expansions. Although the method of Lie transform is,
in spirit, identical to the Poincare-Von Zeipel method

�59,60�, which is based on the classical mixed variable gen-
erating functions �discussed in presentations on classical me-
chanics, such as Ref. �61��, there are at least two important
advantages, in favor of this method: �i� the transformations
as expressed in terms of Lie operators are significantly sim-
pler, and �ii� the Lie operators commute with functions, a
property that in the following will be shown very useful for
calculating the evolution of phase space functions and their
phase averages.

Before considering our specific case, let us briefly sum-
marize some of the essential concepts of the Lie transform
perturbation theory. Without loss of generality we consider
the case of a nonautonomous system with one degree of free-
dom such as the one considered in the following. The evo-
lution of a function of the phase space variables z�t� �and
time� f�z , t� from time t0 to time t can be provided by the
time development operator SH�t ; t0�,

f�z�t;t0�,t� = SH�t;t0�f�z0,t0� �6�

with z�t ; t0� satisfying the Hamilton equations of motion
�with Hamiltonian H�z�� under the initial condition z�t0 ; t0�
=z0. The derivation of the operator SH�t ; t0� is equivalent
with solving the equations of motion, which is not possible
for most cases. Instead, a change of variables under the trans-
form

z� = T�z,t�z �7�

can lead to a new system with Hamiltonian K�z��, in which
the time development operator SK�t ; t0� can be easily com-
puted. These are the cases for which the new system is, ei-
ther integrable with z� corresponding to the action-angle
variables of the new Hamiltonian, or, more generally, when
the new Hamiltonian does not depend on the phases and the
action of the operator SK�t ; t0� to a function f�z� , t� leaves the
actions unchanged and evolves the phases and time accord-
ing to

f�z��t;t0�,t� = SK�t;t0�f�z0�,t0� = f�J0�,�0� + ��� , �8�

where

�� = 

t0

t

�K�J0�,s�ds, �K�J0�,t� =
�K�J0�,t�

�J0�
. �9�

In that sense, the solution of the system can be given if the
appropriate transformation T is constructed. According to Lie
transform theory, the operator T can be represented as

T = e−L, �10�

where Lf = �w , f�, for any function f�z , t�, with �¯ ,¯� de-
noting the Poisson bracket. The function w�z� is defined as
the Lie generator and the operator of the inverse transforma-
tion is T−1=eL. The Lie transform operator has the important
properties that generates canonical transformations and com-
mutes with functions. The latter implies directly that the evo-
lution of a function f�z , t� can be calculated by subsequently
transforming to the new variable set z�, applying the time
development operator SK�t ; t0� and transforming back to the
original variables z, according to

NONLINEAR THEORY OF CYCLOTRON RESONANT WAVE- … PHYSICAL REVIEW E 77, 016404 �2008�

016404-3



f�z�t;t0�,t� = T�z0,t0�SK�t;t0�T−1�z0,t0�f�z0,t0� . �11�

The aforementioned procedure apart from being applicable
to the integrable system, it also provides a perturbation
method for solving approximately near-integrable systems,
in which the Hamiltonian has a small nonintegrable part of
order �. In such cases the canonical transform T can be con-
structed as a power series in �, by utilizing the method of
Deprit, according to which the old Hamiltonian H, the new
Hamiltonian K, and the transformation T along with the Lie
generator w are expanded in power series of � �Appendix B�.

Notice that, although we need the transformation expan-
sion for T up to fourth order, we will need only to derive the
Lie generator w up to third order. As it will be shown in the
following, the knowledge of the Lie generator up to third
order �actually w1, w2, and only a part of w3 is needed�
allows for calculations of phase-averaged functions, describ-
ing collective particle characteristics, which are accurate up
to fourth order. This result corresponds to a higher-order ex-
tension of the Madey’s theorem and it will also be crucial for
the derivation of the high-order diffusion equation governing
the evolution of the particle momentum �action� distribution.

Within our approach, Eqs. �B5�–�B7�, providing w1, w2,
and w3, respectively, will be solved in the finite time interval
�t0 , t�. This approach will be proved appropriate for our pur-
poses for the following reasons: �i� the operator governing
the evolution of phase space functions shown in Eq. �11� is
greatly simplified, �ii� the problem of small denominators,
appearing in the case of infinite time intervals, is avoided
�70�, and �iii� time-infinitesimal canonical transformations
�from t to t+�t� related to the derivation of high-order dif-
fusion equations can be directly considered.

For our specific Hamiltonian �2� we consider only first-
order perturbations �Hn=0, for n�1�. The equation for w1 is

�w1

�t
+ �0�J�

�w1

��
= K1 + �P1,1eik0� + c.c.� , �12�

where

P1,1 =
1

2
E�2J�k0/2g�t� �13�

and �0�J�=�H0�J� /�J=2J is the unperturbed frequency.
Since there is no �-independent term on the right-hand side
�RHS� we can set K1�0. The solution in the interval �t0 , t� is

w1�J,�,t;t0� = F1,1eik0� + c.c.

with

F1,1 =
1

2
E�2J�k0/2e−ik0�0t


t0

t

g�s�eik0�0sds �14�

as obtained from Eq. �B10�.
Proceeding to second order, the equation for w2 is

�w2

�t
+ �0�J�

�w2

��
= 2K2 + �P2,0 + P2,2ei2k0� + c.c.� �15�

with

P2,0 = ik0
�

�J
�F1,1P̄1,1� , �16�

P2,2 = − ik0P1,1
2 �

�J
�F1,1

P1,1
� . �17�

By defining

2K2 = − �P2,0 + c.c.� �18�

or

K2 =
1

4
E2k0

2�2J�k0−1ḡ�t�

t0

t

�2J�s − t� − i�g�s�eik0�0�s−t�ds + c.c.

�19�

the second-order generating function w2 is obtained as

w2 = F2,2ei2k0� + c.c., �20a�

F2,2 =
1

2
E2k0

2�2J�k0e−i2k0�0t

t0

t

g�s�eik0�0s

	�

t0

s

�s� − s�g�s��eik0�0s�ds��ds . �20b�

The third-order equation is

�w3

�t
+ �0�J�

�w3

��
= 3K3 + �P3,1eik0� + P3,3ei3k0� + c.c.�

�21�

with

P3,1 =
ik0

2 �2F1,1
�

�J
�P2,0 + P̄2,0� +

1

P̄1,1

�

�J
�F2,2P̄1,1

2 �

−
1

F̄1,1

�

�J
�P2,2F̄1,1

2 �� , �22�

P3,3 =
ik0

2

F1,1

3 �

�J
�P2,2

F1,1
2 � − P1,1

3 �

�J
�F2,2

P1,1
2 �� . �23�

Since there is no �-independent term we can set K3�0, and
the third-order generating function is obtained as

w3 = F3,1eik0� + F3,3ei3k0� + c.c. �24�

with F3,1, F3,3 provided implicitly through Eqs. �B10�, �13�,
�16�, �17�, �22�, and �23� �their explicit forms are too lengthy
to be presented�. However, only F3,1 will be needed for the
calculation of phase-averaged quantities and the derivation
of the action diffusion equation up to fourth order, as will be
shown in the following section.

Once we have calculated the Lie generating functions we
can define the canonical transformation from the action angle
variables of the unperturbed system z= �J ,�� to the new vari-
ables z�= �J� ,���, up to third order. This transformation al-
lows for construction of approximate invariants of the mo-
tion which contain all the essential information of particle
dynamics and can be used for providing approximately the
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phase space topology of the system. On the other hand,
knowledge of the Lie generator allows for the definition of a
symplectic �canonical� mapping which can be utilized for
accurate particle trajectory calculations �70,71�. In compari-
son with standard �noncanonical� integration schemes, this
mapping has the advantage of being directly related to the
specific Hamiltonian system, thus preserving the phase space
volume and all the invariants of the motion.

IV. CALCULATION OF AVERAGED QUANTITIES

In the preceding section we have calculated the canonical
transformation to the new variable set, up to third order; the
corresponding invariant of the motion provides information
for the single particle dynamics which are accurate up to
third order. However, in most cases where wave-particle in-
teractions occur, we are interested in the collective particle
behavior, which is usually expressed through phase-averaged
quantities of an ensemble of particles, having different initial
conditions. In the following, we will show that knowledge of
the Lie generators up to second order and partial knowledge
of the third-order Lie generator is capable of determining
such phase-averaged quantities up to fourth order �O��4��.
This result can be considered as a higher-order extension of
the Madey’s theorem �54�, which shows that we can calcu-
late phase-averaged quantities with �O��2�� accuracy by uti-
lizing first order �O��1�� perturbation theory.

The evolution of any function of the phase space variables
G�z�=G�J ,�� is determined through Eq. �11�. As a result of
solving the equations providing the Lie generators in the
finite time interval �t0 , t� one can easily show that wn�z0 , t0�
=0 and consequently T�z0 , t0�= I. On the other hand, we have
SK�t ; t0�T−1�z0 , t0�=T−1�J0 ,�0+�� , t�, so that

G�J�t�,��t�� = T−1�J0,�0 + ��,t�G�J0,�0� . �25�

The case where G is a function of the action only is the most
interesting since it is related to energy exchange between the
particles and the wave, electric current calculations and ki-
netic energy distribution of the particles. The average of such
a function G�J� over an ensemble of particles having a uni-
form initial phase distribution and an initial action distribu-
tion F�J0�, is

�G�J�t����J0,�0� = �T−1�J0,�0 + ��,t�G�J0�F�J0���J0,�0�

= ��T−1�J0,�0 + ��,t�G�J0���0
F�J0��J0

,

�26�

where �¯�x denotes averaging with respect to x.
With the utilization of the relations given in Appendix C it

becomes obvious that for the phase averaging of the term
T−1G in Eq. �26� the following hold for m ,n=1,2:

�Ln
1G��0

= �Ln
3G��0

= 0, �27�

�LnLmG��0
= 0, m � n , �28�

while

�L1L3G��0
= �L1L3,1G��0

, �29�

�L3L1G��0
= �L3,1L1G��0

, �30�

showing that only the term F3,1 exp�ik0�� results in nonzero
phase-averaged contribution, from the third-order Lie gener-
ating function w3. Thus, from the 16 terms of the operator
T−1, as obtained through fourth order �B3�, only one-half of
them remain nonzero after phase averaging. More impor-
tantly, the phase-averaged operator T−1 considered up to
fourth order O��4� contains only terms involving lower-order
Lie generating functions, namely w1, w2, and part of w3.
Therefore, we have

�T−1G��0
= �G��0

+
1

2
�L1

2G��0
+

1

8
�L2

2G��0
+

1

24
�L1

4G��0

+
1

24
�L1

2L2G��0
+

1

12
�L1L2L1G��0

+
1

8
�L2L1

2G��0

1

12
�L1L3,1G��0

+
1

3
�L3,1L1G��0

�31�

with

1

2
�L1

2G��0
= k0

2�G�	F1,1	2��, �32�

1

8
�L2

2G��0
= k0

2�G�	F2,2	2��, �33�

1

24
�L1

4G��0
=

k0
4

12
��3�G�	F1,1	2�� − G��	F1,1	2���	F1,1	2��,

�34�

and

1

24
�L1

2L2G��0
+

1

12
�L1L2L1G��0

+
1

8
�L2L1

2G��0

= −
k0

3

6
�4 Im�F1,1

2 F̄2,2�G� + 2�Im�F1,1
2 F̄2,2�G�����,

�35�

1

12
�L1L3,1G��0

+
1

3
�L3,1L1G��0

=
k0

2

3
�Re�F̄1,1F3,1�G���.

�36�

Note that if we keep only the O��2� term �32� we have the
well-known result of the Madey’s theorem �54�. Also, it is
worth mentioning that there are no terms of order O��3�,
meaning that it is necessary to proceed to next order for
increasing the calculation accuracy. The remaining terms are
all of order O��4�, so that they all must be taken into account
in order to have consistent calculation of the averaged quan-
tities with error of the order O��5�. Therefore, the variation
of a function G�J� can be written as
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��G��J0,�0� = ��k0
2�G��	F1,1	2 + 	F2,2	2���

+
k0

2

3
�Re�F̄1,1F3,1�G��� −

k0
3

6
�4 Im�F1,1

2 F̄2,2�G�

+ 2�Im�F1,1
2 F̄2,2�G����� +

k0
4

12
��3�G�	F1,1	2��

− G��	F1,1	2���	F1,1	2���F�J0��
J0

. �37�

Of particular interest is the calculation of functions of the
form G�J�=Jn , n=1,2 ,3 , . . ., which are related to standard
quantities describing the collective behavior of the particles
under the presence of a wave. Therefore, for G�J�=J we can
obtain the mean value of the action variation corresponding
to momentum and/or energy exchange between the wave and
an ensemble of particles,

��J��J0,�0� = k0
2�	F1,1	2 + 	F2,2	2�� +

k0
2

3
Re�F̄1,1F3,1��

−
k0

3

3
Im�F1,1

2 F̄2,2�� +
k0

4

6
��	F1,1	2��	F1,1	2��,

�38�

where an initial action distribution F�J0�=
�J−J0� has been
considered, for simplicity. Similarly, we can obtain ��J2��0

,
related to the standard deviation and the effective width of
the action distribution as well as ��J3��0

related to the skew-
ness which is a measure of the asymmetry of the action dis-
tribution induced due to the interaction with a wave. Finally,
if we consider the phase-averaged distribution function itself
G�J�= �F�J ,����, we have

��F�J���0
= �k0

2�G��	F1,1	2 + 	F2,2	2��� +
k0

2

3
�Re�F̄1,1F3,1�G���

−
k0

3

6
�4 Im�F1,1

2 F̄2,2�G� + 2�Im�F1,1
2 F̄2,2�G�����

+
k0

4

12
��3�G�	F1,1	2�� − G��	F1,1	2���	F1,1	2���F�J0�

�39�

which relates the initial action distribution function at t0 with
its form after evolution for a finite time interval.

V. HIGHER-ORDER DIFFUSION EQUATION

In this section we consider the evolution of the action
distribution function and derive a fourth-order diffusion
equation which at the second order reduces to the Fokker-
Planck equation corresponding to the quasilinear approxima-
tion. In order to derive the diffusion equation, along the lines
of the preceding section, we consider that the function of the
action G�J� is the phase-averaged distribution function
F�J�= �f�J ,����, where f�J ,�� is the phase-space distribution
function, the evolution of which is governed by the Liouville
equation �Chap. 9, Ref. �61��

� f

�t
+ �f ,H� = 0. �40�

By considering an infinitesimal transformation in the interval
�t , t+�t�, the evolution of the distribution function f , accord-
ing to Eq. �25� is given by

f�J,��t+�t − f�J,��t = T̃−1�J,� + ��t,t + �t�f�J,��t, �41�

where f�J ,��t= f�J�t� ,��t�� and T̃−1�T−1− I. Note that since

T̃−1 is a canonical transformation both the sign and the nor-
malization �number of particles� are invariants under the evo-
lution �Chap. 1, Ref. �72��. By dividing both parts with �t
and considering the limit �t→0 we obtain

� f�J,�,t�
�t

=
�T̃−1�J,�,t�

�t
f�J,�,t� . �42�

This equation can be considered as an approximation of the
original Liouville equation �40� to the same order with the
order of the operator T−1.

For the phase-averaged distribution F�J� we have

�F�J,t�
�t

=
��T̃−1�J,�,t���

�t
F�J,t� . �43�

Equation �43� can be considered as a high-order diffusion
equation with the highest order of the derivatives of F with
respect to the action J being equal to the order of the opera-
tor T−1. At the second order O��2�, according to Eq. �32�, the
well-known Fokker-Planck equation is derived,

�F

�t
=

�

�J
�D�J,t�

�F

�J
� , �44�

corresponding to the quasilinear approximation, with

D�J,t� = k0
2� 	F1,1	2

�t
�45�

and F1 obtained from Eq. �14�. It can be easily shown that

���J1�2�� = 2k0
2	F1,1	2, �46�

where �J1=L1J �Eq. �C3�� is the first-order action variation
so that D can be written as

D�J,t� = lim
�t→0

���J1�2��

2�t
�47�

which corresponds to the definition of the quasilinear diffu-
sion coefficient �Chap. 8, Ref. �62��.

The fourth-order diffusion equation is directly derived
from Eqs. �31�–�35� and �43�,
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�F

�t
= k0

2 �

�J
��	F1,1	2 + 	F2,2	2�t

�F

�J
� +

k0
2

3

�

�J
�Re�F̄1,1F3,1�t

�F

�J
�

−
k0

3

6

�

�J

4 Im�F1,1

2 F̄2,2�t
�2F

�J2 + 2
�

�J
�Im�F1,1

2 F̄2�t
�F

�J
��

+
k0

4

12

�

�J
�
3

�2

�J2�	F1,1	2
�F

�J
� −

�2�	F1,1	2�
�J2

�F

�J
�	F1,1	2�

t

,

�48�

where the operator �¯�t denotes the partial derivative with
respect to t acting only to Fx,m.

Equation �48� can be considered as a deterministic analog
of a higher-order expansion of the master equation of a sto-
chastic process �Chap. 9, Ref. �62��. It is important to em-
phasize the addition of higher-order derivatives of the distri-
bution function. In fact, it is inconsistent to write to second-
order �quasilinear� Fokker-Planck equation in which the
diffusion coefficient �47� has been calculated to higher than
first-order accuracy, without retaining the higher-order de-
rivatives of the distribution function �Chap. 9, Sec. 6 �62��.
Another point which needs to be noticed for the higher-order
diffusion equations is the conservation of the sign �positivity�
of an evolving distribution function and of the normalization
�number of particles� as well. The preservation of these two
properties is ensured for the case of exact canonical transfor-
mation, such as the infinitesimal transformation used in Eq.
�41� and leading to Eq. �42�, which contains derivatives of
infinite order if all terms of the series expansion of the ca-
nonical transformation are kept. When the corresponding se-
ries of the transformation is truncated at some order, the
corresponding transformation is no longer exactly canonical;
however it does converge to a canonical perturbation in the
limit of small perturbation strength ��→0�. In the same
spirit, the positivity and the normalization of the distribution
functions, are preserved for small perturbations. A similar
feature has also been considered in the context of higher-
order expansions of the master equation for the case of sto-
chastic processes �62�, where it is has been shown �73� that
higher-order diffusion equations, obtained through the
Kramers-Moyal expansion do not preserve the positivity of
the distribution function, in general. In order to ensure this
property, the Kramers-Moyal expansion must be truncated
either after the second term, resulting to the Fokker-Planck
equation �44�, or an infinite number of terms must be re-
tained. However, in spite of the fact that loss of positivity
contradicts our intuition for a distribution function, higher-
order approximations of the distribution function are useful.
They provide better approximations of the actual distribution
functions in terms of any integral norm Lp, and this is not
just a mathematical issue: In almost all cases of physical
interest, calculations of specific integrals and moments of the
distribution function is the focal issue. Thus, although the
higher-order approximate distribution function can become
slightly negative �usually in the tails� for strong perturba-
tions, it is capable of providing excellent approximations of
quantities of physical interest �62,74�.

From a physical point of view, higher-order terms are pro-
portional to the third and fourth power of the wave ampli-

tudes, and are related to nonlinear cyclotron resonances be-
tween particles and the beats of more than one spectral
components of the waves. These terms describe the effect of
nonlinear coupling between the different wave components
on the evolution of the particle distribution function. Al-
though the effect of such mode coupling has been exten-
sively studied with respect to the evolution of the wave com-
ponents, there are only a few works on the topic of such
nonlinear corrections on the particle distribution function, as
also mentioned in Ref. �53�. These higher-order corrections
are significant in cases where the linear �quasilinear� growth
rate is small because only a few particles can resonate with
the wave, or in cases of super-thermal particles with very
high velocities which can interact resonantly with the beating
of two or more spectral components of the waves. Also,
higher-order terms and nonlinear resonant wave coupling
have been considered as responsible for the breakdown of
quasilinear theory �48–51� and the numerical observations of
nonquasilinear diffusion �44–47� in one-dimensional Lang-
muir turbulence where they have been related to nonlinear
Landau damping.

VI. APPLICATIONS

In the following we consider two applications of the re-
sults presented in the preceding sections, namely the case of
multiple periodic wave packets having discrete spectrum and
a single localized wave having continuous spectrum. The
latter corresponds to configurations where particles interact
with the waves in a single passage, such as in the case of
wave-particle interactions in gyrotrons, while for the former,
multiple interactions occur periodically, such as in several
configurations of rf waves interacting with toroidally con-
fined plasmas. In both cases we show that the results ob-
tained in the preceding sections up to fourth order of pertur-
bation, reduce to known results at the second-order
approximation, corresponding to quasilinear theory.

A. Multiple periodic wave packets (discrete spectrum)

The generic form of a periodic wave packet can be repre-
sented as a Fourier series

F�i��t� = �
m

am
�i�eim�t, �49�

so that the function g�t� defined in Eq. �5�, for the case of
multiple such wave packets can be written in the form

g�t� = �
m

amei�mt, �50�

where �m’s are the complete discrete set of frequencies cor-
responding to all of the wave packets.

For the first-order generating function we have

F1,1 =
E�2J�k0/2

2
e−ik0�0t�

m

ambm�t,t0� �51�

with the functions bm defined as
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bm�t,t0� = 

t0

t

ei�msds =
ei�mt − ei�mt0

i�m
, �52�

where �m=k0�0+�m. The condition �m=0 corresponds to a
resonance between the k0th harmonic of the free particle �un-
perturbed system H0� frequency �0 and the mth component
of the discrete wave spectrum. The functions bm are strongly
localized around the resonances �m=0 and their width, with
respect to �m, rapidly decreases with increasing �t= t− t0
having the following limiting behavior:

lim
t→�

bm�t,− t� = 2�
��m� �53�

with 
��m� being Dirac’s generalized function.
The second-order generating function is provided through

F2,2 =
E2k0

2�2J�k0

2
e−2ik0�0t�

m,n
amancm,n�t,t0� , �54�

where

cm,n�t,t0� =
ei�mt

i�m
dn�t,t0� +

ei�nt0

i�n
dm�t,t0�

− � 1

i�m
+

1

i�n
�dm+n�t,t0� �55�

with

dm�t,t0� = 

t0

t

sei�msds =
�i�mt − 1�ei�mt − �i�mt0 − 1�ei�mt0

�i�m�2

�56�

and dm+n defined by the substitution �m→�m+�n. The
functions cm,n and dm are also strongly localized around the
resonances with their width tending to zero for increasing �t
with the limit

lim
t→�

dm�t,− t� = i2�
���m� , �57�

where 
���m� is the derivative of Dirac’s function. Analo-
gously, F3,1 also consists of terms which are localized around
the resonances and tend to singular �generalized� functions,
asymptotically in time. Note that F2,2 �as well as F3,1� in-
volve more than one Fourier component, corresponding to
the aforementioned higher-order terms of the diffusion equa-
tion �48� related to nonlinear cyclotron resonances between
particles and more than one spectral component of the
waves.

With known F1,1, F2,2, and F3,1 we can calculate any
phase-averaged quantity through Eqs. �37�–�39�. Moreover,
one can also directly calculate the quantities �	F1,1	2�t,

�	F2,2	2�t, �F1,1
2 F̄2,2�t, and �F̄1,1F3,1�t entering into the formu-

lation of the higher-order diffusion equation �48�. According
to this procedure of derivation, the quasilinear diffusion co-
efficient �45� is given in the following form:

D�J,t� =
k0

2E2�2J�k0

4 �
m,n

amānei�mtb̄n�t,t0� + c.c. �58�

Considering the asymptotic behavior of the steady state of
the system is equivalent to taking t0→−� and t→ +�. By
utilizing the limit �53� we obtain the following quasilinear
diffusion coefficient:

D��J,t� = k0
2E2�2J�k0��

m

	am	2
��m�

+ k0
2E2�2J�k0��

m,n
Re�amānei��m−�n�t� . �59�

The first term is time independent and corresponds to the
resonant effect of the wave on the slow diffusion in the ac-
tion space, which is an irreversible process related to wave
absorption, while the second term is related to the nonreso-
nant fluctuations of the action distribution function on a fast
�wave� time scale. It is worth mentioning that the nonreso-
nant term is usually omitted in the standard derivation pro-
cedures of the quasilinear diffusion equations �14,39�, since
the time scales are separated from the beginning. Thus, the
derivation procedure adopted in this work, with the utiliza-
tion of the canonical perturbation theory and the Lie trans-
forms method, leads to the quasilinear diffusion coefficient
�58�, in a more general form. In comparison to the standard
procedures, this general form �i� includes the nonresonant
effects in a unified context, where no time scale separation
has been assumed, �ii� incorporates the complete time depen-
dence of the diffusion process instead of its asymptotic be-
havior �obtained through the limit �53� which corresponds to
the principal value of the respective integral �52��—the latter
results in the introduction of smooth localized functions in-
stead of Dirac generalized functions, appearing in the
asymptotic expression, �iii� describes the resonant particle-
mediated coupling of different components of the wave spec-
trum through the higher-order terms. Moreover, these advan-
tages of our approach also hold for the derivation of the
higher-order diffusion equation.

B. Single solitary pulse (continuous spectrum)

As an example of a localized wave we consider a Gauss-
ian electric field profile of the form

F�t� = e−t2/2
2
�60�

with 
 related to the width of the wave beam. In this case,
the wave-particle interaction is localized to a time interval
proportional to 
, while outside this interval the particle mo-
tion is practically unperturbed. Thus, in order to study the
collective behavior of an ensemble of particles and calculate
the phase-averaged difference of action-dependent quantities
due to the passage through the localized wave, for the calcu-
lation of the generating functions wn we consider t0=−�.
Thus, the first- and second-order generating functions are
provided through
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F1,1 = �2�wEE
�2J�k0/2e−ik0�0te−k0
2��0 − ��2
2/2

	
1 + erf� t − k0��0 − ��
2i
�2


�� , �61�

F2,2 =
�2�

4
k0

2
3�wEE�2�2J�k0e−i2k0�0t

	�e−t2/2
2
eik0��0−��te−k0

2��0 − ��2
2/2

	
1 + erf� t − k0��0 − ��
2i
�2


�� − �2e−k0
2��0 − ��2
2

	
1 + erf� t − k0��0 − ��
2i



��� , �62�

where erf is the complex error function and the complex
conjugates have been omitted. It is worth noticing that both
these functions are localized in the action �or frequency �0�
space around the frequency mismatch � with their width
being inversely proportional to time width of the Gaussian
wave packet 
, while the same properties also hold for F3,1.
The generating functions, in this form, can be used for the
calculation of the evolution of phase-averaged, action-
dependent quantities, as the particles move through the wave
beam. However, in most cases it is interesting to calculate
these quantities after the exit of particles through the beam
so that we can consider the limit t→ +� and the form of the
generating functions simplifies further to

F1,1 = 2�2�wEE
�2J�k0/2e−k0
2��0 − ��2
2/2e−ik0�0t, �63�

F2,2 = − ��k0
2
3�wEE�2�2J�k0e−k0

2��0 − ��2
2
e−i2k0�0t.

�64�

Therefore, the phase-averaged quantities can be calculated
through Eq. �37� by substituting the above expressions �no-
tice that the third term on the RHS of Eq. �37�, which is
proportional to k0

3, vanishes�. The result can be directly used
for nonlinear gain �efficiency� calculations in gyrodevices
�8–13�.

For the calculation of the coefficients of the higher-order
diffusion equation �48� the time-dependent form Eq. �61� and
�62� of the generating functions is needed for the calculation

of the time derivatives �	F1,1	2�t, �	F2,2	2�t, �F1,1
2 F̄2,2�t, and

�F̄1,1F3,1�t. The resulting diffusion equation has time-
localized coefficients, corresponding to the transient charac-
ter of particle diffusion �33� and is related to the ponderomo-
tive effect in plasmas �63–69�.

VII. SUMMARY AND CONCLUSIONS

Resonant wave-particle interactions have been studied
within the context of canonical perturbation method and Lie
transforms. The aim of this work is to provide a theoretical
approach, under which the perturbation theory of single par-
ticle motion is related to two aspects of the collective particle

behavior: the calculation of phase-averaged quantities of
physical interest and the derivation of a diffusion equation.
In the first order of perturbation the method provides a for-
mal context for the derivation of two well-known results,
namely Madey’s theorem and quasilinear diffusion equation.
More importantly, this approach reveals a formal procedure
for the extension to higher-order perturbations, related to
stronger wave fields, and provides analytical results. There-
fore, it is shown that third-order perturbation theory for the
single particle motion allows for the calculation of phase-
averaged quantities and the derivation of a diffusion equation
with fourth-order accuracy.

A simplified Hamiltonian system, describing resonant
wave-particle interactions, has been considered, in order to
clearly introduce, without loss of generality, the conse-
quences of considering perturbations beyond the quasilinear
approximation. However, there is no inherent restriction of
this approach, preventing its applicability to more complex
and realistic cases. The respective analytical results were ob-
tained for a general wave field profile, while specific appli-
cations to the characteristic cases of localized �Gaussian� and
periodic �general� profiles have been considered. It is ex-
pected that these results can bring to light physical aspects
beyond the limits of validity of the traditional quasilinear
theory.
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APPENDIX A: SIMPLIFIED HAMILTONIAN SYSTEM

By utilizing the generalized momentum P and the vector
potentials of the main magnetic field A0 and the wave

field Ã,

P = p + qA, A = A0 + Ã , �A1�

A0 = eyB0x, Ã = �
i

E0
�i�c

�i
Im�f�i�F�i��z�ei�k�,ix+k�,iz−�it�� ,

�A2�

the Hamiltonian of the system can be written in the follow-
ing form:

H�x,z,P,t� = m0c2�, � =�1 +
1

m0
2c2 �P − qA�2,

�A3�

where e, m0, c, and p are the particle charge, the rest mass,
the speed of light, and the kinematic momentum, respec-
tively. By expanding up to linear order with respect to the
perturbed vector potential, we have
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H � m0c2�0 − qv · Ã , �A4�

where

�0 =�1 +
1

m0
2c2 �P − qA0�2, v =

1

m0�0
�P − qA0� .

�A5�

The ratio of the omitted quadratic term over the retained
linear term is of the order vE

�i� /v��cE0
�i� / �v�B0��1, where

vE
�i��eE0

�i� / �m0�i�. Next we apply a canonical transformation

�x,y,z,Px,Py,Pz� � ��,Y,Z,J�,PY,PZ� �A6�

with the generating function

F3�Px,Py,Pz,�,Y,Z� =
1

m0�c0
�Px

2 tan �

2
− PxPy� − PyY

− PzZ �A7�

defining, in the place of x and Px the new pair of canonical
conjugate variables

� = tan−1�Py − m0�c0x

Px
�, J� = −

Px
2

2m0�c0 cos2 �
,

�A8�

where �c0=qB /m0 is the nonrelativistic cyclotron frequency,
which is negative for electrons �which is the case considered
in the following�. Therefore, we can obtain

ki · r = k�,iZ + �i sin � + �0
�i�, �i � −

k�,iv�

�c
,

�0
�i� =

k�,iPY

m0�c0
= const �A9�

with

v� =
�− 2m0�c0J�

m0�0
, �c �

�c0

�0
,

�0 =�1 +
1

m0
2c2 �PZ

2 − 2m0�c0J�� . �A10�

For the Hamiltonian, as expressed in the new variable set,
the variable Y is cyclic and consequently its conjugate mo-
mentum PY �and �0� is conserved. Assuming that the carrier
frequencies of all wave packets are close to the k0th har-
monic of the gyrofrequency �i�k0	�c	, the second term of
the Hamiltonian �A4� can be expanded into Bessel functions
and by keeping only the resonant terms we obtain

H = m0c2�0 − �
i

eE0
�i�

�i
F�i��z�Im
�v�f �,iJk0

��i�

+
v�

2
�Jk0−1��i�f i

− + Jk0+1��i�f i
+��ei�k�,iz+k0�−�it+�0

�i��� .

�A11�

Furthermore, assuming the particles to be weakly relativistic
�v /c�1�, and since �i�v� /c, we can take into account
only the lowest terms from the small argument expansion of
the Bessel functions, so that

H = m0c2�0 −
J�

k0/2

2 �
i

wE
�i�F�i��z�ei�k0�+k�,iz−�it� + c.c.,

�A12�

where

�E
�i� =

vE
�i�	f i

−		2m0�c0	k0/2

2�k0 − 1�! � k�,i

2m0�c0
�k0−1

ei��0
�i�+argfi

−−�/2�.

�A13�

Also, expanding �0 up to fourth order with respect to v /c
�and keeping only terms containing J�� we obtain the Hamil-
tonian

H = − �c0�1 −
v�

2

2c2�J� −
k0�c0

2

2m0c2J�
2 −

J�
k0/2

2 �
i

wE
�i�F�i��z�

	ei�k0�+k�,iz−�it� + c.c. �A14�

and using the canonical transformation with generating func-
tion F2= ��+�c0�1−v�

2 /2c2�t�J we obtain

H = −
k0�c0

2

2m0c2J2 −
Jk0/2

2 �
i

wE
�i�F�i��z�ei�k0�+k�,iz−�it� + c.c.

�A15�

with J=J� and �=�+�c0�1−v�
2 /2c2�t.

Based on physical arguments �6�, in certain cases we can
consider that the canonical momentum Pz=v�m0 is constant
so that we can replace the variable z by v�t. Thus, we intro-
duce the new time variable 	v�	t and use the scaling transfor-
mation

� � − �, J � sJ �A16�

with

s =
2	v�	m0c2

k0�c0
2 �A17�

in order to obtain the reduced Hamiltonian

H = J2 − E
�2J�k0/2

2
eik0��

i

wE
�i�F�i��t�ei�k0�−�it� + c.c.,

�A18�

where

E =
1

2v�
�m0c2v�

k0�c0
2 �k0/2−1

, �A19�

�i = k�,i −
k0�c0

v�

�1 −
v�

2

2c2� −
�i

v�

. �A20�

Y. KOMINIS PHYSICAL REVIEW E 77, 016404 �2008�

016404-10



APPENDIX B: DEPRIT’S PERTURBATION SERIES

According to the method of Deprit �55,56,58�, the old
Hamiltonian H, the new Hamiltonian K, and the transforma-
tion T along with the Lie generator w are expanded in power
series of �,

H�z,t,�� = �
n=0

�

�nHn�z,t� , �B1a�

K�z,t,�� = �
n=0

�

�nKn�z,t� , �B1b�

T�z,t,�� = �
n=0

�

�nTn�z,t� , �B1c�

w�z,t,�� = �
n=0

�

�nwn+1�z,t� , �B1d�

where the expansion of w has been appropriately chosen in
order to generate the identity transformation T0= I to the low-
est order. The transformations T and T−1 which will be used
in the following are given below, through fourth order:

T0 = I , �B2a�

T1 = − L1, �B2b�

T2 = −
1

2
L2 +

1

2
L1

2, �B2c�

T3 = −
1

3
L3 +

1

6
L2L1 +

1

3
L1L2 −

1

6
L1

3, �B2d�

T4 = −
1

4
L4 +

1

12
L3L1 +

1

8
L2

2 +
1

4
L1L3 −

1

24
L2L1

2

−
1

12
L1L2L1 −

1

8
L1

2L2 +
1

24
L1

4, �B2e�

T0
−1 = I , �B3a�

T1
−1 = L1, �B3b�

T2
−1 =

1

2
L2 +

1

2
L1

2, �B3c�

T3
−1 =

1

3
L3 +

1

6
L1L2 +

1

3
L2L1 +

1

6
L1

3, �B3d�

T4
−1 =

1

4
L4 +

1

12
L1L3 +

1

8
L2

2 +
1

4
L3L1 +

1

24
L1

2L2

+
1

12
L1L2L1 +

1

8
L2L1

2 +
1

24
L1

4. �B3e�

The equations providing the Lie generator w and the new
Hamiltonian K, to fourth order are

K0 = H0, �B4�

�w1

�t
+ �w1,H0� = K1 − H1, �B5�

�w2

�t
+ �w2,H0� = 2�K2 − H2� − L1�K1 + H1� , �B6�

�w3

�t
+ �w3,H0� = 3�K3 − H3� − L1�K2 + 2H2�

− L2�K1 +
1

2
H1� −

1

2
L1

2H1, �B7�

�w4

�t
+ �w4,H0� = 4�K4 − H4� − L1�K3 + 3H3�

− L2�K2 + H2� − L1
2H2 − L3�K1 +

1

3
H1�

−
1

6
�L1L2 + 2L2L1 + L1

3�H1. �B8�

By selecting the arbitrary functions Kn so that the
�-independent part of the RHS is eliminated, one can show
that these equations can be written in the general form

�wn

�t
+ �wn,H0� = �

m�0
Pn,m�J,t�eimk0�, �B9�

where n is the order of perturbation and m is the harmonic
number of the corresponding term. Their solutions are given
as

wn = �
m�0

Fn,meimk0�,

Fn,m = 

t0

t

Pn,m�J,s�eimk0�0�s−t�ds , �B10�

with �0=�H0 /�J.

APPENDIX C: LIE OPERATORS ON FUNCTIONS
OF THE ACTION

The calculation of phase-averaged quantities through the
Lie transform T in each order involves the Poisson brackets
of the Lie generating functions wn=�m�0Fn,meimk0�+c.c.
with a function of the action G�J�. Using the linearity of the
Poisson bracket we have
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LxG�J� = �
m

Lx,mG�J� + c.c., �C1�

where

Lx,m = �Fx,meimk0�,¯� + c.c. �C2�

We give the following relations for the operators Lx,n acting
on a function G�J�:

Lx,nG = ink0Fx,neink0�G�, �C3�

Lx,n
2 G = �nk0�2��G�	Fx,n	2�� − G�Fx,n

2 e2ink0�� , �C4�

Lx,n
3 G = i�nk0�3��3�G�	Fx,n	2�� − G��	Fx,n	2���Fx,neink0�

− Fx,n
3 G�e3ink0�� , �C5�

Lx,n
4 G = �nk0�4���3�G�	Fx,n	2�� − G��	Fx,n	2���	Fx,n	2��

− ���G�	Fx,n	2�� − G��	Fx,n	2���� + 3G��	Fx,n	2��

+ 	Fx,n	2G��Fx,n
2 e2ink0� + G�Fx,n

4 e4ink0�� �C6�

and

Ly,mLx,nG = − nk0
2��mFy,m�Fx,nG��� − nFy,m� Fx,nG��ei�n+m�k0�

− �mF̄y,m�Fx,nG��� + nF̄y,m� Fx,nG��ei�n−m�k0�� ,

�C7�

Lz,lLy,mLx,n = − ink0
3ei�l+m+n�k0��Fz,ll�mFy,m�Fx,nG���

− nFy,m� Fx,nG��� − Fz,l� �mFy,m�Fx,nG���

− nFy,m� Fx,nG���m + n��

+ ink0
3ei�−l+m+n�k0��F̄z,ll�mFy,m�Fx,nG���

− nFy,m� Fx,nG��� + F̄z,l� �mFy,m�Fx,nG���

− nFy,m� Fx,nG���m + n��

+ ink0
3ei�l−m+n�k0��Fz,ll�mF̄y,m�Fx,nG���

+ nF̄y,m� Fx,nG��� − Fz,l� �mF̄y,m�Fx,nG���

+ nF̄y,m� Fx,nG���n − m��

− ink0
3ei�−l−m+n�k0��F̄z,ll�mF̄y,m�Fx,nG���

+ nF̄y,m� Fx,nG��� + F̄z,l� �mF̄y,m�Fx,nG���

+ nF̄y,m� Fx,nG���n − m�� , �C8�

where the prime denotes differentiation with respect to the
action J and the complex conjugates have been omitted for
simplicity.
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